IRAF help page for package images, program laplace

from NOAO laplace -- convolve a list of images with a Laplacian filterUSAGEPARAMETERSDESCRIPTIONEXAMPLESTIME REQUIREMENTSBUGSSEE ALSO

laplace -- convolve a list of images with a Laplacian filter


USAGE

laplace input output


PARAMETERS

input

List of images to be convolved.

output

List of output images. The number of output images must equal the number of input images. If the input image name equals the output image name the convolved image will replace the input image.

laplace = xycentral

The Laplacian filters are a set of four three by three kernels which approximate the Laplacian operator, where a Laplacian operator is defined as the sum of the partial second derivatives in x and y. The elements of the four Laplacian kernels are shown in detail below.

xycentral

The elements of the central column and row of a 3 by 3 image subraster are combined to estimate the Laplacian at the position of the central pixel.

diagonals

The elements of the two diagonals of a 3 by 3 image subraster are combined to estimate the Laplacian at the position of the central pixel.

xyall

The three columns and rows of a three by three image subraster are averaged to estimate the Laplacian at the position of the central pixel.

xydiagonals

The central row and column and the two diagonals of a three by three image subraster are combined to estimate the Laplacian at the position of the central pixel.

boundary = nearest

The algorithm used to compute the values of the out of bounds pixels. The options are:

nearest

Use the value of the nearest boundary pixel.

constant

Use a constant value.

reflect

Generate a value by reflecting around the boundary.

wrap

Generate a value by wrapping around to the opposite side of the image.

constant = 0.

The constant for constant-valued boundary extension.


DESCRIPTION

LAPLACE convolves the list of images specified by input with one of four 3 by 3 Laplacian kernels specified by laplace and places the convolved images in output. If the image names in output equal the image names in input the Laplacian operation is performed in place and the original images are overwritten. Out of bounds pixels are computed using the algorithm specified by boundary.

The Laplacian filters are high-pass filters which act as a local edge detector. A characteristic of the Laplacian is that it is zero at points where the gradient is a maximum or a minimum. Therefore points detected as gradient edges would generally not be detected as edge points with the Laplacian filter. Another characteristic of Laplacian operators is that a single grey level transition may produce two distinct peaks one positive and one negative in the Laplacian which may be offset from the gradient location.

The four Laplacian filters are listed below. The I[*,*] are the elements of the input image and the O[*,*] are the elements of the output image.

    			xycenter
	     0*I[-1,1]  + 1*I[0,1]  + 0*I[1,1]  +
    O[0,0] = 1*I[-1,0]  - 4*I[0,0]  + 1*I[1,0]  +
             0*I[-1,-1] + 1*I[0,-1] + 0*I[1,-1]
		       diagonals
          I[-1,1]/sqrt(2)  + I[0,1]*0         +  I[1,1]/sqrt(2) +
O[0,0] =  I[-1,0]*0        - I[0,0]*4/sqrt(2) +  I[1,0]*0       +
	  I[-1,-1]/sqrt(2) + I[0,-1]*0        +  I[1,-1]/sqrt(2) 
		         xyall
	       2/3*I[-1,1]  -  1/3*I[0,1]  + 2/3*I[1,1]  +
    O[0,0] = - 1/3*I[-1,0]  -  4/3*I[0,0]  - 1/3*I[1,0]  +
               2/3*I[-1,-1] -  1/3*I[0,-1] + 2/3*I[1,-1]
		       xydiagonals
          I[-1,1]/sqrt(2)/2  + I[0,1]/2           + I[1,1]/sqrt(2)/2 +
O[0,0] =  I[-1,0]/2          - I[0,0]*(2-sqrt(2)) + I[1,0]/2         +
	  I[-1,-1]/sqrt(2)/2 + I[0,-1]/2          + I[1,-1]/sqrt(2) 


EXAMPLES

1. Convolve an image with the Laplacian filter xyall using nearest neighbour boundary extension.

cl> laplace m83 m83.lap xyall


TIME REQUIREMENTS

LAPLACE requires approximately 1.7 cpu seconds to convolve a 512 square real image with a 3 by 3 Laplacian kernel on a Sparc Station 1.


BUGS


SEE ALSO

convolve, gauss, gradient, boxcar,


This page automatically generated from the iraf .hlp file. If you would like your local iraf package .hlp files converted into HTML please contact Dave Mills at NOAO.

dmills@noao.edu