Particle Astrophysics and Cosmology (SS 08)

Homework no. 7 (to be handed in by June 11, 2008)
Tutorials: Wednesday, 17:15 to 18:45, AVZ, room 116 (first floor)

1 CMB Anisotropies

In class, we expanded the temperature fluctuation in the basis of spherical harmonics.

$$
\begin{equation*}
\left.\Delta T\left(\hat{n}, \vec{x}_{O}\right) \equiv \frac{T(\theta, \phi)-T_{0}}{T_{0}}\right|_{\vec{x}_{O}}=\sum_{l, m} a_{l m}\left(\vec{x}_{O}\right) Y_{m}^{l}(\hat{n}) \tag{1}
\end{equation*}
$$

Here \vec{x}_{O} describes the location of the observer, and \hat{n} is a unit vector, described by the azimuthal angle ϕ and the polar angle θ :

$$
\begin{equation*}
\hat{n}=(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta) ; \tag{2}
\end{equation*}
$$

this direction is defined from the location \vec{x}_{O}. The simplest quantity characterizing the anisotropies in the microwave background is the average of a product of two $\Delta T \mathrm{~s}$,

$$
\left\langle\Delta T\left(\hat{n}, \vec{x}_{O}\right) \Delta T\left(\hat{n}^{\prime}, \vec{x}_{O}\right)\right\rangle,
$$

where the averaging is over the observer's location \vec{x}_{O}.
Show that the rotational invariance of the universe requires that the product of two as of Eq.(1) takes the form

$$
\begin{equation*}
\left\langle a_{l m}\left(\vec{x}_{O}\right) a_{l^{\prime} m^{\prime}}\left(\vec{x}_{O}\right)\right\rangle=\delta_{l l^{\prime}} \delta_{m,-m^{\prime}} C_{l} \tag{3}
\end{equation*}
$$

from the rotational invariance of the average of a product of two $\Delta T \mathrm{~s}$, where the averaging is again over \vec{x}_{O}. We can find the coefficients C_{l} by inverting the Legendre transformation,

$$
\begin{equation*}
C_{l}=\frac{1}{4 \pi} \int d^{2} \hat{n} d^{2} \hat{n^{\prime}} P_{l}\left(\hat{n} \cdot \hat{n}^{\prime}\right)\left\langle\Delta T(\hat{n}) \Delta T\left(\hat{n^{\prime}}\right)\right\rangle \tag{4}
\end{equation*}
$$

Of course, we cannot actually average over positions from which to view the microwave background. What is observed is a quantity averaged over m but not over position:

$$
\begin{equation*}
C_{l}^{o b s} \equiv \frac{1}{2 l+1} \sum_{m} a_{l m} a_{l,-m} \tag{5}
\end{equation*}
$$

The fractional difference between the C_{l} and the observed $C_{l}^{o b s}$ is called cosmic variance. Note that it cannot be overcome (without travelling over cosmological distances) and thus poses a fundamental limit to the accuracy with which the power spectrum can be determined!

Fortunately, for Gaussian perturbations, the mean square cosmic variance decreases with l. Show that

$$
\begin{equation*}
\left\langle\left(\frac{C_{l}-C_{l}^{o b s}}{C_{l}}\right)^{2}\right\rangle=\frac{2}{2 l+1} \tag{6}
\end{equation*}
$$

Hint: You can use the identity

$$
\begin{align*}
\left\langle a_{l m} a_{l-m} a_{l m^{\prime}} a_{l-m^{\prime}}\right\rangle & =\left\langle a_{l m} a_{l-m}\right\rangle\left\langle a_{l m^{\prime}} a_{l-m^{\prime}}\right\rangle+\left\langle a_{l m} a_{l m^{\prime}}\right\rangle\left\langle a_{l-m} a_{l-m^{\prime}}\right\rangle \\
& +\left\langle a_{l m} a_{l-m^{\prime}}\right\rangle\left\langle a_{l-m} a_{l m^{\prime}}\right\rangle, \tag{7}
\end{align*}
$$

which holds for Gaussian perturbations.

2 Calculation of the WIMP relic density

In class, we saw a simpified estimate of the WIMP relic density. While it correctly reproduces the functional dependence, it gets the numerical coefficient wrong by a few tens of percent, which is much bigger than the current uncertainty on the relic density from observations (within standard Λ CDM cosmology, at least).

Here we will work through a more reliable calculation of the WIMP number density. It is based on the Boltzmann equation,

$$
\begin{equation*}
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle v \sigma_{\mathrm{ann}}\right\rangle\left(n_{\chi}^{2}-n_{\chi, \mathrm{eq}}^{2}\right) . \tag{8}
\end{equation*}
$$

(a) First, re-write the Boltzmann equation in terms of dimensionless quantities, by introducing $Y_{\chi} \equiv n_{\chi} / s, s$ being the entropy density, and $x=m_{\chi} / T$. Inserting the explicit expressions for s and H in the radiation-dominated universe, show that this leads to

$$
\begin{equation*}
\frac{d Y_{\chi}}{d x}=-\frac{1.32 \sqrt{q_{\mathrm{tot}}} m_{\chi} M_{\mathrm{Pl}}}{x^{2}}\left\langle v \sigma_{\mathrm{ann}}\right\rangle\left(Y_{\chi}^{2}-Y_{\chi, \mathrm{eq}}^{2}\right), \tag{9}
\end{equation*}
$$

where $M_{\mathrm{Pl}}=2.4 \cdot 10^{18} \mathrm{GeV}$ is the reduced Planck mass and q_{tot} is the number of relativistic degrees of freedom. Note that we got rid of the $3 H n_{\chi}$ term on the right-hand side of Eq.(8).
(b) At high temperatures χ should have been (almost) in equilibrium. To treat this phase, write $Y_{\chi}=Y_{\chi, \text { eq }}+\Delta$. For this expansion to make sense, Δ and $\frac{d \Delta}{d x}$ have to be small; one can thus estimate Δ by demading $\frac{d \Delta}{d x}=0$. In order to determine the "decoupling" temperature, solve the equation

$$
\begin{equation*}
\Delta\left(x_{d}\right)=\xi Y_{\chi, \mathrm{eq}}\left(x_{d}\right) . \tag{10}
\end{equation*}
$$

Show that this gives

$$
\begin{equation*}
x_{d}=\ln \frac{0.382 \xi m_{\chi} M_{\mathrm{Pl}} g_{\chi}\left\langle\sigma_{\mathrm{ann}} v\right\rangle}{\sqrt{x_{d} q_{\mathrm{tot}}\left(x_{d}\right)}} . \tag{11}
\end{equation*}
$$

Numerically, $\xi=\sqrt{2}-1$ gives an accurate answer (by comparison with numerical integration of the Boltzmann equation). Eq.(11) can e.g. be solved by iteration.
(c) For $T \leq T_{d}$, i.e. $x \geq x_{d}$, the production term in the Boltzmann equation (9) can be ignored. However, χ pair annihilation can still proceed. Under the assumption that $Y_{\chi}(x \rightarrow \infty) \gg Y_{\chi}\left(x_{d}\right)$, show that this leads to the final answer

$$
\begin{equation*}
\Omega_{\chi} h^{2}=\frac{8.7 \cdot 10^{-11} \mathrm{GeV}^{-2}}{\sqrt{q_{\mathrm{tot}}\left(x_{d}\right)} J\left(x_{d}\right)} \tag{12}
\end{equation*}
$$

where the "annihilation integral" is given by

$$
\begin{equation*}
J\left(x_{d}\right)=\int_{x_{d}}^{\infty} \frac{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}{x^{2}} d x \tag{13}
\end{equation*}
$$

Evaluate this integral for the simple case $v \sigma_{\mathrm{ann}}=a+b v^{2}$, where v is the relative velocity between the annihilating WIMPs. Hint: $\left\langle v^{2}\right\rangle=6 T / m_{\chi}$.

Note that x_{d} in this treatment has a different meaning than for the method discussed in class. There, all interactions ceased for $T<T_{d}$. Here, χ production is also assumed to be negligible for $T<T_{d}$, but annihilation continues.

