Universität Bonn Summer Term 2009

Physics of the ISM

U. Klein, J. Kerp

Exercises VI

In-class problems

1 Observed line width of neutral hydrogen

The rms velocity of a cloud is given by

$$v_{\rm rms} := \sqrt{\langle v^2 \rangle} = \left[\int_0^\infty v^2 f(v) \, dv \right]^{1/2} \,, \tag{1}$$

where

$$f(v) = \left(\frac{m}{2\pi k T_{k}}\right)^{3/2} e^{-\frac{m v^{2}}{2 k T_{k}}} \cdot v^{2}, \qquad (2)$$

is the Maxwellian velocity distribution of the atoms in a gas with kinetic temperature $T_{\rm k}$ (cf. Exercises II). The measured quantity, the line width, is given in terms of the so-called "full width at half power" $(FWHP, \Delta v_{1/2})$. The relation between the rms velocity and the FWHP is

$$\Delta v_{1/2} = \sqrt{8 \ln 2/3} \, v_{\rm rms} \,. \tag{3}$$

- (a) Now work out the relation between the kinetic temperature $T_{\rm k}$ and the measured FWHP. Calculate this quantity for a gas with $T_{\rm k}=1000$ K.
- (b) Compare with the speed of sound in an isothermal gas, which is given by the pressure P and the density ρ via

$$c_s = \sqrt{\kappa \frac{P}{\rho}} \,\,\,(4)$$

where κ is the adiabatic index of the gas.

Homework

2 Gas masses

2.1 Hydrogen cloud

(a) Calculate the total HI mass of a cloud at a distance D=10 kpc, with an observed hydrogen column density $N_{HI}=10^{22}~{\rm cm}^{-2}$ and an angular diameter of $\theta_{\rm cl}=5'$,

$$M_{HI} = m_H N_{HI} D^2 \Omega_{cl} , \qquad (5)$$

where m_H is the mass of the hydrogen atom, and

$$\Omega_{\rm cl} = \pi \,\theta_{\rm cl}^2 \,, \tag{6}$$

is the solid angle subtended by such a cloud with angular diameter $\theta_{\rm cl}$.

(b) Is this really the total gas mass, or are there other constituents that would have to be accounted for?

2.2 Galaxy disk

Assume that the above column density is present in a galaxy out to a radius of 15 kpc.

- (a) Calculate the total H_I mass.
- (b) If this mass were concentrated at the centre of the galaxy, what would the expected rotational velocity be of any stars or gas at 15 kpc radius?