Universität Bonn Summer Term 2009

Physics of the Interstellar Medium

U. Klein, J. Kerp

Exercises IV

In-Class Exercises

1 Line Radiation of Neutral Hydrogen

1.1 Emission and absorption

- Suppose to consider a uniform, extended HI cloud with a physical temperature of $T_C=2.73$ K. If the only background source is the 2.73 K microwave background, how would you expect to observe the HI line?
- Repeat if there is a background source with main beam brightness temperature $T_{MB}=3$ K. What would be the temperature of the absorption ΔT_L (in K), if $\tau=1$?
- Repeat for $T_C=3.5$ K.

1.2 Radiation Transfer

Assume that we measure the number of photons originating ON (I_{ON} =50 cts) and OFF (I_{OFF} =320 cts) a cloud of interest. We know the photoelectric absorption cross section (σ =1.25× 10⁻²⁰ cm²) and the column densities of the cloud N_H(ON)=8×10²⁰ cm⁻² and OFF the cloud N_H(OFF)=8×10¹⁷ cm⁻²

- Find the appropriate radiative transfer equation.
- What fraction of the I_{ON} is produced by the background source.
- Calculate the number of counts originating from the foreground and background in the OFF position.
- Calculate the mean free-path length of a photon in units of pc assuming a hydrogen volume density of 100 cm⁻³ and the above photoelectric absorption cross section.