Universität Bonn Summer Term 2009 # Physics of the Interstellar Medium U. Klein, J. Kerp ## Exercises IV In-Class Exercises ## 1 Line Radiation of Neutral Hydrogen ### 1.1 Emission and absorption - Suppose to consider a uniform, extended HI cloud with a physical temperature of $T_C=2.73$ K. If the only background source is the 2.73 K microwave background, how would you expect to observe the HI line? - Repeat if there is a background source with main beam brightness temperature $T_{MB}=3$ K. What would be the temperature of the absorption ΔT_L (in K), if $\tau=1$? - Repeat for $T_C=3.5$ K. #### 1.2 Radiation Transfer Assume that we measure the number of photons originating ON (I_{ON} =50 cts) and OFF (I_{OFF} =320 cts) a cloud of interest. We know the photoelectric absorption cross section (σ =1.25× 10⁻²⁰ cm²) and the column densities of the cloud N_H(ON)=8×10²⁰ cm⁻² and OFF the cloud N_H(OFF)=8×10¹⁷ cm⁻² - Find the appropriate radiative transfer equation. - What fraction of the I_{ON} is produced by the background source. - Calculate the number of counts originating from the foreground and background in the OFF position. - Calculate the mean free-path length of a photon in units of pc assuming a hydrogen volume density of 100 cm⁻³ and the above photoelectric absorption cross section.