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What happens to these BHs ?

• Compact remnants (NS/BH) can receive birth /  “natal” 
velocity kick due to asymmetry in supernova ejecta 
which carries net momentum.

• Amount of kick for BH uncertain (in theory & 
observation).

• Can be observationally inferred from “back-tracing” 
orbital motion of Galactic BH X-ray binaries 
[e.g. ,Willems et al.,  2005,  ApJ,  625,  324, Repetto et 
al.] --- indicate very low to high natal kicks. 

• Computations of core-collapse supernova also support 
a wide range of natal kicks (Janka et al.).

• “Electron Capture” mechanism necessarily produces 
remnants with small kick velocities.



• If retained in significant number (>10%), the BHs never attain 
complete equipartition.

• Continual / runaway sinking towards cluster center.

• “Mass stratification” or “Spitzer” instability (otherwise 
dynamical friction)— see Lyman Spitzer’s book                                                           

• The Spitzer mass-stratification stability criterion:

• Highly dense, dynamically isolated sub-cluster purely of BHs 
forms in cluster center.

What happens to these BHs ?
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In NBODY6, the orbital evolution of compact binaries
is also considered when the binary is inside a hierarchy. Thus
a tight BH binary will continue to shrink even if it acquires
an outer member forming a hierarchical triple, which can
often happen due to the strong focussing effect of BH bi-
naries. Also, energy removal due to GW (bursts) during a
close hyperbolic passage between two BHs is considered in
the code.

Numerical simulations of BH-BH mergers (see Hughes
2009 for an excellent review) indicate that for unequal-mass
BHs or even for equal-mass BHs with unequal spins, the
merged BH product acquires a velocity-kick of typically 100
km s−1 or more due to an asymmetry in momentum out-
flow from the system, associated with the GW emission.
Although we consider equal-mass BHs, the merger kicks as-
sociated with the inequality of the spins of the merging BHs
would be generally sufficient to eject merged BHs from the
cluster. Therefore, in our simulations we provide an arbi-
trarily large kick of 150 km s−1 immediately after a BH-BH
merger, to make sure that the merged BH escapes.

2.2 Computations

To study the rate of BH-BH mergers coming from a star
cluster, we perform simulations of isolated star clusters with
single low-mass stars and BHs as mentioned above. The for-
mation of the BH-core through mass segregation and its dy-
namics remain largely unaffected by the presence of a tidal
field, which mainly affects stars near the tidal boundary.
While the enhanced removal of stars accelerates the core-
collapse of the cluster (see e.g., Spitzer 1987, Ch. 3), the
latter is more strongly enhanced by the collapse of the BHs
themselves (∼ 100 Myr timescale, see below), so that the
effect of any tidal field is only second-order. Hence, isolated
clusters are good enough for our purposes. Further, for sim-
plicity, we do not take into account primordial binaries in
this initial study. The primordial binary fraction in GCs
and their period distribution is still widely debated (Ash-
man & Zepf 1998; Bellazzini et al. 2002; Sommariva et al.
2009). The presence of a primordial binary population can
however significantly influence the dynamics of stellar-mass
BHs which we defer for a future more detailed study.

For solar-like metallicity, Eggleton’s stellar evolution
model (Eggleton, Fitchett & Tout (1989), adapted in
NBODY6) gives about NBH ≈ 200 BHs for a cluster with
N = 105 stars following a Kroupa IMF (Kroupa 2001). The
above NBH (or its proportion with N) is thus an upper limit
to the number of BHs in a GC that corresponds to a full re-
tention (i.e., no or low natal kicks for all BHs).

We perform 2 simulations with N = 4.5 × 104 and
NBH = 80, 2 runs with N = 6.5 × 104, NBH = 110, i.e.,
about full BH-retention. Two of the above runs are repeated
with half the above NBHs. Also, one run with N = 5 × 104

and excess NBH = 200, appropriate for a top-heavy IMF has
been performed. Finally, we do 2 runs with N = 105 with
NBH = 80 (about 50% retention fraction) and 200 (full re-
tention). All the clusters consist of low-mass stars between
0.5M⊙ ! m ! 1.0M⊙ with a Kroupa IMF and the BHs have
MBH = 10M⊙, as discussed in detail in the beginning of the
section.

In addition to these systems, we also study stellar-mass
BHs in clusters with smaller N representing open clusters,
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Figure 2. Typical example of the mass segregation of BHs.
Shown is the radial position R vs. time t (top panel) of all BHs for
model C50K80 of Table 1. Each of the points represents a BH.
The BHs segregate within 50 Myr during which NBH remains
unchanged (bottom panel). As the BH sub-cluster becomes dense
enough that BH-BH binary formation takes place through 3-body
encounters, BHs and BH binaries are ejected from the BH-core
and NBH starts to decrease.

in order to estimate the lower-limit in cluster mass for the
occurrence of BH-BH mergers. We perform 10 runs with
N = 5×103, N = 104 and N = 2.5×104 each with full BH-
retention (i.e., NBH = 12, 20 and 50 respectively). Results
of all our runs are summarized in Table 1.

2.3 Simulation of a GC core: reflective boundary

We also perform simulations with a smaller number of stars
and BHs that are confined within a reflecting spherical
boundary. With such a dynamical system one can mimic
the core of a massive cluster, where the BHs are concen-
trated after mass segregation. The advantage of this ap-
proach is that one can simulate the evolution of a massive
cluster with much fewer stars. We simulate N = 3000−4000
stars packed within 0.4 pc. This provides a stellar density
of ∼ 104M⊙ pc−3, appropriate for the core-density of a
massive cluster. The initial BH population is taken to be
NBH ≈ 100 or 200, representing half or full BH-retention
respectively, of a N = 105 star cluster. In this way, the sim-
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Shown is the radial position R vs. time t (top panel) of all BHs for
model C50K80 of Table 1. Each of the points represents a BH.
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Two phases:  (a) initial 
segregation:                        
(b) formation of BH-core:
         depletes due to 
super-elastic dynamical 
encounters. 

BH-core (or “Dark core”) 
phase have potential for a 
wide variety of physical 
phenomena

NBH � const

NBH



BH-core phenomena

• BH-BH inspiral via GW emission.                              
dynamical formation of tight BH-BH binary, inspiral within 
or outside cluster

• Heating and expansion of cluster core: delay of 
core collapse.                                                                                 
due to K.E. energy deposition of ejected BHs in core

• Formation of BH X-ray binaries.                                              
due to dynamical encounters of BHs with normal stars

• Formation of  “dark star clusters”.                                  
due to rapid removal of stars by galactic tidal field close to 
galactic center



Dynamical formation of BH-BH binaries

3-body binary formation in dense BH-core:
in close encounter among 3 BHs, two of them get bound while 
third escape with the excess K.E.

A

B
C A

B

C



BH-BH binaries from primordial binaries

Multiple exchange:

BHs being more massive 
replace stellar binary 
members in successive 
exchange encounters;

efficient with primordial 
binaries

Image not to scale



Encounter/collisional hardening

Dynamically formed BH-BH binaries are “hard”:
total binding energy greater than mean stellar K.E.

Heggie’s Law:  “hard 
binary hardens” --- 
encounter/collisional 
hardening
(hardening => increase of 
binding energy, i.e., shrinking 
of semi-major-axis)

Both intruder star & 
binary get recoiled 
with larger total K.E.
N.B. : soft binary softens, 
hence easily dissociated

Image not to scale

Consequence of “negative specific heat” of a 
single binary



Encounter/collisional hardening

Encounters with hard binaries “super-elastic”:
hard binaries supply K.E. to encountering stellar environment as 
they shrink --- energy source.

Statistical effect over many encounters: theoretically predicted & 
verified through numerical experiments. [Heggie, D.C, 1975, 
MNRAS, 173, 729]

“Binary burning”: has profound consequences on cluster’s 
dynamical evolution;  halt’s core collapse.

Hardening rate             (roughly), rate decreases as binary 
shrinks:  too close binaries (                     typically for globular 
clusters) behave essentially as single stars.  

ȧ � a2

P � 103 days
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Rate of collisional hardening for distant (             ) 
encounters :

d >> a

Much stronger hardening is possible through close (         ) 
encounters!

d � a



hyperbolic trajectory

Intermediate (hierarchical) triple



hyperbolic trajectory

Intermediate (hierarchical) triple
The average increase of binding energy per close/strong 
encounters, for similar masses, is          %, as inferred 
from numerical scattering experiments.
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parameters similar to those of the solar system. The lunar
problem was successfully attacked in the end of the 19th
century by Delaunay, who was the Ðrst to apply the method
of canonical transformations to long-term perturbations.
This method possesses much greater generality and was
used to study a broad spectrum of problems. Brown (1936)
was the Ðrst to apply canonical averaging to stellar triples,
and he obtained the transformed quadrupole Hamiltonian.
Kozai (1962) made use of the quadrupole approximation
while studying the long-term motion of asteroids and noted
several important properties of this approximation.
Harrington (1968) obtained quadrupole-level expressions
similar to KozaiÏs for general hierarchical systems of three
stars. (1984) derived octupole-level equations inSo" derhjelm
the limit of low eccentricities and inclinations. In particular,
he demonstrated that the quadrupole approximation fails
in this regime because the octupole term in the Hamiltonian
becomes dominant. Finally, Marchal (1990) averaged the
octupole Hamiltonian keeping all terms up to third order in
a and some terms of order a7@2. His Hamiltonian truncated
at third order is identical to the one used in this paper.

In the process of completing this work, we became aware
of related ongoing work by other groups. In particular,
Krymolowski & Mazeh (1999) have derived octupole-order
perturbation equations following the same method used
here. They retain some additional terms, of order a7@2,
which were also partly included in the Marchal (1990)
Hamiltonian. Based on a few numerical integrations that
Krymolowski & Mazeh (1999) provide for a fairly strongly
coupled system (a \ 0.1), it appears that these higher order
terms have a negligible e†ect on the perturbations, although
they can lead to slightly shorter periods of eccentricity oscil-
lations for systems with low relative inclinations. P. Egg-
leton (2000, in preparation) has used a perturbation method
based on the variation of the Runge-Lenz vector (see Heggie
& Rasio 1996) to derive an extension of KozaiÏs theory to
octupole order. Similar work has been done by N. Geor-
gakarakos (2000, in preparation), who concentrates on
systems where the inner orbit is nearly circular.

2.2. Octupole T heory
A hierarchical triple system consists of a close binary (m0and and a third body moving around the innerm1) (m2)

binary on a much wider orbit. To describe this structure it is
convenient to use Jacobi coordinates, which are deÐned as
follows. The vector represents the position of relativer1 m1to and is the position of relative to the center ofm0, r2 m2mass of the inner binary (see Fig. 1). This coordinate system
naturally divides the motion of the triple into two separate
motions and makes it possible to write the Hamiltonian as a
sum of two terms representing the two decoupled motions
and an inÐnite series representing the coupling of the orbits.
Let the subscripts ““ 1 ÏÏ and ““ 2 ÏÏ refer to the inner and outer
orbits, respectively. The coupling term is written as a power
series in the ratio of the semimajor axes whicha 4 a1/a2,
serves as the small parameter in our perturbation expan-
sion. The complete Hamiltonian of the three-body system is
given by (Harrington 1968)

F \ k2m0 m1
2a1

] k2(m0 ] m1)m2
2a2

] k2
a2

;
j/2

= ajM
j
Ar1

a1

BjAa2
r2

Bj`1
P

j
(cos ') , (1)

FIG. 1.ÈCoordinate system used to describe the hierarchical triple
system.

where k2 is the gravitational constant, are the LegendreP
jpolynomials, ' is the angle between and andr1 r2,

M
j
\ m0 m1 m2

m0j~1 [ ([m1)j~1
(m0 ] m1)j

. (2)

We shall deal with the expansion only up to third order in a.
Let us deÐne a set of canonical variables, known as

DelaunayÏs elements, that provide a particularly convenient
dynamical description of our three-body system. The angle
variables are chosen to be

l1, l2 \ mean anomalies , (3)

g1, g2 \ arguments of periastron, and (4)

h1, h2 \ longitudes of ascending nodes , (5)

and their conjugate momenta are

L 1 \ m0 m1
m0 ] m1

Jk2(m0 ] m1)a1 ,

L 2 \ m2(m0 ] m1)
m0 ] m1 ] m2

Jk2(m0 ] m1 ] m2)a2 , (6)

G1 \ L 1 J1 [ e12 , G2 \ L 2 J1 [ e22 , (7)

and

H1 \ G1 cos i1 , H2 \ G2 cos i2 , (8)

where are the orbital eccentricities and are thee1, e2 i1, i2orbital inclinations.

Kozai oscillation formulae
(see Ford et al. 2000,  ApJ,  535, 385)

[1 => inner orbit, 2 => outer orbit]

a1 = 1 AU, a2 = 100 AU, e2 = 0
m0 = m1 = m2 = 10M�

� Pe � 0.4 Myr

E.g.,

(longer than dynamical encounter time in 
a dense cluster)

emax �
�

1� (5/3) cos2 i0 (e10 = 0)
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““ maximum eccentricity perturbation ÏÏ of the inner orbit,
although, as pointed out in ° 2.3, the true long-term secular
evolution of the eccentricity will not, in general, be strictly
periodic. A typical BS run lasting for took aboutD105P2400 CPU hours on a MIPS R10000 processor, while the
same run using the MVS integrator would take only about
2 CPU hours.

The numerical integrations all started with initial values
of the inner and outer arguments of pericenter of 0¡ and
180¡, respectively. This choice leads to the maximum eccen-
tricity induced in the inner binary in both the planetary
limit (see ° 2.4) and the quadrupole approximation (see
° 2.3). We have performed additional integrations to verify
that the remaining angles (longitudes of ascending node and
initial anomalies) do not signiÐcantly a†ect the secular evol-
ution of the system. For large inclinations, the initial argu-
ment of pericenter of the inner binary is important in
determining whether the system will undergo circulation or
libration, if the inner orbit has a signiÐcant initial eccentric-
ity (see Fig. 3). However, if the inner orbit is nearly circular
initially, then the initial values of the angles are of little
importance since the inner orbit can switch from circulation
to libration and vice versa. For coplanar orbits, the magni-
tude of the angular momentum of the inner orbit increases
when and decreases when g [ 0. For small,g \ g2 [ g1 \ 0
nonzero inclinations this can still serve as a guide when
considering the e†ect of varying the angles.

3.2. Eccentricity Oscillations
First, we investigate the dependence of the maximum

eccentricity perturbation of the inner orbit on the initial
relative inclination (see Fig. 6). We see that, as expected
(° 2.3), for small inclinations, the perturbations arei [ 40¡,
dominated by the octupole term, while for higher inclina-
tions the quadrupole-level perturbations dominate. In both
regimes the OSPE results match the direct numerical inte-
grations very well. Near the transition, numerical integra-
tions (both OSPE and MVS) show a beatlike pattern of
eccentricity oscillations suggesting an interference between
the quadrupole and octupole terms. Note that the results of
Figure 6 are for a system with and form1 > m0 m2 > m0,
which the analytic results from the classical planetary per-
turbation theory (° 2.4) can be applied for small eccentric-
ities and inclinations. We see that the agreement with both
MVS and OSPE integrations is excellent for i [ 30¡.

We now discuss in some more detail the evolution of
systems in the low- and high-inclination regimes.

3.2.1. L arge-Inclination Regime
Figure 7 illustrates the evolution of and ie1, g1, e2, g2,

obtained from a numerical MVS integration for a typical
system with large relative inclination. For large inclination,
the secular quadrupole-level perturbations dominate the
evolution. In the quadrupole approximation the inner
eccentricity undergoes periodic oscillations, while the outer
eccentricity remains constant. Indeed, we see in Figure 7
that undergoes approximately periodic oscillations ofe1large amplitude (with corresponding oscillations in i), while

remains approximately constant. The small-amplitudee2(about 10%) Ñuctuations in are due mainly to thee2smaller, octupole-level perturbations.
Deviations from strict periodicity in the variation of e1and i are also caused by octupole-level perturbations. The

period of a quadrupole eccentricity oscillation is a function

FIG. 6.ÈMaximum eccentricity of the inner orbit after a single oscil-
lation, as a function of the relative inclination. Here m1/m0 \ 10~3,

a~1 \ 100, and the initial The squaresm2/m0 \ 0.01, e2 \ 0.05, e1 \ 10~5.
are from MVS integrations, and the double dashes on either side are from
OSPE integrations with varying initial longitude of periastron. The hori-
zontal line indicates the amplitude of the eccentricity oscillations calcu-
lated analytically in the planetary theory (° 2.4). The solid curve indicates
the amplitude of eccentricity oscillations calculated analytically according
to the quadrupole-level theory for i Z 40¡.

FIG. 7.ÈTypical evolution of the eccentricities, longitudes of perias-
tron, and relative inclination for a system in the high-inclination regime.
Here a~1 \ 100, the initial inclinationm1/m0 \ 10~3, m2/m0 \ 0.01,
i \ 60¡, and the initial eccentricities and Time is givene1 \ 10~5 e2 \ 0.05.
in years assuming AU and These results were obtaineda1 \ 1 m0 \ 1 M

_
.

using numerical MVS integrations.

Standard
Kozai(-Lidov) Mechanism

(SKM)

(see Ford et al. 2000,  ApJ,  535, 385)

(e10 = 0)
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Figure 3. EKM: two sample trajectories (‘a’ and ‘b’) with F = 0.16, ϵ = 0.01,
and different initial conditions. When the planet is eccentric, the test particle
no longer traces out a single Kozai curve, but evolves from one Kozai curve to
another, approximately tracing out a sequence of Kozai curves that have a fixed
quadrupole energy (Figure 2, left panel). Orbit ‘a’ flips repeatedly (i.e., crosses
θ = 0) and reaches extreme eccentricities, and orbit ‘b’ does not. Although
only points up to time t = 190 are plotted, longer runs yield identical plots,
albeit with more densely packed points. In particular, orbit ‘b’ never flips. The
initial conditions for trajectory ‘a’ are {e, ω, θ, Ω}= {0.192, 0, 0.3,π} and for
trajectory ‘b’ those variables are initialized to {0.0913, 0, 0.38, 0}.
(A color version of this figure is available in the online journal.)

Figure 4. EKM: temporal evolution of the two trajectories depicted in Figure 3.
Trajectory ‘a’ reaches extreme eccentricities when it flips. Its evolution is regular,
with ω+Ω librating when it is prograde, and ω−Ω librating when it is retrograde.
Trajectory ‘b’ is chaotic and never flips. The time t is proportional to the true
time (Equation (A8)).
(A color version of this figure is available in the online journal.)

roles. The right panels of Figure 4 show the same quantities for
trajectory ‘b.’ Trajectory ‘a’ is regular and ‘b’ is chaotic. We
demonstrate that more explicitly below.

The left panels of Figure 5 are a zoom-in of the ‘a’ trajectory
at early times. The fast oscillations in θ and e are primarily
governed by the quadrupole evolution, as e and θ trace out
Kozai curves with F = 0.16 and various values of Jz. Over
the course of a single oscillation, ω increases from 0 to π or

Figure 5. EKM: zoomed-in evolution of trajectories ‘a’ and ‘b’ at early times
(Figure 3). In the top panels, the red lines show that Jz controls the envelope of
both θ and e (via Equation (12)). In the bottom panels, the angles are in units
of radians/π (though unlike in Figure 4, the angles are first reset with modulo
2π ). The time t is proportional to the true time (Equation (A8)).
(A color version of this figure is available in the online journal.)

from −π to 0. Hence the orbit always circulates (see Figure 1).
The top left panel also shows Jz. Whereas in the SKM Jz =
const, here Jz changes in a nearly step-wise fashion. There
are sharp jumps in Jz whenever e and θ change rapidly; these
are forced by the octupolar contribution Foc. The long-term
evolution of Jz controls the envelopes of both θ (Figure 5, top
left panel) and e (Figure 5, middle left panel; see Equation (12)).
Successive maxima of e occur in discrete steps. Therefore even
when Jz crosses through zero, the maximum e is never precisely
unity. Nonetheless, as time evolves, the maximum e reached
approaches closer and closer to unity.

The right panels of Figure 5 show the corresponding zoom-in
for trajectory ‘b.’ The bottom right panel shows that ω switches
from circulation to libration and back again. That explains
why the ‘b’ trajectory is chaotic. Similar behavior is shown
in Holman et al. (1997).

Figure 6 shows a zoom-in of the values of 1 − e over the
course of the first 10 flips for trajectory ‘a.’ Near the time that
the orbit flips, e reaches nearly unity and 1 − e becomes small.
The typical minimum 1 − e near a flip is ∼5 × 10−6. For real
astrophysical problems, if the inner body’s e becomes too large
it can penetrate the star or feel other effects such as tides or
general relativistic precession. Whether that happens before the
first flip depends on the parameters of the system of interest. We
are currently investigating the properties of the minima of 1−e,
including their distribution and how the properties depend on ϵ
(J. Teyssandier et al. 2011, in preparation).

A global view of the dynamics is provided by surfaces of
section. Figure 7 maps out the behavior when ϵ = 0.01. We
plot a point whenever ω = 2nπ for integer n.6 This may be
interpreted as follows. Consider trajectory ‘a’ of Figure 3. When

6 Trajectories only appear on our sections while ω is circulating because ω is
never equal to 2nπ during librations (Figure 1).

4

Eccentric
Kozai(-Lidov) Mechanism

(EKM)

(e10 > 0)

Lithwick & Naoz 2011, ApJ, 742, 94



Kozai osc. of BH triple / inner BH binary

High inner eccentricity => gravitational-wave radiation 

Recall Peters’ formula of orbit-shrinkage via GW
�
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Inner orbit in a BH-BH-BH becomes relativistic via 
Kozai mechanism
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Table 1. Angular and linear resolution versus orbital time
scales.

angular linear scale orbital
resolution scale time scale

[mas] [mpc] = 10−3 pc [years]
1000 40 440
100 4 14
60 2.4 6.5
30 1.2 2.3
15 0.6 0.8

Table 2. Expected relativistic periastron shift ∆ϕ for 100%
of the mass contained in a single BH, calculated for different
semi-major axis a and eccentricities e.

a [mas] a [mpc] ∆ϕ ∆ϕ
e = 0.5 e = 0.9

60 2.4 −5.0′ −20′

30 1.2 −10′ −39′

20 0.8 −15′ −59′

15 0.6 −20′ −1.3◦

Center one can compare it to the case of other measured
periastron advances. In the case of Mercury, the measured
relativistic shift is of the order of ≈0.1 arcsec per revolu-
tion. For the Hulse-Taylor Pulsar PSR B1913+16 the shift
is ≈13 arcsec per revolution (Taylor 1993). Therefore, the
expected relativistic shifts for stars on orbits with semi-
major axes as those listed in Table 2 could be, per rev-
olution, 10 to 102 times bigger than that of the Hulse
Taylor Pulsar, and 103 to 104 times bigger than the one
of Mercury.

As the precise shape of the orbit will depend on the
particular central mass distribution, it is most useful to
have a general framework to compute the orbits for a par-
ticular choice of central mass distribution. If one wants to
include the first order general relativistic contribution, in
particular the relativistic periastron advance, one can use
the so-called post-Newtonian approximation of General
Relativity, which is described in Appendix A.

3. Extended mass distribution

In order to study the Newtonian orbital shift we consider
the simplest case of a spherically symmetric mass distribu-
tion. We assume that a given star can enter the extended
mass distribution, and neglect any non-gravitational in-
teraction. We also neglected the influence of lensing (see
Sect. 4.4).

We assume that the total mass of the central compact
distribution amounts to 2.9 × 106 M⊙.

As a consequence of the spherical symmetry of the con-
sidered mass distribution, the (Newtonian) gravitational
force on a given star depends only on the enclosed mass
within the radius corresponding to the position of the star.

–100

–50

0

50

100

–100 –50 50 100

Fig. 2. Example for prograde relativistic periastron ad-
vance. Units are given in gravitational length scales GM/c2.
Apoastron locations are indicated.

Therefore, as it moves towards the center of forces, the
gravitational force and hence the curvature of the orbit
is smaller as compared with the case in which the whole
mass is concentrated within a radius smaller than the peri-
astron radius of the stellar orbit. This leads to orbits with
a retrograde orbital shift – that is a shift in the opposite
direction as compared with the relativistic orbital shift.

3.1. Simple model: Uniform density sphere

Jiang & Lin (1985) present a simple analytical treatment
of the orbits of a test particle which is allowed to enter into
the inner region of a sphere with uniform matter distribu-
tion. Only the Newtonian gravitational force is considered.
In this case, the potential is given by

φ(r) =

⎧
⎨

⎩

GM
2R3 r2 − 3GM

2R r ≤ R,

−GM
r r > R,

(4)

where R is the radius of the sphere of total mass M . They
have shown, that for a given M and R the resulting orbit
precession is given by

∆ϕ = 2 arccos [Ξ1(e, a)] + arcsin [Ξ2(e, a)] − π

2
, (5)

with

Ξ1(e, a) =
1
e

[ a

R
(1 − e2) − 1

]
, (6)

Ξ2(e, a) =
2

R2 − B
√

B2 + 4A
, (7)

and

A := − 1
aR3(1 − e2)

, B :=
1

a2(1 − e2)

(
3a

R
− 1

)
. (8)

Here we have rewritten the results of Jiang & Lin (1985)
in terms of the semi-major axis a and the eccentricity e of
the outer Keplerian orbit.

GR precession partially “detunes” 
Kozai cycle and delays onset of GW 
in-spiral for inner binary

In-spiral still happens as seen in 
numerical studies

3002 P. Brem, P. Amaro-Seoane and R. Spurzem

Figure 2. Comparison of the semimajor axis evolution of the two-body
integration and Peters’ approximation.

Figure 3. Comparison of the eccentricity evolution of the two-body inte-
gration with 1 PN, 2 PN and 2.5 PN terms and Peters’ approximation.

Figure 4. Comparison of the semimajor axis evolution of the two-body
integration with 1 PN, 2 PN and 2.5 PN terms and Peters’ approximation.

The contribution at 3 PN and 3.5 PN order are small compared to
the leading order, but these terms cause the orbit to diverge when
the binary enters the last few RS.3 This is an important effect, since
with PN terms up to order 2.5 one could in principle let the system
evolve until an overlap of the Schwarzschild radii. When including
3 PN and 3.5 PN, on the other hand, this becomes impossible and
in order to avoid unphysical, divergent behaviour one has to abort
the integration at larger separations. For this reason, we choose the
criterion r = 5RS where r is the instantaneous separation and RS is
the combined Schwarzschild radius.

3.2 Spinning binaries

3.2.1 Precession of angular momenta

In PN theory, the Newtonian angular momentum LN = x × p, with
p = r × m v, is no longer conserved. In the case of non-spinning
bodies, the direction of LN is conserved and only the modulus LN

is gradually radiated away during inspiral. However, in the case of
spinning bodies this no longer holds (Kidder 1995). Nonetheless,
as in electromagnetic theory, both the total spin vector S and the
angular momentum vector L precess around the total angular mo-
mentum vector J = L + S. The angular momentum vector we use
differs from the usual Newtonian definition:

L = LN + L1PN + LSO + L2PN. (10)

With this definition, J̇ = 0 up to 2 PN order. The 2.5 PN order,
however, introduces radiation loss. Kidder (1995) estimated the
precession frequency to the lowest order, i.e. L = LN. In the case
of a single spinning body with mass ms in a system with total mass
m, the precession frequency of both S and LN is given by

ωp = G|J |
2c2r3

(
1 + 3

m

ms

)
. (11)

As an example, let us consider a system of a maximally spinning
black hole of mass ms = 10 M⊙ and a non-spinning companion of
mass m2 = 1 M⊙. We set the system on a circular orbit in the x–y
plane with radius 108 cm with the initial spin of ms in x-direction.
This gives a total initial angular momentum of

|J | =
√

Lz(t = 0)2 + S1,x(t = 0)2 = 1.12 × 1044 kg m2

s
, (12)

and thus a precession frequency of ωp = 0.18 Hz. We use non-
spinning PN terms up to 3.5 PN order and spin–orbit coupling up
to next-to-leading order.

From Fig. 5, we can see that the approximate value for the period
of the first precession cycle is (40.4 ± 0.4) s. This gives a value of
ωp,sim = 0.15 Hz. The small difference comes from the fact that the
calculation assumes the approximation L = LN, and we are already
in a very relativistic regime.

Even under the presence of spin–orbit precession, the direction
of JN should be conserved. Fig. (6) shows the x–y projection of
JN and LN during an inspiral. One can see that the direction of
JN is approximately constant but that the modulus shrinks due
to gravitational radiation. During this process, LN precesses about
this direction. One can also see the wobbles in the precession of the
orbital plane given by LN, as described in the appendix of Kidder
(1995). This is due to the fact that in reality the corrected L from
equation (10) does the strict precession, which is not true for the

3 Private communication with Seppo Mikkola and Cliff Will.
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In-spiral process itself becomes 
quicker



Energy generation via “binary burning” 

Dynamical binary formation (3-body mechanism)

BH-BH in-spiral in 
triples (Kozai mech.)

BH-BH in-spiral (ejected) 
by “slingshot”

Cluster heating and 
expansion

Gravitational-wave 
generation detectable 
by upcoming ground-
based detectors

Formation of BH core or “dark core” 

Runaway mass-segregation of BHs

<

Depletion of BH population 
with a few retention 
(formation of BH X-ray 
binaries)



BH-BH mergers in computed clusters (Banerjee et al. 2010, MNRAS, 402, 371)

8 S. Banerjee, H. Baumgardt and P. Kroupa

Table 1. Summary of the computations performed for isolated clusters and those with reflective boundary, see Sec. 2.2 & Sec. 2.3. The
meaning of different columns is as follows: Col. (1): Identity of the particular model — similar values with different names (ending with
A,B etc) imply computations repeated with different random seeds, Col. (2): Total number of stars N , Col. (3): Number of simulations
Nsim with the particular cluster, Col. (4): Initial half-mass radius of the cluster rh(0) (isolated cluster) or radius of reflective sphere
Rs, Col. (5): Initial number of BHs NBH(0), Col. (6): Total number of BH-BH binary mergers within the cluster Nmrg , Col. (7): The
times tmrg corresponding to the mergers, Col. (8): Number of escaped BH-pairs Nesc — the three values of Nesc are those with Tmrg !
3 Gyr, 1 Gyr and 100 Myr respectively, Col. (9): BH-BH Merger rate RAdLIGO detected by AdLIGO assuming that the corresponding
model cluster has a space density of ρcl = 3.5 h3 Mpc−3 (see Sec. 4.1).

Model name N Nsim rh(0) or Rs (pc) NBH(0) Nmrg tmrg (Myr) Nesc RAdLIGO

Isolated clusters

C5K12 5000 10 1.0 12 0 — — — — — —
C10K20 10000 10 1.0 20 0 — — — — — —
C25K50 25000 10 1.0 50 0 — — 3 1 1 — —
C50K80 45000 1 1.0 80 1 698.3 3 1 0 28(±14)
C50K80.1 45000 1 0.5 80 2 217.1, 236.6 3 2 1 35(±15)
C50K40.1 45000 1 0.5 40 0 — — 1 1 1 7(±7)
C50K200 50000 1 1.0 200 2 100.8, 467.8 0 0 0 14(±10)
C65K110 65000 1 1.0 110 1 314.6 4 2 1 35(±15)
C65K110.1 65000 1 0.5 110 0 — — 4 3 1 28(±14)
C65K55.1 65000 1 0.5 55 1 160.5 1 0 0 14(±10)
C100K80 100000 1 1.0 80 2 219.4, 603.2 5 2 1 42(±15)
C100K200 100000 1 1.0 200 0 — — 5 4 4 28(±14)

Reflective boundary

R3K180 3000 1 0.4 180 1 1723.9 5 3 1 35(±15)
R4K180A 4000 1 0.4 180 1 3008.8 2 2 1 21(±12)
R4K180B 4000 1 0.4 180 2 100.2, 1966.5 2 1 0 28(±14)
R3K100 3000 1 0.4 100 2 3052.8, 3645.9 1 1 0 18(±10)
R4K100A 4000 1 0.4 100 2 104.4, 814.2 3 3 1 28(±14)
R4K100B 4000 1 0.4 100 1 1135.3 3 3 3 28(±14)
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Figure 5. Positions of all escaped BH binaries in a 1 − e2 vs. a

plane for the model C65K110. Lines of constant merger times are
plotted as in Fig. 4.

point in Sec. 4. The median merger time for BH-mergers
within the clusters is tmrg ≈ 1 Gyr and for the escaped BH
binaries it is ≈ 3 Gyr.

4 DISCUSSION

Our present study indicates that centrally concentrated star
clusters, with N ! 4.5 × 104 are capable of dynamically
producing BH binaries that can merge within a few Gyr,
provided a significant number of BHs are retained in the
clusters after their birth. The results of our simulations (see
Table 1) imply that most of the BH-BH mergers occur within
the first few Gyr of cluster evolution for both mergers within
the cluster and mergers of escaped BH binaries.

The above results imply that an important class of can-
didates for dynamically forming BH binaries that merge
at the present epoch are star clusters with initial mass
Mcl ! 3 × 104M⊙

1, which are less than few Gyr old. Such
clusters represent intermediate-age massive clusters (here-
after IMC) with initial masses close to the upper-limit of
the initial cluster mass function (ICMF) in spiral (Wied-
ner, Kroupa & Larsen 2004; Larsen 2009a) and starburst
(Gieles et al. 2006) galaxies. While it is not impossible to
obtain BH-BH mergers within a Hubble time from lower-
mass clusters, the overall BH-BH merger and escape rates

1 To correlate with the observed clusters, we consider the mass
Mcl of the parent cluster, i.e., the cluster mass before the BHs
are formed through stellar evolution, which are heavier than the
clusters of low mass stars that we model, for the same value of
N . For a given simulated cluster, we estimate the corresponding
parent mass Mcl by weighting the mean stellar mass of ⟨m⟩cl ≈
0.6M⊙ of a Kroupa IMF with star from 0.1M⊙ upto 100M⊙ with
the total number of stars N for that cluster.

c⃝ 2009 RAS, MNRAS 000, 1–11



Merger-time distribution

Most mergers happen within 
first few Gyr.

Stellar-mass black holes in star clusters 9
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Figure 6. Top: Distribution of the merger times tmrg for BH
binary mergers within the cluster for the models of Table 1. Bot-

tom: Distribution of the merger times tmrg for escaped BH bi-
naries for the models of Table 1 (see text).

strongly decrease with cluster-mass as Table 1 indicates.
For Mcl ! 1.5 × 104M⊙, mergers already become much
rarer (see Table 1). Due to the statistical nature of merger
or ejection events it is ambiguous to set any well-defined
limit on the cluster-mass beyond which these events become
appreciable (such an estimate would also require a much
larger number of N-body integrations). In view of our re-
sults, Mcl ≈ 3 × 104M⊙ is a representative lower limit be-
yond which an appreciable number of mergers and escapers
merging within a Hubble time can be obtained.

Old globular clusters, which can be about 10 times or
more massive, are expected to produce mergers or escapers
more efficiently. As the timescale of depletion of BHs from
the BH cluster is nearly independent of the parent cluster
mass (see Sec. 3.3), GCs can also be expected to produce
BH-BH mergers over similar time-span as the IMCs, i.e.,
within the first few Gyr of evolution. Since GCs are typ-
ically much older (∼ 10 Gyr), they do not contribute sig-
nificantly to the present-day merger rate, since most of the
mergers from them would have occurred earlier. Consider-
ing the light-travel time of ≈ 4.5 Gyr from the maximum
distance D ≈ 1500 Mpc form which these BH-BH binaries
can be detected by “AdLIGO”(see below), only GCs close
to the above distance could contribute detectable events,
mostly from escaped BH-BH binaries.

On the other hand, young massive clusters with ages less
than 50 Myr, representing star clusters near the high-mass
end of the ICMF (Larsen 2009b), are generally too young
to produce BH-BH mergers. All models in Table 1 produce
mergers significantly later than this age (except one escaped
BH binary in each of the models C65K110 and C100K200).
Hence, IMCs seem to be most likely candidates for producing
observable BH-BH mergers dynamically.

4.1 Detection rate

We now make an estimate of the BH-BH merger detec-
tion rate from IMCs by ground-based GW observatories
like LIGO and AdLIGO. In estimating the overall BH-BH
merger rate using the results of our model clusters, one needs
to consider the distribution of the cluster parameters that
are varied over the models, viz., cluster mass, half-mass ra-
dius, and BH retention fraction. Such distributions are far
from being well determined, except for the mass distribu-
tion for young clusters in spiral and starburst galaxies (Bik
et al. 2003; Bastian & Lamers 2003; Gieles 2004). Therefore,
determination of an overall merger rate considering the dis-
tribution of our computed clusters can be ambiguous. Hence,
as a useful alternative, we determine the BH binary merger
detection rates for each of the cluster models in Table 1 that
gives an appreciable number of mergers, for a representative
density of IMCs. Such an approach has been considered by
earlier authors, e.g., O’Leary et.al (2006) and can provide a
reasonable idea of the rate of detection of BH-BH mergers
from IMCs.

As an estimate of the space density of IMCs, we adopt
that for young populous clusters in Portegies Zwart &
McMillan (2000), which has a similar mass-range as the
IMCs:

ρcl = 3.5 h3 Mpc−3, (4)

where h is the Hubble parameter, defined as H0/100 km s−1,
H0 being the Hubble constant (Peebles 1993). The above
space density has been derived from the space densities
of spiral, blue elliptical and starburst galaxies (Heyl et al.
1997) assuming that young populous clusters have the same
specific frequencies (SN ) as old GCs (van den Bergh 1995;
McLaughlin 1999), but in absence of any firm determination
of the SN s of the former. We compute the detection rate for
each model cluster assuming that it has a space density of
the above value.

The LIGO/AdLIGO detection rate of BH-BH mergers
from a particular model cluster can be estimated from (Bel-
czynski et al. 2007 and references therein)

RLIGO =
4
3
πD3ρclRmrg, (5)

where Rmrg is the compact binary merger rate from a cluster
and D is the maximum distance from which the emitted GW
from a compact-binary inspiral can be detected. D is given
by

D = D0

(

Mch

Mch,nsns

)5/6

, (6)

where D0 = 18.4 and 300 Mpc for LIGO and AdLIGO re-
spectively. The quantity Mch is the “chirp mass” of the com-

c⃝ 2009 RAS, MNRAS 000, 1–11



BH-cluster depletion

Stellar-mass BHs
in star clustersBH depletion
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Which clusters are best candidates?

Inferences from N-body computations:

(a) Concentrated star clusters with N � 5.0 � 104 and
significant BH-retention produce dynamical BH-BH binaries
that merge within Hubble time.

(b) Most mergers occur within first few Gyr cluster evolu-
tion (for both in-cluster & escaped BH-binaries).

=> chances of detecting BH-BH GW source would increase 
with redshift (thanks to Matt Benacquista for pointing this 
out!)

Also, mergers would preferentially happen among the most 
massive stellar-mass BHs (i.e., with highest “chirp mass” for 
stellar BHs; see Rodriguez et al. 2015)



BH-BH merger detection rate

• Total detection rate of BH-BH mergers from IMCs    

• Considering isolated clusters with full BH retention and power-law IMC 
mass function with index = −2 (ICMF in spiral/starburst galaxies),

• Dynamical BH-BH binaries may constitute dominant contribution to stellar mass 
BH-BH merger events in the Universe.

RGW =
4
3
�D3⇥clRmrg

D = max. distance for detection of compact-binary inspiral. For 10M�
BH-pair, D � 1500 Mpc (AdLIGO), � 100 Mpc (LIGO). �cl � 1.4 Mpc�3

(density of young populous clusters, Portegies Zwart & McMillan (2000)).

RAdLIGO � 31(±7) yr�1

See Banerjee, S., Baumgardt, H. & Kroupa, P., 2010, MNRAS, 402, 371 for 
more.



BH-BH merger detection rate

• Total detection rate of BH-BH mergers from IMCs    

• Considering isolated clusters with full BH retention and power-law IMC 
mass function with index = −2 (ICMF in spiral/starburst galaxies),

• Dynamical BH-BH binaries may constitute dominant contribution to stellar mass 
BH-BH merger events in the Universe.

RGW =
4
3
�D3⇥clRmrg

D = max. distance for detection of compact-binary inspiral. For 10M�
BH-pair, D � 1500 Mpc (AdLIGO), � 100 Mpc (LIGO). �cl � 1.4 Mpc�3

(density of young populous clusters, Portegies Zwart & McMillan (2000)).

RAdLIGO � 31(±7) yr�1

See Banerjee, S., Baumgardt, H. & Kroupa, P., 2010, MNRAS, 402, 371 for 
more.

Theoretical estimates of dynamically-induced BH-BH 
in-spiral detection rate by LIGO2 ranges from a few - 
100 per year.



Effect on cluster’s structure & 
evolution



Heating of cluster core

• Close & super-elastic BH-binary---single-BH encounters in BH core 
eject BH-binaries & single BHs from core to cluster halo if not escaped 
from cluster.

• BHs return towards cluster core due to “Dynamical friction”: retardation 
of a massive object moving through a dense background made up of 
significantly lower mass particles. Dynamical friction continually shrinks 
C.M. orbits of single/binary-BHs.

• Loss of orbital energy of BHs deposited in stellar background. Energy 
deposition most efficient in cluster core due to highest stellar density.

• Results in significant core expansion, delays core collapse.



Returning BHs sink due to dynamical 
friction which, in turn, deposit energy 
into the stellar background



Heating of cluster core
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Heating of cluster core: effect of metallicity
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Lower Z yields more massive BHs, 
hence core expansion stronger.

Also, lower Z tends to produce 
more BH-BH mergers: 

low Z computation: 3 mergers 
within Hubble time, high Z 
computation: 1 merger.



Cluster core expansion in 
similar N-body calculations 
by Mackey et al., 2008, 
MNRAS, 386, 65 consistent 
with observed age-core 
radius relation of LMC/SMC 
clusters! 

Evidence of high BH 
retention following 
supernovae collapse (low 
BH natal kick)?



Can BH X-ray binaries form in star clusters?

BH cluster is nearly independent of the parent cluster mass, implying that GCs also produce BH-BH mergers
over a similar time-span as the IMCs, i.e., within the first few Gyr of evolution. But since GCs are typically
much older (⇤ 10 Gyr), they are not expected to contribute significantly to the present-day merger rate, since
most of the mergers from them would have occurred earlier. On the other hand, young massive clusters with
ages less than 50 Myr, representing star clusters near the high mass end of the Initial Cluster Mass Function
(ICMF) (Larsen, 2009b), are generally too young to produce BH-BH mergers. Hence, IMCs seem to be the
most likely candidates for producing present-day BH-BH mergers dynamically (see Banerjee et al. 2010 for a
detailed discussion on this issue).

2.3.3 The detection rate of mergers
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Figure 6: Left: Mass distributions of the BHs formed for two di�erent metallicities z = 0.02 and 0.0002 in two otherwise
initially identical N = 105 single-star clusters (initial cluster mass Mcl ⇤ 6.4⇥ 104M�). The BH masses extend to much
larger values (MBH ⇤ 27M�) for the lower metallicity cluster. These BH mass functions are the remnant mass-ZAMS
mass relation as obtained when the Hurley et al. (2000) stellar evolution recipes (see Fig. 8) are combined with the
Kroupa IMF (0.1M� � 100M�) for these clusters. Right: Depletion of the BHs due to their dynamical ejections from
the BH cores of the above clusters as obtained from preliminary N-body integrations using NBODY6. It can be seen
that for the lower metallicity cluster the BHs, being heavier and more numerous, tend to be retained longer. Based on
preliminary results computed for this proposal.

To estimate the overall BH-BH merger rate using the results of our model clusters, one needs to know the
distribution of the cluster parameters that are varied over the models, viz., cluster mass, half-mass radius, and
BH retention fraction. Such distributions are far from being fully known. Hence in Banerjee et al. (2010), as
an useful alternative, the BH binary merger detection rates has been determined for each of the model clusters
with an appreciable number of mergers, for a given representative density of IMCs. As an estimate of the space
density of IMCs, we have adopted that for young populous clusters in Portegies Zwart & McMillan (2000), viz.,
⇥cl = 3.5 h3 Mpc�3, h = H/100 Km/S/Mpc being the Hubble parameter. We have computed the detection
rates of BH-BH binary mergers for each of our model clusters assuming that it has a space density of the
above value (see Banerjee et al. 2010 and references therein for details of these calculations). The AdLIGO
detection rates RAdLIGO (mean over 3 Gyr taking into account the time of escape tesc of the escaped binaries)
for the isolated model clusters are shown in Table 1, where the currently accepted h = 0.73 is assumed. Note
that these detection rates are for clusters with a solar-like metallicity which is implied by our assumption of
10M� BHs for all the clusters. These rates sum up to a basic estimate of the overall AdLIGO detection rate
of RAdLIGO ⌅ 31(±7) yr�1 for BH-BH mergers from IMCs, where only the isolated cluster models with full
BH retention (see Table 1) are included following a power-law cluster mass function of index � = �2. The
corresponding LIGO detection rate is negligible, RLIGO ⌅ 7.4⇥ 10�3 yr�1.

Interestingly, the above dynamical BH-BH merger detection rate can be more than 10 times higher than
that from individual primordial binaries (Belczynski et al., 2007). Based on their binary evolution model, the
above authors argued that most of the stellar binaries that have the potential to evolve to BH-BH binaries
with GW merger times within the Hubble time, actually merge in the course of their evolution as the most
massive component fills its Roche lobe during its subgiant phase. Our results then imply that dynamically
formed BH-BH binaries constitute the dominant contribution to the stellar mass BH-BH merger detection. The

9

BH-normal star interaction 
essential for X-ray binary 
formation.

BH-cluster dynamically isolated 
(Spitzer unstable), BHs mostly 
interact among themselves. 

When nearly depleted, Spitzer 
instability ceases (see Spitzer’s 
book): BHs encounter 
frequently with stars.

A few BHs can easily retain and 
interact with stellar members

Multiple BH X-ray binary formation in principle possible at later 
stage of dynamical evolution.
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BH cluster is nearly independent of the parent cluster mass, implying that GCs also produce BH-BH mergers
over a similar time-span as the IMCs, i.e., within the first few Gyr of evolution. But since GCs are typically
much older (⇤ 10 Gyr), they are not expected to contribute significantly to the present-day merger rate, since
most of the mergers from them would have occurred earlier. On the other hand, young massive clusters with
ages less than 50 Myr, representing star clusters near the high mass end of the Initial Cluster Mass Function
(ICMF) (Larsen, 2009b), are generally too young to produce BH-BH mergers. Hence, IMCs seem to be the
most likely candidates for producing present-day BH-BH mergers dynamically (see Banerjee et al. 2010 for a
detailed discussion on this issue).

2.3.3 The detection rate of mergers
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Figure 6: Left: Mass distributions of the BHs formed for two di�erent metallicities z = 0.02 and 0.0002 in two otherwise
initially identical N = 105 single-star clusters (initial cluster mass Mcl ⇤ 6.4⇥ 104M�). The BH masses extend to much
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mass relation as obtained when the Hurley et al. (2000) stellar evolution recipes (see Fig. 8) are combined with the
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the BH cores of the above clusters as obtained from preliminary N-body integrations using NBODY6. It can be seen
that for the lower metallicity cluster the BHs, being heavier and more numerous, tend to be retained longer. Based on
preliminary results computed for this proposal.
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preliminary results computed for this proposal.
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BH retention (see Table 1) are included following a power-law cluster mass function of index � = �2. The
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A BH candidate in 47 Tuc 3

a possible intermediate-mass black hole (IMBH) at the cluster cen-
tre. After stacking both frequency bands to reach a noise level of
13.3µJy beam�1, they detected no source brighter than 3� within
the central 1000⇥1000 of the cluster, giving a 3� upper limit on the
mass of any IMBH of 520–4900M�. A similar IMBH limit was
found by McLaughlin et al. (2006), who used the cluster velocity
dispersion profile to place a 1� upper limit of 1500M� on the mass
of any IMBH, so the evidence for such an object is not compelling.

In this paper, we combine the archival observations of Lu &
Kong (2011) with new ATCA data to make the deepest radio im-
age of 47 Tuc to date. We report the discovery of a flat-spectrum
radio source within the cluster core that is an astrometric match to
the known bright X-ray source X9 (Hertz & Grindlay 1983; Au-
riere, Koch-Miramond & Ortolani 1989). In light of its inferred ra-
dio luminosity, we suggest that the source is a quiescent BH, rather
than a cataclysmic variable (CV), as had been previously inferred
(Paresce, de Marchi & Ferraro 1992; Grindlay et al. 2001; Knigge
et al. 2008).

In Sections 2 and 3, we describe our radio observations and
results. We discuss previous observations of X9 in Section 4, com-
paring the source properties to those of various classes of accreting
compact object. We discuss the possible nature of the system in
Section 5, review the sample of GCs hosting BH candidates in Sec-
tion 6, and present our conclusions in Section 7.

2 OBSERVATIONS AND DATA REDUCTION

2.1 ATCA data

We observed the globular cluster 47 Tuc with the ATCA on 2013
November 12th, from 08:06–17:52 UT (MJD 56608.54 ± 0.20),
achieving an on-source integration time of 8.7 hr. Using the Com-
pact Array Broadband Backend (CABB), we observed simultane-
ously in two bands, with central frequencies of 5.5 and 9.0 GHz,
each with a bandwidth of 2048 MHz. The array was in its extended
6A configuration, with a maximum baseline of 5.939 km. We used
B1934-638 as both a bandpass calibrator and to set the flux density
scale, and B2353-686 as the secondary calibrator to set the ampli-
tude and phase gains.

We reduced the data for each frequency band separately,
performing external gain calibration in Miriad (Sault, Teuben
& Wright 1995) using standard procedures. We then frequency-
averaged the calibrated data and imported them into the Common
Astronomy Software Application (CASA; McMullin et al. 2007)
for imaging. Imaging was carried out using Briggs weighting with
a robust parameter of 1, which provided a good compromise be-
tween sensitivity and resolution, as well as suppressing the side-
lobes of the dirty beam. Our final image sensitivities of 5.7 and
6.4µJy beam�1 at 5.5 and 9.0 GHz, respectively, were close to the
theoretical thermal noise levels. The final source fluxes and posi-
tions were measured in the image plane using the JMFIT algorithm
within the Astronomical Image Processing System (AIPS; Greisen
2003).

2.2 Archival ATCA data

To improve the significance of our detections, we combined our
data with the archival ATCA data taken in the same array configu-
ration by Lu & Kong (2011) on 2010 January 24–25 (summarised
briefly in Section 1.2). Our re-analysis of these data allowed us
to reduce the noise levels in the 5.5 and 9.0 GHz images to the
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Figure 1. 5.5-GHz ATCA image of the core of 47 Tuc. The red cross de-
notes the cluster centre, the red circle shows the 24

00 core radius, and the
thick orange circle highlights our detection of X9.

theoretically-expected limits of 6.7 and 9.8µJy beam�1, respec-
tively. Despite the longer on-source integration times, these obser-
vations were less sensitive than those from 2013 (Section 2.1) be-
cause the older data were taken prior to the installation of the new,
more sensitive 4-cm receivers at the ATCA.

3 RESULTS

After stacking both the new and archival ATCA data in the
uv-plane, our resulting images reached rms noise levels of
4.4µJy beam�1 at 5.5 GHz and 5.7µJy beam�1 at 9.0 GHz. The
final images at 5.5 and 9.0 GHz had resolutions of 2.003 ⇥ 1.007 in
P.A. 18�, and 1.005⇥ 1.001 in P.A. 28�, respectively.

3.1 A radio counterpart to X9/W42

The brightest radio source within the 2400 core radius of the cluster
at both frequencies (Fig. 1) is coincident with the second brightest
hard X-ray source in the cluster (see Fig. 2), denoted as source X9
in the ROSAT catalogue of Hasinger, Johnston & Verbunt (1994),
and W42 in the Chandra catalogues of Grindlay et al. (2001) and
Heinke et al. (2005a). We summarise in Table 1 the measured ra-
dio brightness of the source in each observation. Using the stacked
image, a point source fit to the radio source position in the image
plane using the AIPS task JMFIT gave a J2000 position of

R.A. = 00h24m04.s264± 0.s016

Dec. = �72�04m58.0009± 0.0010.

Our fitted peak flux densities for X9 in the stacked data were
42± 4µJy beam�1 at 5.5 GHz and 35± 6µJy beam�1 at 9.0 GHz.
We therefore derive a radio spectral index of ↵ = �0.4 ± 0.4
and a 5.5-GHz radio luminosity of 5.8 ⇥ 1027 erg s�1. Here, and
throughout this paper, we define radio luminosity by assuming a flat
radio spectrum up to the observing frequency (i.e. Lr = 4⇡d2⌫S⌫ ,
where d is the source distance, ⌫ is the observing frequency, and S⌫

is the observed flux density). No circular polarisation was detected
from the source in either of the individual epochs, with the best 5�
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