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where k = |k| is the scalar wave number and δD(s) is the Dirac
Delta distribution. Specifically, we utilise three kinds of power
spectra,

⟨δ̃m(k)δ̃m(k′)⟩ = (2π)3δD(k + k′)Pm(k) ; (3)
⟨δ̃m(k)δ̃g(k′)⟩ = (2π)3δD(k + k′)Pgm(k) ; (4)

⟨δ̃g(k)δ̃g(k′)⟩ = (2π)3δD(k + k′)
(

Pg(k) + n̄−1g
)

, (5)

namely the matter power spectrum Pm(k), the galaxy-matter
cross-power spectrum Pgm(k), and the galaxy power spectrum
Pg(k). The latter subtracts the shot-noise n̄−1g from the galaxy
power spectrum by definition. In contrast to the smooth matter
density, the galaxy number density is subject to shot noise be-
cause it consists of a finite number of discrete points that make
up the number density field. Traditionally, the definition of Pg(k)
assumes a Poisson process as model for the shot noise (Peebles
1980).

The biasing functions (of the second order) express the
galaxy bias in terms of ratios of the foregoing power spectra,

b(k) =

√

Pg(k)
Pm(k)

; r(k) =
Pgm(k)

√

Pg(k) Pm(k)
. (6)

Galaxies that sample the matter density by a Poisson process
have b(k) = r(k) = 1 for all scales k and are dubbed unbiased;
for b(k) > 1, we find that galaxies cluster stronger than matter
at scale k, and vice versa for b(k) < 1; r(k) ! 1 indicates either
stochastic bias, or non-linear bias, or a sampling process that
is not Poisson, or combinations of these cases (Dekel & Lahav
1999; Guzik & Seljak 2001). Clearly, the interpretation of r(k)
is ambiguous although it is reasonable to assume linear bias on
large scales, k ≪ 1, hence on scales where density fluctuations
are small.

2.2. Disentangling small-scale and large-scale bias

Inspired by halo models of the large-scale structure, we now de-
fine one- and two-halo terms of the biasing functions (Cooray &
Sheth 2002). This provides a clear definition of small-scale bias
and large-scale bias. In addition, it enables us to fit small- and
large-scale bias independently to our measurements of b(k) and
r(k).

A generic description of ρm(x) and ng(x) by a halo model
yields an expansion of all three power spectra Pm(k), Pgm(k),
and Pg(k) in terms of one- and two halo terms as in

P(k) = P1h(k) + P2h(k) . (7)

The one-halo term P1h(k) dominates at small scales reflecting
correlations between density fluctuations within the same halo,
whereas the two-halo term P2h(k) dominates the power spectrum
on large scales where correlations between fluctuations in differ-
ent halos and the clustering of halos become dominant. Simi-
larly, we define one- and two-halo terms of the biasing functions
by

b1h(k) :=

√

P1hg (k)
P1hm (k)

; b2h(k) :=

√

P2hg (k)
P2hm (k)

(8)

and

r1h(k) :=
P1hgm(k)

√

P1hg (k) P1hm (k)
; r2h(k) :=

P1hgm(k)
√

P1hg (k) P1hm (k)
. (9)
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Fig. 1. Estimates of Wm(k) as function of redshift. The one-halo term
of Pm(k) dominates where Wm(k) ≈ 0, the two-halo term in the regime
where Wm(k) ≈ 1. The figure is based on the halo model parameters of
Simon et al. (2009).

This definition allows us to clearly distinguish between galaxy
bias on small scales (one-halo terms) and galaxy bias on large
scales (two-halo terms).

The two-halo terms of the biasing functions are essentially
scale-independent and thus can be considered constant (next sec-
tion). We therefore define a doublet of parameters of the large-
scale bias by

b2h(k) ≈ bls ; r2h(k) ≈ rls . (10)

Based on Eq. (6), we arrive at an expansion of b(k) in terms
of b1h(k) and b2h(k) that is valid in any flavour of a halo model.
Namely, we find that

b2(k) =
P1hg (k) + P2hg (k)

Pm(k)

=
P1hm (k) [b1h(k)]2

Pm(k)
+
P2hm (k) [b2h(k)]2

Pm(k)
=

(

1 −Wm(k)
)

[b1h(k)]2 +Wm(k) [b2h(k)]2

≈
(

1 −Wm(k)
)

[b1h(k)]2 +Wm(k) b2ls , (11)

where the weight

Wm(k) :=
P2hm (k)
Pm(k)

(12)

is the amplitude of the two-halo matter power spectrum relative
to the total matter power spectrum. Deep in the one-halo regime
we have Wm(k) ≈ 0 and Wm(k) ≈ 1 in the two-halo regime. In
principle, the weight function Wm(k; z) could be obtained for
different redshifts z directly from a cosmological simulation by
correlating only matter density from different halos for P2hm to
be compared to the full power spectrum Pm. In our fits to data,
we determine Wm(k; z) once for a given fiducial cosmology, see
Fig. 1, by invoking the halo model description of Pm as in Simon
et al. (2009) (see Appendix thereof). According to this figure the
transition between the one-halo and two-halo regime,Wm ∼ 0.5,
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1. Introduction
– Non-lensing methods struggle to measure the galaxy bias on
non-linear scales and as a function of scale (biasing func-
tions). The lensing technique is unique in this respect.

– Little assumptions on the matter power spectrum which is
directly measured by the shear-shear correlations.

– A calibration is required to account for (i) foreground and
background structure that contributes to the statistics and (ii)
to convert aperture mass into projected matter fluctuations.
The calibration mainly depends on the geometry and little
on the angular scale (van Waerbeke 1998).

– In comparison to recent lensing studies of the biasing func-
tions, we fit models to ratios of (projected) matter and galaxy
clustering. This is free of cosmic variance (provided that
galaxy bias does not have cosmic variance). Can also be used
to infer biasing functions in a model-free manner (cf. paper
by Marcello and Reiko).

– We present explicit expressions for the biasing functions
within the framework of a halo model. A useful definition
of small-scale and large-scale bias is given which addition-
ally allows us to test fundamental assumptions of the halo
model.

– Test 1: the biasing function on small scales predicts the large-
scale bias; a consistency between both is required.

– Test 2: the large-scale correlation factor has to be exactly
unity because galaxies are always inside matter halos; r2h =
1 is a generic prediction of the halo model.

– Test 3: SAM of galaxies predict Poisson statistics for the
satellite galaxies inside a matter halo and sub-Poisson statis-
tics for sparse halos. This is testable by studying the biasing
functions on small scales in the one-halo regime.

Plan:
1. Define biasing functions b(k) and r(k).
2. Define biasing functions on small scales (one-halo) and large
scale (two-halo). Show how they are connected to yield b(k)
and r(k) in any halo model.

3. Our concrete implementation is based on Seljak (2000); con-
venient because two-halo terms are identical in scenarios
with and without central galaxies. Discuss toy model and ex-
pressions for the more general biasing functions on small and
large scales. Galaxy number densities as extra information to
break degeneracies of model parameters.

4. Summarise the relation to the lensing observables and statis-
tical methodology to infer model parameters from it (refer-
ence to recent paper by Marcello and Reiko). Angular scale
of transition between one-halo and two-halo terms of the bi-
asing functions. Test with clone KiDS data (unbiased galax-
ies).

5. Estimator for comoving number density of lenses (selected
by photo-z; see my notes from 16/10/15).

6. Data: which lens samples?

Simon et al. (2007, ; SHS07 hereafter)
(galaxy models -> halos -> SAMs) This makes sense be-

cause all galaxies and matter are assumed to be inside halos:
for distances larger than the typical size of halos where differ-
ence between the distribution of matter and galaxies inside halos
become irrelevant, galaxies have to be strongly correlated to the
matter distribution. Nevertheless, in a more general scenario out-
side the realm of halo models we could consider a density field
of galaxies uncorrelated to the matter density (e.g. ?). An obser-
vation of r < 1 on large scales would be strong evidence against
a halo model description.

fiducial cosmology: WMAP9+eCMB+BAO+H0 unless
stated otherwise (Planck in comparison).

2. Theory
2.1. Biasing functions

We define galaxy bias in terms of two biasing functions b(k) and
r(k) for a given spatial scale 2π k−1 in the following way.

Let δ(x) in ρ(x) = ρ [1 + δ(x)] be the density fluctuations
at position x of a random density field ρ(x); ρ denotes the mean
density. The density field is either the matter density ρm(x) or the
galaxy number density ng(x) with contrasts δm(x) and δg(x), re-
spectively. We determine the fluctuation amplitude for a density
mode with wave number k by the Fourier transform of δ(x),

δ̃(k) =
∫

d3x δ(x) e−ix·k . (1)

All information on the two-point correlations of δ̃(k) is con-
tained in the power spectrum P(k) defined through the second-
order correlation function of modes,

⟨δ̃(k)δ̃(k′)⟩ = (2π)3δD(k + k′)P(k) , (2)
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where k = |k| is the scalar wave number and δD(s) is the Dirac
Delta distribution. Specifically, we utilise three kinds of power
spectra,

⟨δ̃m(k)δ̃m(k′)⟩ = (2π)3δD(k + k′)Pm(k) ; (3)
⟨δ̃m(k)δ̃g(k′)⟩ = (2π)3δD(k + k′)Pgm(k) ; (4)

⟨δ̃g(k)δ̃g(k′)⟩ = (2π)3δD(k + k′)
(

Pg(k) + n̄−1g
)

, (5)

namely the matter power spectrum Pm(k), the galaxy-matter
cross-power spectrum Pgm(k), and the galaxy power spectrum
Pg(k). The latter subtracts the shot-noise n̄−1g from the galaxy
power spectrum by definition. In contrast to the smooth matter
density, the galaxy number density is subject to shot noise be-
cause it consists of a finite number of discrete points that make
up the number density field. Traditionally, the definition of Pg(k)
assumes a Poisson process as model for the shot noise (Peebles
1980).

The biasing functions (of the second order) express the
galaxy bias in terms of ratios of the foregoing power spectra,

b(k) =

√

Pg(k)
Pm(k)

; r(k) =
Pgm(k)

√

Pg(k) Pm(k)
. (6)

Galaxies that sample the matter density by a Poisson process
have b(k) = r(k) = 1 for all scales k and are dubbed unbiased;
for b(k) > 1, we find that galaxies cluster stronger than matter
at scale k, and vice versa for b(k) < 1; r(k) ! 1 indicates either
stochastic bias, or non-linear bias, or a sampling process that
is not Poisson, or combinations of these cases (Dekel & Lahav
1999; Guzik & Seljak 2001). Clearly, the interpretation of r(k)
is ambiguous although it is reasonable to assume linear bias on
large scales, k ≪ 1, hence on scales where density fluctuations
are small.

2.2. Disentangling small-scale and large-scale bias

Inspired by halo models of the large-scale structure, we now de-
fine one- and two-halo terms of the biasing functions (Cooray &
Sheth 2002). This provides a clear definition of small-scale bias
and large-scale bias. In addition, it enables us to fit small- and
large-scale bias independently to our measurements of b(k) and
r(k).

A generic description of ρm(x) and ng(x) by a halo model
yields an expansion of all three power spectra Pm(k), Pgm(k),
and Pg(k) in terms of one- and two halo terms as in

P(k) = P1h(k) + P2h(k) . (7)

The one-halo term P1h(k) dominates at small scales reflecting
correlations between density fluctuations within the same halo,
whereas the two-halo term P2h(k) dominates the power spectrum
on large scales where correlations between fluctuations in differ-
ent halos and the clustering of halos become dominant. Simi-
larly, we define one- and two-halo terms of the biasing functions
by

b1h(k) :=

√

P1hg (k)
P1hm (k)

; b2h(k) :=

√

P2hg (k)
P2hm (k)

(8)

and

r1h(k) :=
P1hgm(k)

√

P1hg (k) P1hm (k)
; r2h(k) :=

P1hgm(k)
√

P1hg (k) P1hm (k)
. (9)
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Fig. 1. Estimates of Wm(k) as function of redshift. The one-halo term
of Pm(k) dominates where Wm(k) ≈ 0, the two-halo term in the regime
where Wm(k) ≈ 1. The figure is based on the halo model parameters of
Simon et al. (2009).

This definition allows us to clearly distinguish between galaxy
bias on small scales (one-halo terms) and galaxy bias on large
scales (two-halo terms).

The two-halo terms of the biasing functions are essentially
scale-independent and thus can be considered constant (next sec-
tion). We therefore define a doublet of parameters of the large-
scale bias by

b2h(k) ≈ bls ; r2h(k) ≈ rls . (10)

Based on Eq. (6), we arrive at an expansion of b(k) in terms
of b1h(k) and b2h(k) that is valid in any flavour of a halo model.
Namely, we find that

b2(k) =
P1hg (k) + P2hg (k)

Pm(k)

=
P1hm (k) [b1h(k)]2

Pm(k)
+
P2hm (k) [b2h(k)]2

Pm(k)
=

(

1 −Wm(k)
)

[b1h(k)]2 +Wm(k) [b2h(k)]2

≈
(

1 −Wm(k)
)

[b1h(k)]2 +Wm(k) b2ls , (11)

where the weight

Wm(k) :=
P2hm (k)
Pm(k)

(12)

is the amplitude of the two-halo matter power spectrum relative
to the total matter power spectrum. Deep in the one-halo regime
we have Wm(k) ≈ 0 and Wm(k) ≈ 1 in the two-halo regime. In
principle, the weight function Wm(k; z) could be obtained for
different redshifts z directly from a cosmological simulation by
correlating only matter density from different halos for P2hm to
be compared to the full power spectrum Pm. In our fits to data,
we determine Wm(k; z) once for a given fiducial cosmology, see
Fig. 1, by invoking the halo model description of Pm as in Simon
et al. (2009) (see Appendix thereof). According to this figure the
transition between the one-halo and two-halo regime,Wm ∼ 0.5,
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details: e.g. Simon et al., 2007, A&A, 861
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Fig. 2. Galaxy bias parameters b(ℓ) and r(ℓ) in the Millennium Simulation data set as a function of angular scale ℓ (x-axis) and galaxy redshift
(curves; see key for mean redshifts). The top numbers denote the corresponding aperture radius (arcmin) of the aperture statistics that were
utilised to infer the galaxy bias from angular correlation functions (polynomial filter). The left panels correspond to red galaxies with mr < 25 and
mu − mr > 2.2 and the right panels to blue galaxies with mr < 25 and mu − mr ≤ 2.2. The error bars denote the remaining standard error based on
128 simulated survey fields with one square degree each.
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Fig. 3. Radial PSF in the smoothed mass maps for the case r(ℓ) = 0.8 (right panel) and no mixing of lensing and galaxy clustering (r(ℓ) = 0; left
panel). The details of the fiducial survey are found in Sect. 4.1. Both panels adopt α = 0.01 and β = 0.1. The redshifts of the density peaks in the
un-smoothed maps are the small number labels, which are only shown up to z = 1.3. The map pixel size is Θs = 1 arcmin.

seen here by comparing the low S/N of the thin black lines to the
boosted S/N in the red lines. The impact of mixing on the S/N
of the tracer number density maps (right panel) is small, which
is most prominently on the small angular scales. This changes
slightly if we choose an even larger tuning parameter β (that
is not shown): a larger β scales with the shot-noise matrix of
the tracers inside the Wiener filter, which attributes even more
weight to the lensing data in the joint reconstruction. As the S/N
of the tracers in the data is actually higher than that of the shear,
this will result in a decreased S/N for the galaxy-number density
maps in comparison to a reconstruction with no mixing; the joint
reconstruction is not optimal as to the map noise.

5.3. Galaxy-stochasticity noise

Figure 6 shows the estimated ratios fgsn of the pixel GSN-
variance and pixel signal-variance for lens planes of increasing

redshift. The map smoothing scale is Θs = 1 arcmin. We find
the GSN on a pixel scale to be most prominent for r(ℓ) ∼ 0.8,
which declines for correlations greater or weaker than that; be-
tween r(ℓ) = 0.6−0.8, there is only little change, and in the
absence of stochasticity, where r(ℓ) = 1, fgsn vanishes. The de-
pendence on lens plane redshift is marginal; most of the change
occurs below z ! 0.4. The GSN increases with the bias fac-
tor b(ℓ) of the tracers. Overall, typical figures for f (i)

gsn are be-
low 30%, but can be above this level for strongly clustered
tracers.

5.4. Cluster signal-to-noise

In Fig. 7 we plot the S/N detection of a SIS mass peak as a func-
tion of peak redshift. The peak has the mass of a large galaxy
cluster with M200 = 6.6 × 1014 M⊙ h−1, or σv = 103 km s−1,
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In simulation: Millennium Simulation + SAMs  
(by colour and redshift; flux limit r < 25 mag) 

SAMs: Guo et al. (2011); dark matter: Springel et al. (2005)
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from Simon, P., 2013, A&A, 516 
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Halo-model inspired toy model that features:
• unclustered matter halos; 

• single-mass halos with same density 
profile (mass m0); 

• optionally mix of satellite and central 
galaxies or just satellite galaxies;

matter
satellite

central



Ingredients of model:

hNi

hN(N � 1)i

ug(x)

um(x)

nh

mean galaxy number in halo;

mean number of galaxy pairs in halo;

radial matter density profile;

radial galaxy density profile;

halo number density;

Fourier transform 
of radial profile 
(normalised!)

ũ(k) :=

R1
0 dxx k�1

u(x) sin (kx)
R1
0 dxx2

u(x)



Implementation by Seljak, 2000, MNRAS, 218:

Pg(k) =
nh

n̄2
g

ũ2p
g (k) hN(N � 1)i = hN(N � 1)i

nh hNi2 ũ2p
g (k)

Pgm(k) =
nh m0

⇢̄m n̄g
ũm(k) ũ

q
g(k) hNi =

ũm(k) ũq
g(k)

nh

p =

⇢
1 hN(N � 1)i > 1

1/2 otherwise

q =

⇢
1 hNi > 1

0 otherwise

controls impact of central galaxies

uses ⇢̄m = nh m0 , n̄g = nh hNi , n(m) = nh �D(m�m0) , and

Pm(k) =
m2

0 nh

⇢̄2m
ũ2
m(k) =

ũ2
m(k)

nh



r(k) =
Pgm(k)p

Pg(k)Pm(k)
=

ũq�p
g (k) hNi

p
hN(N � 1)i

= ũq�p
g (k)

✓
1 +

��2
N

hNi2

◆�1/2

Correlation factor for scale k:

where we have introduced the excess variance

��2
N := �2

N � �2
N|Poisson

= hN2i � hNi2 � hNi = hN(N � 1)i � hNi2

��2
N = 0

��2
N < 0

��2
N > 0

variance of N as in Poisson statistic;

sub-Poisson variance;
super-Poisson variance



r(k) = ũq�p
g (k)

✓
1 +

��2
N

hNi2

◆�1/2

We learn about two ways to produce r(k) > 1:

1. dominating central galaxies; for q-p = -1/2,  
r(k) can become arbitrarily large for k >> 1:  
 
 

2. no/negligible central galaxies and sub-Poisson 
variance; hence p = q = 1 and ΔσΝ2 < 0; 

r(k) / ũ�1/2
g (k)

Note: impact of 2. becomes small if ΔσΝ2 << <N>2 



Bias factor for scale k:

b(k) =

s
Pg(k)

Pm(k)
=

ũp
g(k)

p
hN(N � 1)i

ũm(k) hNi =
ũq
g(k)

ũm(k)

1

r(k)

1. even without central galaxies and identical radial profiles 
we do not necessarily have b(k) = r(k) = 1; yet we find 
b(k)r(k) = 1; 

2. only a Poisson variance in addition to 1. ensures  
b(k) = r(k) = 1; truly unbiased galaxies require a Poisson-
like variance of N; 

3. for satellite-dominated halos, b(k) reflects the difference 
between matter and galaxy radial profile; hence q = 1 and 
r(k) = const;  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i.e., p − q ! 0, and then scales as r(k) ∝ ũ−1/2g (k,m0). Vari-
ations with k become small for both functions, however, if
ũm(k,m0), ũg(k,m0) ≈ 1, hence on scales larger than the size
of a halo. We discuss in the following section an additional
source of scale dependence, not present in the toy model, that
is given if ⟨N|m⟩ is not proportional to m.

We see that the specific definition of Pg(k), Poissonian shot
noise is subtracted, allows correlation r(k) > 1 if the HOD statis-
tics is sub-Poisson or if we have central galaxies. One may won-
der if this is also the case for biasing parameters defined in
terms of the spatial correlations ξg(x) = ⟨δg(0)δg(x)⟩, ξmg(x) =
⟨δg(0)δm(x)⟩, and ξm(x) = ⟨δm(0)δm(x)⟩ given as correlation be-
tween density contrasts at lag x:

b(x) =

√

ξg(x)
ξm(x)

; r(x) =
ξmg(x)

√

ξg(x) ξm(x)
. (34)

We show for two specific scenarios that this is indeed the case
for the toy model. To this end, we first work out the real-space
biasing functions b(x) and r(x) for the toy model. The correlation
function ξ(x) for a given power spectrum P(k) is

ξ(x) = [P](x) :=
1
2π2x

∫ ∞

0
dk k P(k) sin (k x) , (35)

where we have defined the integral operator [P](x) on the func-
tion P(k). For our toy model, we hence find ξg(x) = [Pg](x),
ξgm(x) = [Pgm](x), and ξm(x) = [Pm](x) with the one-halo terms
Eqs. (18)–(20) and n(m) ∝ δD(m−m0). Note that the subtraction
of shot noise in Pg(k) is irrelevant for x ! 0; we assume x > 0 in
the following. After some algebra, we find

b(x) =
[ũm · ũqg](x)
|[ũ2m](x)|

1
r(x)

; (36)

r(x) =
[ũm · ũqg](x)

√

[ũ2pg ](x) [ũ2m](x)

⎛

⎜

⎜

⎜

⎜

⎝

1 +
∆σ2N(m0)
⟨N|m0⟩

⎞

⎟

⎟

⎟

⎟

⎠

−1/2

; (37)

where f ·g denotes the product function f (k) g(k). Now, for faith-
ful galaxies we have ũm(k,m0) = ũg(k,m0) and p = q = 1, and
therefore analogous to {b(k), r(k)}

b(x) r(x) = 1 ; r(x) =
⎛

⎜

⎜

⎜

⎜

⎝

1 +
∆σ2N(m0)
⟨N|m0⟩

⎞

⎟

⎟

⎟

⎟

⎠

−1/2

. (38)

Clearly, we find r(x) > 1 for a sub-Poisson HOD variance also
for real-space biasing functions. Moreover, for galaxies with
ũm(k,m0) = ũg(k,m0) but Poisson HOD variance (∆σ2N = 0)
and central galaxies in low-occupancy halos (p = 1/2, q = 0) we
arrive at

b(x) r(x) =
[ũm](x)

|[ũm · ũm](x)|
; r(x) =

√

[ũm](x)
[ũm · ũm](x)

. (39)

Therefore, also here we find r(x) > 1 due to
ũm(k,m0) > ũ2m(k,m0) for all k. Note that [ũm](x) ∝ um(x,m0)
up to a normalisation constant and that [ũm · ũm](x) is the
convolution of um(x,m0) with itself.

2.6. Small-scale biasing functions

From the power spectra Eq. (18) to (20) we derive expressions
for the one-halo biasing functions b1h(k) and r1h(k). For these,
the ratio

∆g(m) :=
⟨N|m⟩
m
ρm
ng

(40)

is a reoccurring quantity. It expresses the mean number of halo
galaxies ⟨N|m⟩ per halo mass m relative to ngal/ρm which is the
galaxy number per mass in an average volume element. We thus
dub ∆g(m) the relative galaxy number in halos of mass m in the
following. If galaxy numbers follow halo masses on average, i.e.,
⟨N|m⟩ ∝ m, we find a relative galaxy number of ∆g(m) = 1 for
any m. Halos with no galaxies have a relative galaxy number of
∆g(m) = 0.

3. Data
TBD

4. Results
TBD

5. Discussion
TBD
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• Central galaxies or a sub-Poisson variance of N can make 
r(k) > 1 because 

1. Pg(k) is defined in excess of Poisson shot noise of 
discrete galaxies. If galaxy sampling is actually sub-
Poisson, this over-corrects the shot noise power 
(Seljak 2000; Guzik & Seljak 2001). 

2. Putting one galaxy always at the halo centre is not a 
Poisson sampling of the halo density profile; so is 
non-Poisson ΔσΝ2. 

• Is r(x) > 1 also possible for the real-space biasing 
functions (shot noise only at zero lag)?



-> transform three power spectra of toy model to real-space 
correlation functions via (back Fourier transform)

Simon et al.: TBD

i.e., p − q ! 0, and then scales as r(k) ∝ ũ−1/2g (k,m0). Vari-
ations with k become small for both functions, however, if
ũm(k,m0), ũg(k,m0) ≈ 1, hence on scales larger than the size
of a halo. We discuss in the following section an additional
source of scale dependence, not present in the toy model, that
is given if ⟨N|m⟩ is not proportional to m.

We see that the specific definition of Pg(k), Poissonian shot
noise is subtracted, allows correlation r(k) > 1 if the HOD statis-
tics is sub-Poisson or if we have central galaxies. One may won-
der if this is also the case for biasing parameters defined in
terms of the spatial correlations ξg(x) = ⟨δg(0)δg(x)⟩, ξmg(x) =
⟨δg(0)δm(x)⟩, and ξm(x) = ⟨δm(0)δm(x)⟩ given as correlation be-
tween density contrasts at lag x:

b(x) =

√

ξg(x)
ξm(x)

; r(x) =
ξmg(x)

√

ξg(x) ξm(x)
. (34)

We show for two specific scenarios that this is indeed the case
for the toy model. To this end, we first work out the real-space
biasing functions b(x) and r(x) for the toy model. The correlation
function ξ(x) for a given power spectrum P(k) is

ξ(x) = [P](x) :=
1
2π2x

∫ ∞

0
dk k P(k) sin (k x) , (35)

where we have defined the integral operator [P](x) on the func-
tion P(k). For our toy model, we hence find ξg(x) = [Pg](x),
ξgm(x) = [Pgm](x), and ξm(x) = [Pm](x) with the one-halo terms
Eqs. (18)–(20) and n(m) ∝ δD(m−m0). Note that the subtraction
of shot noise in Pg(k) is irrelevant for x ! 0; we assume x > 0 in
the following. After some algebra, we find

b(x) =
[ũm · ũqg](x)
|[ũ2m](x)|

1
r(x)

; (36)

r(x) =
[ũm · ũqg](x)

√

[ũ2pg ](x) [ũ2m](x)

⎛

⎜

⎜

⎜

⎜

⎝

1 +
∆σ2N(m0)
⟨N|m0⟩

⎞

⎟

⎟

⎟

⎟

⎠

−1/2

; (37)

where f ·g denotes the product function f (k) g(k). Now, for faith-
ful galaxies we have ũm(k,m0) = ũg(k,m0) and p = q = 1, and
therefore analogous to {b(k), r(k)}

b(x) r(x) = 1 ; r(x) =
⎛

⎜

⎜

⎜

⎜

⎝

1 +
∆σ2N(m0)
⟨N|m0⟩

⎞

⎟

⎟

⎟

⎟

⎠

−1/2

. (38)

Clearly, we find r(x) > 1 for a sub-Poisson HOD variance also
for real-space biasing functions. Moreover, for galaxies with
ũm(k,m0) = ũg(k,m0) but Poisson HOD variance (∆σ2N = 0)
and central galaxies in low-occupancy halos (p = 1/2, q = 0) we
arrive at

b(x) r(x) =
[ũm](x)

|[ũm · ũm](x)|
; r(x) =

√

[ũm](x)
[ũm · ũm](x)

. (39)

Therefore, also here we find r(x) > 1 due to
ũm(k,m0) > ũ2m(k,m0) for all k. Note that [ũm](x) ∝ um(x,m0)
up to a normalisation constant and that [ũm · ũm](x) is the
convolution of um(x,m0) with itself.

2.6. Small-scale biasing functions

From the power spectra Eq. (18) to (20) we derive expressions
for the one-halo biasing functions b1h(k) and r1h(k). For these,
the ratio

∆g(m) :=
⟨N|m⟩
m
ρm
ng

(40)

is a reoccurring quantity. It expresses the mean number of halo
galaxies ⟨N|m⟩ per halo mass m relative to ngal/ρm which is the
galaxy number per mass in an average volume element. We thus
dub ∆g(m) the relative galaxy number in halos of mass m in the
following. If galaxy numbers follow halo masses on average, i.e.,
⟨N|m⟩ ∝ m, we find a relative galaxy number of ∆g(m) = 1 for
any m. Halos with no galaxies have a relative galaxy number of
∆g(m) = 0.

3. Data
TBD

4. Results
TBD

5. Discussion
TBD
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and you get real-space counterparts of b(k) and r(k):

Simon et al.: TBD

i.e., p − q ! 0, and then scales as r(k) ∝ ũ−1/2g (k,m0). Vari-
ations with k become small for both functions, however, if
ũm(k,m0), ũg(k,m0) ≈ 1, hence on scales larger than the size
of a halo. We discuss in the following section an additional
source of scale dependence, not present in the toy model, that
is given if ⟨N|m⟩ is not proportional to m.

We see that the specific definition of Pg(k), Poissonian shot
noise is subtracted, allows correlation r(k) > 1 if the HOD statis-
tics is sub-Poisson or if we have central galaxies. One may won-
der if this is also the case for biasing parameters defined in
terms of the spatial correlations ξg(x) = ⟨δg(0)δg(x)⟩, ξmg(x) =
⟨δg(0)δm(x)⟩, and ξm(x) = ⟨δm(0)δm(x)⟩ given as correlation be-
tween density contrasts at lag x:

b(x) =

√

ξg(x)
ξm(x)

; r(x) =
ξmg(x)

√

ξg(x) ξm(x)
. (34)

We show for two specific scenarios that this is indeed the case
for the toy model. To this end, we first work out the real-space
biasing functions b(x) and r(x) for the toy model. The correlation
function ξ(x) for a given power spectrum P(k) is

ξ(x) = [P](x) :=
1
2π2x

∫ ∞

0
dk k P(k) sin (k x) , (35)

where we have defined the integral operator [P](x) on the func-
tion P(k). For our toy model, we hence find ξg(x) = [Pg](x),
ξgm(x) = [Pgm](x), and ξm(x) = [Pm](x) with the one-halo terms
Eqs. (18)–(20) and n(m) ∝ δD(m−m0). Note that the subtraction
of shot noise in Pg(k) is irrelevant for x ! 0; we assume x > 0 in
the following. After some algebra, we find

b(x) =
[ũm · ũqg](x)
|[ũ2m](x)|

1
r(x)

; (36)

r(x) =
[ũm · ũqg](x)

√

[ũ2pg ](x) [ũ2m](x)

⎛

⎜

⎜

⎜

⎜

⎝

1 +
∆σ2N(m0)
⟨N|m0⟩

⎞

⎟

⎟

⎟

⎟

⎠

−1/2

; (37)

where f ·g denotes the product function f (k) g(k). Now, for faith-
ful galaxies we have ũm(k,m0) = ũg(k,m0) and p = q = 1, and
therefore analogous to {b(k), r(k)}

b(x) r(x) = 1 ; r(x) =
⎛

⎜

⎜

⎜

⎜

⎝

1 +
∆σ2N(m0)
⟨N|m0⟩

⎞

⎟

⎟

⎟

⎟

⎠

−1/2

. (38)

Clearly, we find r(x) > 1 for a sub-Poisson HOD variance also
for real-space biasing functions. Moreover, for galaxies with
ũm(k,m0) = ũg(k,m0) but Poisson HOD variance (∆σ2N = 0)
and central galaxies in low-occupancy halos (p = 1/2, q = 0) we
arrive at

b(x) r(x) =
[ũm](x)

|[ũm · ũm](x)|
; r(x) =

√

[ũm](x)
[ũm · ũm](x)

. (39)

Therefore, also here we find r(x) > 1 due to
ũm(k,m0) > ũ2m(k,m0) for all k. Note that [ũm](x) ∝ um(x,m0)
up to a normalisation constant and that [ũm · ũm](x) is the
convolution of um(x,m0) with itself.

2.6. Small-scale biasing functions

From the power spectra Eq. (18) to (20) we derive expressions
for the one-halo biasing functions b1h(k) and r1h(k). For these,
the ratio

∆g(m) :=
⟨N|m⟩
m
ρm
ng

(40)

is a reoccurring quantity. It expresses the mean number of halo
galaxies ⟨N|m⟩ per halo mass m relative to ngal/ρm which is the
galaxy number per mass in an average volume element. We thus
dub ∆g(m) the relative galaxy number in halos of mass m in the
following. If galaxy numbers follow halo masses on average, i.e.,
⟨N|m⟩ ∝ m, we find a relative galaxy number of ∆g(m) = 1 for
any m. Halos with no galaxies have a relative galaxy number of
∆g(m) = 0.

3. Data
TBD

4. Results
TBD

5. Discussion
TBD
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Interestingly, r(x) depends also on matter density profile.



Assume: identical density profiles um(x) = ug(x)

• without central galaxies — p = q = 1 — we have  
 
 
 

• with centrals dominating and Poisson variance  
— p = 1/2, q = 0, and ΔσΝ2 = 0 — we have

b(x) r(x) = 1 ; r(x) =

✓
1 +

��

2
N

hNi2

◆�1/2

b(x) r(x) =
[ũm](x)

|[ũ2
m](x)|

; r(x) =

s
[ũm](x)

[ũ2
m](x)

� 1

!



Summary and conclusions 

• biasing functions of linear stochastic bias fully capture 
the differences in distributions of galaxies vs. matter for 
two-point statistics; can be measured with lensing; 

• their definition assumes Poisson shot-noise for galaxies; 
can give seemingly curious values r > 1 if sampling is 
actually sub-Poisson;  

• demonstrated with toy model that r(k) > 1 or r(x) > 1 can 
arise through central galaxies or a sub-Poisson variance 
of galaxy numbers inside matter halos;  

• even if galaxies perfectly trace matter, we still have not  
b = r  = 1 for all scales if sampling variance is not 
Poisson;


