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e simulation slice
from z=0; LCDM

e gray: dark matter

e dots: B-V colors of
galaxies

Credit: J. Colberg and A. Diaferio; GIF simulations (1998)



modes of density fluctuations (random fields):

o(k) = f dx6(x)e ™k

complete second-order statistics of fluctuations:

Om(k)om(K)) = Qn)op(k + K)Py(k) ;
Om(k)o(K)) = Qn)op(k+ K)Pgn(k) ;

(Bo(k)So(K)) = (2n)’op(k+ k) (Py(k) +7;')

Biasing functions (linear stochastic bias):

bias Pg(k) .

Py (k) correlation
factor blk) = \ Pult) "

- \/Pg(k) P.(k) factor

(k)




Bias measured with lensing

(on the sky inside apertures)
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L r(k) deprojected
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distance/redshift/back in time
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number density map Iensg map

details: e.g. Simon et al., 2007, A&A, 861



In simulation: Millennium Simulation + SAMs
(by colour and redshift; flux limit r < 25 mag)
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SAMs: Guo et al. (2011); dark matter: Springel et al. (2005)



Halo-model inspired toy model that features:

e unclustered matter halos; matter

| | | satellite
* single-mass halos with same density
orofile (mass mo); @

e optionally mix of satellite and central
galaxies or just satellite galaxies; central




Ingredients of model:

(N) mean galaxy number in halo;
(N(N —1)) mean number of galaxy pairs in halo;
Um () radial matter density profile:
e radial galaxy density profile;
Nh halo number density:;
) fooo dz 2 k1 u(z) sin (kz) Fourigr ':ransform
u(k) = e : of radial profile
Jo dzz?u(z) (normalised!)




Implementation by Seljak, 2000, MNRAS, 218:

(VN —1))

Falk) = 52 " (k) (NN = 1)) = =, g " ()
Pu() = "2 a2, (1) = Mt
P (k) = ;L];:;Lg Um (k) ﬂg(k) (N) = ﬂm(krr)zf’g(k)

uses Pm = Np Mo, Mg = np (N), n(m) = ny dp(m —myg), and

_<f1 (N(N —1)) > 1 [ 1 (N)>1
b= | 1/2  otherwise =1 0 otherwise

controls impact of central galaxies



Correlation factor for scale k:

_ Pyu(k) uagP(R)(N)
- VEB(k) Pu(k) /(NN —1))

r(k)

where we have Iintroduced the excess variance

Ac3 = ox — ox|Poisson

= (N7) = (N)* = (N) = (N(N = 1)) = (N)

Aoy =0 variance of N as in Poisson statistic;

Acg <0 sub-Poisson variance;

Aoy, >0 super-Poisson variance



We learn about two ways to produce r(k) > 1:

1. dominating central galaxies; for g-p = -1/2,
r(k) can become arbitrarily large for k >> 1:

2. no/negligl
variance;

r(k) o a; Y2 (k)

g

nle central galaxies and sub-Poisson

nence p = g = 1 and Aon? < 0;

Note: impact of 2. becomes small if Aon? << <N>2



Bias factor for scale k:

1. even without central galaxies and identical radial profiles
we do not necessarily have b(k) = r(k) = 1; yet we find
b(k)r(k) = 1;

2. only a Poisson variance in addition to 1. ensures
b(k) = r(k) = 1; truly unbiased galaxies require a Poisson-
Ike variance of N;

3. for satellite-dominated halos, b(k) reflects the difference
between matter and galaxy radial proftile; hence g = 1 and
r(k) = const;



* Central galaxies or a sub-Poisson variance of N can make
r(k) > 1 because

1. Pg(k) is defined in excess of Poisson shot noise of
discrete galaxies. If galaxy sampling is actually sub-
Poisson, this over-corrects the shot noise power
(Seljak 2000; Guzik & Seljak 2001).

2. Putting one galaxy always at the halo centre is not a
Poisson sampling of the halo density profile; so Is

non-Poisson Aon2.

* |Isr(x) > 1 also possible for the real-space biasing
functions (shot noise only at zero lag)?

) = bme®)
Em(x) V(D) En(X)

b(x) = \



-> transform three power spectra of toy model to real-space
correlation functions via (back Fourier transform)

§(x) = [Pl(x) :=

272 X

foo dk k P(k) s (k x) ,
0

and you get real-space counterparts of b(k) and r(k):

b(x) = :
0 210 ()
T 2\ —1/2
) = (it - Tg](x) ( 1 Aal\;)
JiEZ @i N )

Interestingly, r(x) depends also on matter density profile.



Assume: identical density profiles um(x) = ug(x) '
N

e without central galaxies—p =g =1— we have

b(z)r(z) =1; r(x) = (1 I <A]\(;>12\;>1/2

* with centrals dominating and Poisson variance
—p=1/2,g=0, and Aon® = 0 — we have

b(x)r(z) = i}m ()  r(x) = \/i}m () > 1

5 () Ui ) ()



Summary and conclusions

e piasing functions of linear stochastic bias fully capture
the differences in distributions of galaxies vs. matter for
two-point statistics; can be measured with lensing;

* their definition assumes Poisson shot-noise for galaxies;
can give seemingly curious values r > 1 it sampling is
actually sub-Poisson;

e demonstrated with toy model that r(k) > 1 or r(x) > 1 can
arise through central galaxies or a sub-Poisson variance
of galaxy numbers inside matter halos;

e even it galaxies pertectly trace matter, we still have not
b =r = 1for all scales if sampling variance is not
Poisson;



