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1
Introduction

Do we speak something truthful here, Giver of life?
We only dream, we only get up from the dream.
It is only like a dream...
Nobody speaks the truth here...
Aztec poem (fragment).

Probably from even before the dawn of civilization humans have been gazing at the starry nights and
wondered about the world in which they found themselves living. Questions that have occupied

humanity were ones like How did the universe begin? How had everything come into being? What
is the universe made of? Was there a beginning? Will there be an end?. Many explanations have
been given throughout the eons, as nearly every culture and society forwarded its own cosmogony
and understanding of the universe. This quest has been vigorously pursued up to the modern age.
Indeed, for the first time humanity appears to come close to an all-encompassing scientifically justified
answer to these age-old questions, on the basis of a vast body of scientific knowledge supported by an
ever-increasing and impressive amount of observational evidence.

Within the current cosmological model, it is assumed that the universe we inhabit came into being
13.7 billion years ago, born in a massive expanding fireball which we have named the Hot Big Bang
(Hoyle 1950). In this event space and time, as well as all the matter and energy that the universe
contains came into being. The pristine universe was extremely hot and dense, gradually cooling and
diluting as it expanded. Under the gravitational instability scenario of structure formation, the present
structure and motions in the universe are due to the growth of gravitational fluctuations from the
initially highly homogeneous background (Peebles 1980).

Although by now it seems we have a fairly good idea of how the universe came into being and its
dynamics at large scale (tens of Megaparsecs), this is not yet the case at smaller scales. Surveys of
galaxies have shown that the universe is rather structured. Stars, gas, dust, planets are not randomly
distributed in space but form larger gravitational-bound systems called galaxies. These in general
are also clustered: some in small groups, others in big clusters with hundreds of galaxies. Moreover
the clusters themselves are grouped in filamentary or sheet-like superclusters. Since the early galaxy
surveys this highly-structured cosmic web shape of the universe has been observed (e.g. Joeveer &
Einasto 1978; de Lapparent et al. 1986; Geller & Huchra 1989). The present galaxy surveys reaching
even deeper regions of the universe (e.g. PSCz, 2dF, SDSS, 2MASS, 6dF) have shown that indeed the
universe is well organized (see Figure 1.1).

Accompanying this foam-like pattern is the peculiar velocity field of galaxies. These migration
flows of cosmic matter are one of the major physical manifestations together with the emergence and
growth of structure out of the almost homogeneous primeval universe. The cosmic flows move out
matter toward regions where ever more matter accumulates, ultimately assembling the structures we
observe in the universe.

In order to understand the large-scale matter structures that form our universe and to have a com-
plete view of the structure formation process, it is necessary to know how the velocity and density
fields evolve and affect each other along the temporal and dynamical evolution of the universe.
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Figure 1.1 — Map of how galaxies are distributed in space as a function of distance from us according to the
2dFGR Survey. Notice how matter is clumped at some specific regions (clusters & superclusters of galaxies),
while there are also empty regions (voids). (credits: 2dF Galaxy Redshift Survey team).

1.1 Motivation

The main topic of this thesis is the study of the peculiar velocity field of galaxies, its influence over the
matter distribution and its reconstruction or modeling from the galaxy distribution.

Cosmic flows have the potential of determining the density of the universe by an estimation of
Ωm (the ratio of the observed density to the critical density), how galaxies trace mass, and to test
the Gravitational Instability paradigm by determining if the initial cosmic density fluctuations were
Gaussian. As an important characteristic, the velocity field is sensitive to all of the mass, including
any dark matter and baryons that did not end up in galaxies.

Major efforts from the observational side have been carried out in order to accurately measure the
distances and peculiar velocities of galaxies. Some systematic errors derived from the observational
techniques (e.g. Malmquist bias, redshift distortions) are understood and we have a fair idea of how to
correct for them. Still, effects due to the non-linearity of some systems and inhomogeneous sampling
cannot be properly corrected for.

From the theoretical point of view, linear theory and its high order perturbation extensions seem
to explain reasonable well the dynamics of structures up to the mildly non-linear regime, and in some
ideal cases up to the non-linear regime. On the computational side, with the advent of powerful com-
puters and smart numerical codes, cosmologists have been able to solve numerically the equations of
motion and to follow the evolution of structures until the non-linear regime. However, this approach
only works from one side to another in the arrow of time of the universe. This is, given an initial
smooth mass distribution, it is only possible to follow its evolution forward in time. The opposite
situation, i.e., to reconstruct the initial smooth mass distribution from the present clumpy mass distri-
bution, it is not always possible since the virialized characteristics of the systems have erased any trace
of their initial state.

Theoretical predictions of structure formation usually refer to continuous density and velocity
fields. However, matter as traced by the galaxy distribution is rather discrete. Thus, one has to re-
sort to artificial methods in order to construct continuous fields from the discrete observed fields, and
to interpolate information to regions devoid of data. A major problem is that the actual galaxy dis-
tribution and peculiar velocity surveys suffer from shot-noise effects. This is an important source of
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error mainly at large distances where sampling is rather poor. The present available interpolation tech-
niques cannot properly deal with all these sources of errors in order to estimate continuous density
and velocity fields, and to establish a fair comparison between theory and observations. Under such
circumstances, one usually needs to make use of other extra techniques like smoothing algorithms.
This results mainly in smearing out small scale features in the data, allowing only studies from the
linear point of view. Because the universe presents small and large scale features in both density and
velocity fields, it is highly desirable that such methods could keep the properties of such fields at both
regimes if one really wants to have a complete picture of the dynamical processes in the Universe.

The main questions to answer in this thesis could be summarized as follows:

• Can we properly model the velocity field from a given matter distribution? If so, up to
what scales? Can we reproduce its main characteristics?

• How important are the tidal effects in the reconstruction or modeling of the peculiar ve-
locity field in our cosmic neighborhood? Can we account for them?

• Is it possible to map continuous velocity fields from discrete peculiar velocities preserving
its characteristics at both large and small scales?

Answering completely these questions is beyond the scope of this work. This thesis is a theoretical
and computational effort carried out in order to help understanding the peculiar velocity field of our
nearby universe and the role that the different large scale structures play in moulding our universe
as we see it. We will mainly make use of computer-simulated data which resembles statistically,
morphologically and dynamically the cosmic neighborhood. The use of controlled and specifically
purpose designed numerical simulations will be of great help to test our methods and hypothesis under
controlled circumstances. The further application of these methods to real data will also be explored.
In particular, over the PSCz catalog whose characteristics such as full-sky coverage, effective deep and
homogeneous sampling make it a fair map of the matter distribution of our nearby cosmic environment.

We will asses how well currently available all-sky, flux limited redshift surveys of galaxies can
account for the major share of mass concentrations inducing the external tidal forces. We will focus
on reconstructing the peculiar velocity field from the galaxy distribution inferred from N−body sim-
ulations and real data with the characteristics that they will account for linear and mildly non-linear
motions. In particular, on the Local Supercluster region since this is the cosmic vicinity where the
quality, quantity and spatial coverage of the peculiar velocity field is the best available.

An important ingredient of this work will be the Delaunay Tessellation Field Estimator method for
peculiar velocities designed for computing volume-weighted peculiar velocity fields from a discrete
set of peculiar velocities. This method is based on the stochastic and geometrical properties of the
particle distribution itself, the Delaunay tessellations. We will show that this method will allow a
direct comparison with the theoretical predictions. This method guarantees reconstructed continuous
volume-covering velocity fields, suppressing shot-noise effects and preserving the large and small scale
characteristics of the discrete velocity field. We will make use of this technique to study the small scale
characteristics of the peculiar velocity field in the nearby cosmic vicinity.

Finally, we will investigate the necessary conditions that prevailed in the primitive density and
velocity fields in order to produce some of the cosmic structures we observe nowadays. We will assess
the statistical significance of the possible identification of such structures via their gravitational effects
over the light from the background matter distribution.

We assume along this thesis that the universe satisfies the standard homogeneous and isotropic Hot
Big Bang model. The framework of Gravitational Instability assumes that gravity is the only agent at
large scales responsible for the collapse and formation of structures dominated by dark matter. Before
proceeding with this thesis, we review only the basic facts and the theoretical background that will be
used along this work. For more complete and detailed formalism we refer the reader to the textbooks
Peebles (1980, 1993a); Padmanabhan (1993); Peacock (1999); Coles & Lucchin (2002); Liddle & Lyth
(2000).
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1.2 Cosmological Background: The homogeneous Universe

Understanding the large-scale structure of the universe is one of the main goals of cosmology. It is
well accepted that Gravitational Instability plays a central role in giving rise to the structures we see in
galaxy surveys.

The standard Hot Big Bang model relies on three basic assumptions: (1) The universe is homoge-
neous and isotropic (Cosmological principle). Thus, its geometrical and dynamical properties can be
described by the Robertson-Walker [RW] metric. (2) The evolution of the space-time can be described
by the General Relativity equations of motion. (3) On scales smaller than the horizon the universe can
be described by a perturbed RW model in which metric fluctuations are small.

The evolution of a homogeneous, isotropic expanding universe can be expressed in terms of its
metric, specifying the distance between two points in space-time. The Robertson-Walker metric is
given by:

ds2 = c2dt2−a2(t)
( dr2

1− k r2
+ r2 dΩ2

)
. (1.1)

Here spherical coordinates (r, θ,φ) are used to describe the spatial positions, and dΩ2 = dθ2+ sin2 θdφ2

is the square of the solid angle. The coordinates are comoving with the expansion of the universe,
whose spatial extent grows proportional to the expansion factor a(t). For convenience, at the present
time t0, a(t0) = 1. The curvature k parameterizes the global geometry of the universe, commonly
referred to as closed (k > 0), flat (k = 0) and open (k < 0).

The RW metric predicts that a monochromatic wave emitted by a receding object (e.g. galaxy,
quasar) is systematically Doppler-shifted toward larger frequencies, in other words red-shifted. The
redshift “z” of a source is given by

z =
λ0−λe

λe
, (1.2)

where λ0 is the wavelength of the radiation detected at t0 (observed), and λe is the wavelength emitted
from a distant source at the time te. This cosmological quantity can be directly measured from obser-
vations of object’s spectra. The relation between the redshift of light and the expansion factor at which
it was emitted is given by

1+ z =
a0

ae
. (1.3)

Thus, measuring the redshift of an object, we can determine the scale factor a at the moment when the
light was emitted, and then the cosmological time and finally infer its spatial distance.

Introducing the RW metric in the Einstein’s field equations and under the assumption that the uni-
verse can be described as an ideal fluid, one obtains the Friedmann [FRW] equations, which describe
the expansion and evolution of the universe:

ä
a
= −4πG

3

(
ρ+

3p

c2

)
+
Λ

3
, (1.4)

ȧ2

a2
=

8πGρ
3
− kc2

a2
+
Λ

3
. (1.5)

In these equations, G is the Newton’s gravitational constant, ρ is the mass density, p is the pressure and
Λ is the vacuum energy or cosmological constant. The Hubble parameter, or the rate of expansion, is
defined as

H(t) =
ȧ
a
. (1.6)

H0 refers to the expansion rate at the present, and is often expressed as H0 = 100 h km s−1Mpc, where
h is a dimensionless factor.

In order to solve the Friedmann equations, an equation of state for the cosmic fluid needs to be
specified. For substances of cosmological relevance, the equation of state has the form: p(ρ) = wρc2.
Here, w is a dimensionless constant which indicates the kind of matter component we are dealing with,
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and c represents the speed of light. There are three main components of the material content of the
universe: baryons (normal matter), non-baryonic dark matter (e.g. WIMPs, axions) and relativistic
matter (photons and neutrinos). In the early universe, the energy density is dominated by radiation and
relativistic particles (w= 1/3), then the equation of state is given by p= 1

3ρc2. However, as the universe
expands, the energy density decays as a−4, while that of non-relativistic matter, which is assumed to be
pressureless (w = 0), scales as a−3. Dark energy has p = −ρc2 with ρ constant in time and w = −1. This
energy causes an accelerating universe if w < − 1

3 . The cosmological constant Λ is usually identified
with this dark energy. It is possible to show that matter dominated over radiation for most of the history
of the universe. In this thesis we will only be concerned about the universe in this matter-dominated
phase.

The matter content of the universe can be expressed in terms of the critical density

ρc =
3H2

0

8πG
. (1.7)

A universe with density above this critical value will be “spatially closed”, whereas a lower density
universe will be “spatially open”. This critical density allows the definition of the following density
parameters:

Ωm =
ρm

ρc
, Ωrad =

ρrel

ρc
, ΩΛ =

Λ

3H2
0

, Ωk = −
kc2

a2
0H2

0

, (1.8)

to refer to the density of ordinary matter, relativistic matter (radiation), vacuum energy and curvature.
Note that these quantities are evaluated at present time, t0. Dividing by H0 the Friedmann Eqn. 1.5 and
evaluating it at the present time becomes

Ωm+Ωk +ΩΛ = 1 , (1.9)

while Eqn. 1.4 takes the form

q0 =
1
2
Ωm−ΩΛ , (1.10)

where q0 is known as the deceleration parameter q0 = −(äa/ȧ2)|t0 , which can be used to parameterize
cosmological models.

With all these definitions, matter-dominated universes can be completely characterize by the cos-
mological parameters (H0,Ωm,ΩΛ) or (H0,Ωm,q0). Once this set of numbers is known, the evolution
of a cosmological model is given by

H(a) =
ȧ
a
= H0 E(a) , (1.11)

where E is the normalized Hubble function defined as

E2(a) = Ωma−3+Ωka−2+ΩΛ . (1.12)

There is a large range of possible FRW universe models. Over the decades many different ones
were forwarded, gained popularity and subsequently dropped out of the scene. Perhaps the simplest
solution is the Milne model with Ωm = ΩΛ = Ωk = 0 which describes an empty expanding universe.
One of the most popular models is the so-called Einstein-de-Sitter model characterized by Ωm = 1,
ΩΛ = Ωk = 0. For these scenarios Eqn. 1.11 has exact analytical solutions (also other models with
Ωm , 1). In the general case (Ωi , 0 with i = m,Λ,k), the equation has to be solved numerically.

A continuously rising flood of new cosmological observations, stemming from larger and larger
depths in the Universe, has lead to a converging consensus regarding the Universe we are living in.
With impressive accuracy a rather remarkable set of values for the crucial cosmological parameters
has emerged, now commonly known by the name of “Concordance Model”. Satellite experiments
such as COBE and WMAP, in conjunction with balloon-borne experiments such as Boomerang, have
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showed the validity of the Hot Big Bang model, and that the Universe is flat (Ωk = 0), with an age of
13.7 billion years. In combination with the ground-based mapping efforts of large redshift surveys of
galaxies (2dFGRS and SDSS), we have been able to track the (dark) matter content of the Universe
with Ωm = 0.27. Supernova SnIa surveys have showed evidence of the presence of the “Dark Energy”,
which represents 73% of the energy content of the Universe (ΩΛ = 0.73). Ever since it started to
dominate the dynamics of our Universe, only as recent as some 7 Gigayears after the Big Bang, it has
been propelling an acceleration of the expanding Universe.

The successes of the Hot Big Bang model are that it has been able of explaining:

1. Why the night sky at night is dark (Olbers’ paradox). Only in a Universe with a finite age and
with a finite velocity of light this may be understood.

2. The expansion of the universe. Hubble (1929) found that galaxies are receding from us with a
velocity proportional to their distance (v = Hr).

3. The abundances of light chemical elements (H, He, Li,...) shortly after the Big Bang (primordial
nucleosynthesis).

4. The Cosmic Microwave Background Radiation [CMB], which is the relic blackbody radiation
when the temperature of the universe dropped sufficiently (3000◦K) to allow protons and elec-
trons to combine to form Hydrogen atoms.

1.3 The inhomogeneous universe

So far we have discussed the dynamics of a homogeneous and isotropic universe. However, the ob-
served universe is far from homogeneous. Even the mere existence of galaxies is inhomogeneous.
There is a richness of structure ranging from dwarf galaxies, to groups and clusters of galaxies, and to
the huge superclusters of galaxies (see Fig. 1.1). This would imply that the cosmological principle is
violated at small scales. The standard model, however, will still be valid provided that the metric fluc-
tuations are small within the Hubble radius1, in other words, provided that the universe is a perturbed
FRW universe. At scales somewhat larger than hundreds of Mpc homogeneity is approached. If the
universe is smoothed on larger scales, it will appear homogeneous. Despite the small-scale clumpiness
of the universe, its global dynamics can still be described by the Friedmann models.

The canonic theory of structure formation in the universe assumes that structure grows due to
Gravitational Instability [GI]. Primordial fluctuations in the primeval homogeneous density field are
amplified through gravity (e.g. Peebles & Yu 1970; Weinberg 1972; Peebles 1980). Such gravity per-
turbations induce cosmic flows of matter. High-density regions start to contract and finally experience
collapse, amassing more and more matter from their surroundings. In the same way that there are mat-
ter surpluses in particular regions, there are regions characterized by densities lower than the average
density of the universe. They become emptier and expand with respect to the background, turning into
empty voids. Gradually, as matter is displaced, cosmic structures emerge to form the universe as we
see it today. Figure 1.2 illustrates the gravitational instability scenario and the emerging of structure.
The GI implements the Jeans instability theory in an expanding medium and considers isocurvature
and adiabatic longitudinal solutions to describe the growth of initially small density perturbations.
Under such conditions, structure formation theories are completely specified by their initial condi-
tions, i.e., by the form the of the initial power spectrum and the values of the cosmological parameters
(H0,Ωm,ΩΛ,Ωk).

The main force driving the dynamics and evolution of galaxies, and the large-scale structure for-
mation process in the universe is gravity. Although gas physics plays an important role in the galaxy
formation process, it only plays a minor role for the dynamics of the large-scale of the universe. Ob-
servational measurements indicate that there is a large fraction of “unseen” matter called dark matter,

1The Hubble radius is the radius of the observable universe. At actual time dH =
c

H0
≈ 3000 h−1Mpc.
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(x,t)Initial density field : δ

+

Matter displaced :  raise of structures Velocity field :  v(x,t)

Gravity field :  g(x,t)

=

Figure 1.2 — The Gravitational Instability scenario. An initial Gaussian smooth density field is gravitationally
perturbed, inducing cosmic flows of matter, ending up in the emergence of structure.

and it is believed that can only be detected by their gravitational effects on luminous matter. This
assumption implies that the dynamics of dark matter can be treated by using the laws of gravity alone.
Observational evidence seems to suggest that the energy content of the universe consist of 4% of its
total content by baryonic matter, 23% by non-baryonic dark matter and the rest (73%) is dominated by
the dark energy.

1.3.1 The Linear regime

The study of the growth of density perturbations is one of the major topics in cosmology. When
fluctuations are small, the equations of motion can be linearized by expanding around the homogeneous
solution. The resulting Linear theory together with its high-order perturbation extensions are among
the best methods to study the large-scale structure formation process.

Dark matter is assume to behave as a collisionless fluid for most of the time of the universe.
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At any given time t, we may distinguish between the regime in which the proper wavelength of the
perturbations modes λ(t) is much smaller than the Hubble radius dH(t) (horizon), and that in which
λ(t) & dH(t). In the former regime, the evolution of inhomogeneities can be analyzed with Newtonian
dynamics, whereas in the later case the full relativistic treatment is needed. Since we are interested
in scales much smaller than the horizon scale, the Newtonian approach can be applied. In order to
describe the perturbations of an ideal FRW-model, we scale out the uniform expansion by transforming
to a comoving frame. A particle moving with the (hypothetical) homogeneous background universe
is defined to have constant coordinates in such frame. The comoving position x is defined as r = a x
where a is the expansion factor, and r is the position in the static coordinate system. The physical
velocity ṙ of a particle can be written as ṙ = ȧx+aẋ, where the motion relative to the comoving frame,
v ≡ aẋ, is the peculiar velocity component, and ȧx = Hr is the Hubble flow. It is also convenient to
define the density fluctuation field δ(x):

δ(x) =
ρ(x)−ρb

ρb
. (1.13)

In a statistical sense, δ(x) is considered as a random field, i.e., as a set of random variables, one for
each point x. In this way, the universe is a random realization chosen from a statistical ensemble of
universes. In this framework, ρb represents an average over the ensemble (background density).

The equations of motion for the matter fluid are the continuity and Euler equations and the Poisson
equation. The first and second equations state the conservation of matter and momentum, respectively.
The third equation states that the density fluctuations originate by metric perturbations given the New-
tonian potential φ. These set of equations in an expanding universe in the comoving coordinate system
and ignoring relativistic effects are given by:

∂δ

∂t
+

1
a
∇ · (1+δv) = 0 ,

∂v
∂t
+

1
a

(v · ∇)v+
ȧ
a

v = −1
a
∇φ, (1.14)

∇2φ = 4πGρba2δ .

We have not considered terms depending on pressure because we assume them negligible. This is
because the last stages of fluctuations growth occur after z = 100, when the pressure is negligible. The
peculiar gravitational potential φ is related to the peculiar gravitational field g by:

g(x) = −∇φ
a
=G aρb

∫
δ(x′) (x′−x)

|x′ −x|3 dx′ (1.15)

This equation shows that density fluctuations are responsible for the motions in the Newtonian limit.
Combining the set of Eqns. 1.14, linearizing them and with some algebraic manipulation one ob-

tains a single equation for the density perturbation (Peebles 1980):

∂2δ

∂2t
+2

ȧ
a
∂δ

∂t
= 4πGρb δ . (1.16)

This equation is a linear second-order ordinary differential equation in δ and therefore, each mode is
decoupled and evolves independently from each other. The general solution consists of two modes,

δ(x, t) = A(x)D1(t)+B(x)D2(t) , (1.17)

where D1(t) and D2(t) are the two independent time solutions. They are called the growing and decay-
ing solutions, respectively. As the universe evolves the decaying mode damps away, so one can focus
only on the growing mode D1 , often called the linear growth factor. This is given by,

D1(z) = E(z)
∫ ∞

z

1+ z′

E3(z′)
dz′ , (1.18)
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where E(z) is the normalized Hubble function defined in Eqn. 1.12. Normally the values for D1

have to be found numerically. Although analytical expressions have been found for ΩΛ = 0 models
(Peebles 1993a; Sahni & Coles 1995). In an Einstein-de-Sitter universe, the growing mode is given by
D1(t) = t2/3. So the density field can be expressed as δ(x, t) = δ(x) t2/3. As we can see, the evolution
of δ is proportional to the scale factor. However, the structure formation growth stops when structures
become non-linear (voids and clusters of galaxies) at the redshift,

1+ z ≈ 1
Ωm
−1 , (1.19)

at which they decouple from the Hubble expansion. At this redshift, structures experience first con-
traction and collapse, followed by virialization to turn finally into genuine cosmic objects. For a flat
Universe with Ωm = 0.3, this happens at z ≈ 1.3 (a = 0.43).

This is the main problem of structure formation in the linear regime. In an expanding universe
density perturbations grow as a power law in time, while in an static universe they do exponentially.
One therefore needs substantial fluctuations in the early universe to produce the structures we see at
present. Guth (1981) proposed the idea that the universe experienced an inflationary epoch in which,
the universe went through a phase of exponential expansion. This model provides a way to generate
density fluctuations of the desired type and amplitude to act as the seeds of the structures we see
nowadays in the universe.

1.3.2 The velocity field

The equations of motion (Eqns. 1.14) also involve the velocity field. This field is very important in
cosmological studies since it is directly observable. This together with the density field, is one of the
most prominent physical manifestation of the dynamical growth of structure in the universe.

The linear peculiar velocity field in the linear perturbation approximation with zero pressure satis-
fies the equations (Peebles 1980):

∂v
∂t
+Hv =

1
a
∂(av)
∂t
= g , (1.20)

∇ ·v
a
+
∂δ

∂t
= 0 , (1.21)

with g the peculiar gravity field. The velocity field can be decomposed as the sum of a longitudinal
(non-rotational) field and a transverse (rotational) field v = vL + vT , with ∇× vL = 0 and ∇ · vT = 0.
Combining these results with the continuity equation we can immediately distinguish that only the
longitudinal component of the velocity field is able to generate matter displacements and hence gravi-
tational perturbations. Primordial rotational motions usually decay rapidly with time, and we therefore
will go along the usual assumption that the primordial velocity field is vorticity free. Therefore, and
according to the Kelvin’s circulation theorem2, the velocity field will remain curl-free as long as the
flow continues laminar.

Eqn. 1.21 is particularly important since it gives the δ(x) once the velocity field, v(x) is known.
Peebles (1980) introduced the dimensionless growth rate f ,

f =
d log D1

d loga
≈Ω0.6

m +
ΩΛ

70

(
1+
Ωm

2

)
, (1.22)

to express the time dependence in the continuity equation: δ(x) = −∇·v/(aH f ). The approximation in
Eqn. 1.22 shows that in the general case f depends weakly on the cosmological constant at actual time
(Lahav et al. 1991).

Since the peculiar velocity field is considered to be irrotational, it can be expressed as the gradient
of a scalar function ψv called the velocity potential, v = −∇ψv/a. Substituting this equation into the

2This theorem states that for isentropic flow the fluid circulation around a closed contour fixed in the fluid is conserved.



10 Chapter 1: Introduction

continuity equation (Eqn. 1.21) gives ∇2ψv = H f a2δ, that compared with the Poisson equation, shows
that φ ∝ ψv and therefore v ∝ g:

v =
H0 f

4πGρb
g =

2 f
3H0Ωm

g , (1.23)

from which the evolution of v can be deduced. This equation indicates that in the linear regime the
peculiar velocity is proportional to the local gravitational acceleration.

1.3.3 The power spectrum

As we have seen, initially small perturbations grow by gravitational instability. It remains to character-
ize the spatial dependence of those initial perturbations. It is assumed that (and according to the central
limit theorem) such initial fluctuations are described by a Gaussian random field in agreement with the
Inflation predictions (e.g. Kolb & Turner 1990). There are other feasible mechanisms for generating
primordial fluctuations, for example cosmic defects such as cosmic strings or textures. However, their
initial fluctuations may not be necessarily Gaussian.

In this work we assume that Inflation is correct and therefore, the initial density field was Gaussian
(Bardeen et al. 1986). In general, it is convenient to represent the perturbations in terms of its Fourier
transform

δ(x) =
1

(2π)3

∫
dk δ̃(k) e−ik·x . (1.24)

Because of the isotropy assumed in the Cosmological principle (i.e. primordial fluctuations concern
to isotropic stochastic process of random spatial fluctuations), the statistical properties of δ̃(k) are
independent of the direction of k̂, and so we can define the power spectrum P(k) as:

〈δ̃(k) δ̃∗(k′)〉 = (2π)3 P(k) δD(k−k′) . (1.25)

Here, δD represents the Dirac delta function. Hence, specifying P(k) determines all the properties of
the Gaussian random field since this is fully characterized by its second order moment (Bardeen et al.
1986). In linear theory, the shape of the power spectrum is independent of time. The initial power
spectrum depends on the way the initial fluctuations were generated. The simplest inflationary models
predict the so-called scale-invariant power spectrum

P(k) ∝ k , (1.26)

i.e., the metric fluctuations in the early universe had the same amplitude on all scales. This is also
called the Harrison-Zel’dovich spectrum. This model was predicted well before inflation has been
suggested (Peebles & Yu 1970; Harrison 1970; Zel’dovich 1972). However, other models with tilted
power spectra (n, 1) are also consistent with Inflation. In this thesis we will only refer to the Harrison-
Zel’dovich one.

The adopted power spectrum is generic for universes in which the dark matter is non-relativistic,
i.e., cold. The initial power spectrum evolves as the universe expands and perturbations grow, hence
the processed linear power spectrum at late times will depend on the geometry of the universe and the
nature of the matter.

1.3.4 The mildly non-linear regime

The linear relations just described are only valid when δ� 1. This can lead to non-negligible errors if
they are used to describe the matter perturbations beyond this regime. At the mildly non-linear regime
(δ ≈ 1), before virialization takes place and erases all linear characteristics of the system, there are
still some very useful approximations that can help us to understand the general case that cannot be
solved exactly. Zel’dovich (1970) was among the first to explore analytically the non-linear regime.
He proposed an extrapolation of linear gravitational instability theory into the non-linear regime. This
approach is generally called the Zel’dovich approximation.
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1.3.5 The Zel’dovich approximation

This method is a purely kinematic approach of the formation of structure. The starting point of the
Zel’dovich approximation is the result from the linear theory for the growth of small perturbations.
The essence of this approximation scheme is a prescription for the displacement of a particle from its
initial (Lagrangian) comoving position q to an Eulerian comoving position x,

x(t) = q−D(t)∇ψ(q) . (1.27)

In this mapping, the time dependent function D(t) is the growth rate of linear density perturbations
(Eqn. 1.18). The time-independent spatial function ψ(q) is related to the linearly extrapolated gravi-
tational potential φ. The Zel’dovich approximation also implies that a particle’s peculiar velocity v is
proportional to its displacement,

x(t)−q = Ḋ(t)∇qψ(q) = a H f v , (1.28)

where f is the dimensionless growth factor. The corresponding evolution of the density field can be
obtained from considerations of mass conservation, which requires that the Eulerian and Lagrangian
density be equal, ρ(x, t)dx = ρ(q)dq. Hence

1+δ =
ρ(x, t)
ρb
=

∥∥∥∥∥
∂x
∂q

∥∥∥∥∥
−1

=
1

(1+Dλ1)(1+Dλ2)(1+Dλ3)
, (1.29)

where the vertical bars denote the Jacobian determinant. λ1,λ2,λ3 are the eigenvalues of the defor-
mation tensor (∂ψi/∂q j) along the three eigenvectors. These are called the contraction or expansion
coefficients. In the linear regime (small perturbations, D� 1), the amplitude of the density contrast
will be determined by the sum of the eigenvalues of the deformation tensor, (δ = −D(λ1 + λ2 + λ3)).
At later times, the amplitude will be given only by the most negative eigenvalue. Then, the density
contrast grows along the direction of this eigenvalue faster than in any other direction, δ ∼ (1−αD)−1,
and it reaches infinity when D = α. Thus, the Zel’dovich approximation predicts the collapse of matter
into planes (sheets) called pancakes. The further evolution of the density field will be dictated by the
second largest eigenvalue and its respective collapse along its eigenvector to form filaments. The third
collapse along the third eigenvalue will result in the formation of clusters. The Zel’dovich approxima-
tion is completely valid until the moment when shell-crossing occurs, well beyond the linear regime
(δ > 1). This approximation is widely used to describe large scale motions and for setting up initial
conditions for numerical modeling since it is only necessary to generate one scalar function ψ(q) to
calculate all the other needed initial fields. In this thesis, we will use this technique for both purposes.

1.3.6 The non-linear regime: Cosmological simulations

The equations of motions are non-linear. We have presented solutions so far in the limit of linear and
quasi-linear perturbations. The proper evolution of the density and velocity fields can be performed
by means of numerical models. There are two main ways of addressing the density field, as a fluid
(continuous field) or as a discrete field composed by particles. In principle, one could attempt to solve
the “fluid” equations of motion for a continuous matter field (e.g. Peebles 1987). The second approach
samples the density distribution in terms of a large number of particles, matter elements. Basically, a
Lagrangian approach where the evolution is simulated by following the trajectories of these particles
under their mutual gravity. This type of approach is called N−body simulations. In this thesis we will
make an extensive use of N−body simulations in order to address specific problems of the structure
formation scenario.

The purpose of cosmological simulations is to model the growth of structure in the universe. Nu-
merical N−body techniques offer an effective tool for investigating the non-linear gravitational evolu-
tion. Since the region of the universe modeled is much smaller than the horizon volume, Newtonian
equations of motions are adequate to describe the particle dynamics and evolution of structure. These
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Figure 1.3 — Representation of a portion of the
Universe created by a computer simulated model.

numerical methods can -in principle- simulate the evolution of dark and baryonic matter under a spe-
cific cosmological model. In the present thesis we will only focus in the evolution of dark matter. With
the current powerful computers it is common nowadays to follow the evolution of ∼ 106−7 particles in
large enough volumes which are a fair representation of the universe at large scales (see Figure 1.3).
The actual dynamic range in numerical simulations allows detailed studies of the structure formation
process and of the ultimate goal in cosmology, galaxy formation.

The N−body simulations considered in this thesis start shortly after the Hot Big Bang, usually at
z = 49 (a = 0.02), with a mass distribution that is close to be homogeneous. The initial Lagrangian par-
ticle positions are perturbed according to the fluctuation spectrum predicted by inflationary cosmology.
Three main models are being considered along this thesis: the old standard, flat, scale-invariant cold
dark matter model (SCDM); a flat tilted model (τCDM) and the flat low-density model with cosmolog-
ical constant (ΛCDM). As a major characteristic of the initial density and velocity fields used as input
for the N−body simulations will be the use of Constrained Random Field theory (Bertschinger 1987;
Hoffman & Ribak 1991; van de Weygaert & Bertschinger 1996). This allows to generate constrained
initial Gaussian random density and velocity fields. With this technique is possible to specify the pres-
ence and characteristics of one or more initial “seeds” that generated the large scale structures of the
universe. Such constrained fields, completely consistent with the imposed cosmological scenario, al-
low to study systematically and under controlled circumstances the dynamical evolution of structures
in the universe.

In universes dominated by cold dark matter, primordial fluctuations survive on small scales. Thus,
the first objects to form are the smaller ones. The larger ones form through the merging of smaller
ones that had already formed. This process of hierarchical structure formation seems indeed what
we observe: galaxies are much older than the more massive and more recently collapsed clusters
of galaxies. On an even larger scale, Superclusters have not even reached a collapse stage, at best
they started to contract. The way in which these hierarchically embedded structures have arranged
themselves in the Universe contains a wealth of information on the structure formation process. They
appear to be grouped in planar or filamentary partially contracted superclusters, interconnected into
a vast web-like configuration, interspersed by huge and empty void regions, stretching out along the
observable Universe (see Figures 1.1 and 1.3).
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1.3.7 Cosmic flows

Cosmic flows or Large-scale motions is a term used to describe the motions of galaxies, relative to the
overall expansion of the universe, that are coherent over size scales much larger than the typical sizes
of galaxy groups (∼ 2 h−1Mpc) in the form of bulk flows or streaming flows and shearing motions.
Under the gravitational instability scenario of structure formation, such motions are driven by gravity
and are the result of non-random motions imprinted at early epochs of the universe. The amplitude of
such coherent large-scale motions are therefore among the most sensitive probes of both the large-scale
structure of the universe and of the initial conditions of galaxy formation (Peebles 1980).

In order to measure peculiar velocities of galaxies, astronomers need to know the physical distance
of such galaxies. Hubble’s law tell us that the distances of galaxies are proportional to their observed
recession velocities (v = H0r). However, this is not exactly correct. galaxies have peculiar velocities
above and beyond the Hubble flow: v = H0r+ u. Generally, distance indicators relate two quantities:
one of them is distance dependent (e.g. galaxy luminosity), and the other is distance independent (e.g.
galaxy rotational velocity). Two well known relations have been widely used for these purposes, the
Tully & Fisher (1977) and Faber & Jackson (1976) relations applied to spiral and elliptical galaxies,
respectively. Other type of distance indicators have also been used to measure cosmological distances,
such as SN, Cepheids, surface brightness fluctuations, brightest cluster galaxies, PNe, etc.

While the confirmation of the gravitational instability scenario and determination of Ωm are prob-
ably the most important goals of peculiar velocity surveys, they are also very helpful in characteriz-
ing the mass distribution in large scales. The discrete and nonuniform characteristics of wide-angle
redshift surveys severely limitate them in order to measure density fluctuations at distances beyond
≈ 200 h−1Mpc. On the other hand, large amplitude coherent peculiar velocities (& 500 km s−1) on
large scales can be detected with relatively modest samples (e.g. Lauer & Postman 1994; Dekel 1994).
The reason for this is that the peculiar velocity field on a given scale is more sensitive to components
of the power spectrum on larger scales than is the density field, and thus is a useful probe of the large
scale power.

The first evidence of large-scale streaming was reported by Rubin et al. (1976a,b) who found a
bulk flow relative to the local group of 600 km s−1 in the direction of (l,b) = (160,−10)◦. Astronomers
were skeptic about this result since it was nearly orthogonal to the Local Group velocity vector (e.g.
Fall & Jones 1977). It was until Lilje et al. (1986) and Dressler et al. (1987) reported a bulk flow
of 600± 100 km s−1 relative to the CMB frame, in the direction of (l,b) = (312,6)◦ ± (12,10)◦ that
astronomers payed attention to large-scale cosmic flows. Lynden-Bell et al. (1988) analyzing the same
data from the previous studies found the apex of the apparent bulk flow. They interpreted this as due to
infall into an attracting point, which they modeled as a spherical density perturbation called the Great
Attractor [GA]. Also the local group has been found to display an infall motion of ∼ 230 km s−1 to the
center of the Local Supercluster (e.g. Schechter 1980; de Vaucouleurs & Peters 1981; Aaronson et al.
1982b), in particular towards the Virgo cluster. This motion is called the Virgocentric infall. Further
observational evidence has confirmed these two large-scale motions (e.g. Kraan-Korteweg et al. 1984).
There are indications that the GA is not the primary source of inducing large scale motions in our
cosmic neighborhood (e.g. Mathewson & Ford 1994), but there are other bigger structures located
beyond this region which could induce bulk flows at very large-scales. The Shapley supercluster, a
massive cluster-rich region located at ∼ 140 h−1Mpc, has been pointed out as one of the possible main
sources of the very large-scale motions (Raychaudhury 1989; Plionis & Valdarnini 1991). However,
large uncertainties are present in the distance measurements due to inhomogeneous Malmquist bias
and other effects.

While the Local Group of galaxies participate in a coherent flow of 600 km s−1 toward the Great
Attractor region, the galaxy velocity dispersion around our local vicinity (in a volume of 5 h−1Mpc)
is of ∼ 60 km s−1. Such “coldness” of the flow provides a challenging contrast to the expectations
from the current cosmological model and its explanation remains somewhat uncertain. Ostriker &
Suto (1990) characterized such coldness by defining the Cosmic Mach Number as the ratio of the flow
velocity to the small-scale velocity dispersion of galaxies. The estimate of such quantity, in particular
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of the small-scale galaxy velocity dispersion, is an indication of the true gravitational potential of the
matter responsible for such motions and of the shape of the power spectrum of density fluctuations
(Ostriker & Suto 1990). However, the computation of such quantity is severely affected by two-body
relaxation processes, together with the fact that its measurement is biased toward well sampled regions.
These effects have raised problems in the interpretation of the cosmic Mach number, mainly because
of the bias sampling. In this thesis, we will study the coldness of the flow by estimating it in a fair way,
independent of the matter distribution.

Because peculiar velocities enable a reconstruction of the large scale matter distribution indepen-
dent of galaxy surveys, one can compare the measured velocity field and the inferred velocities from the
matter distribution (velocity-velocity comparison), or the measured density field to the inferred density
from the peculiar velocity field (density-density comparison). In these comparisons, one makes the as-
sumption of a biasing model which specifies how galaxies trace the underlying total matter distribution.
The simplest model assumes a linear relation of the form:

δg = b δm , (1.30)

where δg is the observed galaxy density contrast and b is the linear bias parameter. However, reality
is more complicated than this and other (non-linear) models have been suggested. In this thesis we
will assume that such model is valid. In practice, one does not directly measure b, but rather the
combination

β =
f (Ωm,ΩΛ)

b
. (1.31)

Here f is the dimensionless growth factor defined in Eqn. 1.22. In the present thesis, we make the
assumption that the galaxy distribution follows the same behavior as the dark matter, i.e. b = 1 and
β ≈ 0.5 for a Λ dominated universe.

1.4 The Least Action Principle

A complete study of the large scale structure implies the knowledge of both density and velocity fields
at any epoch. However, one usually knows one of these fields and needs to infer the “missing” field by
any available method. The dynamical evolution of the universe represents a mixed boundary condition
problem, some of them are specified at the present epoch and some at early times. The problem of
mixed boundary conditions can be solved analytically in the linear regime, where a unique solution
exists for both density and velocity fields (Peebles 1976). However, the actual density contrast is
larger than unity, even when smoothed on scales of 10 h−1Mpc. The associated velocities therefore
need to be computed non-linearly. Unfortunately, the non-linear calculation of the growth of density
fluctuations of arbitrary geometries is not simple, and N−body methods are not very helpful since their
use is restricted to initial value problems. A further complication of the non-linear problem of mixed
boundary conditions is the multivalued nature of the solutions. Orbit crossing makes identification
of the correct orbits difficult, and impossible after virialization has erased the memory of the initial
conditions. Often, one is restricted to laminar flow in the quasi-linear regime where orbit crossing has
not erased yet the correspondence between the final and initial positions.

The Zel’dovich approximation is a good first order approximation to deal with laminar flows, but
it fails at nonlinear regions. Peebles (1989, 1990, 1994) noticed that mixed boundary conditions led
to a natural application of Hamilton’s principle, the Least Action Principle [LAP], in which one seeks
stationary variations of an action, subject to fixed boundary conditions at both the initial and final time.

The principle can be stated as: the motion of a system from time t1 to a later time t2 is such that the
integral:

S =
∫ t2

t1

Ldt =
∫ t2

t1

dt
∑

i

[1
2

mi a2 v2−miφ(xi)
]
, (1.32)

where L is the Lagrangian of the system, has a stationary value for the correct path of the motion. mi

represents the mass of the ith particle, and S is referred as the action of the system. This principle
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Figure 1.4 — The Least Action Principle. From all possible trajectories for a particle to go from its position at
t0 to its position at tnow, LAP predicts that the correct path is along the action S is a minima (Left-hand panel).
Reconstruction of galaxy orbits by means of the LAP (Right-hand panel). The dots represents the actual galaxy
positions, while the stream lines their trajectories back in time.

implies that from all possible paths by which the system could travel from its position at time t1 to its
position at time t2, it will travel along the path for which the value of the integral is stationary (see
left-hand panel of Figure 1.4 for a schematic representation). In other words:

δS = δ
∫ t2

t1

Ldt = 0 . (1.33)

Solving this equation will lead then to find the peculiar velocity field given the actual mass distri-
bution in the system. The LAP describes the motion of a system for which all the forces are derivable
from scalar potentials, that may be function of the coordinates, velocities and time. The LAP tech-
nique can be numerically implemented as a non-linear Lagrangian method to reconstruct orbits of
objects from their present positions and therefore, to obtain a model of its velocity field (see right-
hand panel of Figure 1.4) or, when the distribution of objects is properly smoothed, to recover the
primordial density field from the observed one.

In the present thesis we will make use of a cosmological implementation of the LAP technique
in order to estimate (model) the peculiar velocity field from the corresponding actual positions of
objects in an expanding universe. Under such scenario the mixed boundary conditions are specified by
knowledge of the present-day location of galaxies and the value of their velocities at an initial time.

1.5 Continuous velocity fields: the DTFE velocity algorithm

Comparison of observed or simulated velocity fields with predictions from theoretical models is pos-
sible only if one makes the assumption that the observed fields faithfully trace the underlying velocity
field. In reality this is not the case. One only knows the peculiar velocities at the positions of observed
galaxies or simulation particles. Theoretical predictions are based on the assumption that the velocity
field is continuous and well defined within the considered volume. The resulting comparison with
theoretical predictions is therefore not always clearly defined. The compared fields may not really be
the same thing.

Fixed “Eulerian” grid-based methods have been commonly used to carry on such comparison.
These methods make use of rigid kernel sizes which in essence “average” the velocities of the particles
contained within the kernel (see Hockney & Eastwood 1988). The recovered information can be
extrapolated to regions within the size of the kernel at regions devoid of data at the cost of erasing
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?

Figure 1.5 — How to get a continuous volume-covering velocity field from a discrete set of peculiar velocities?
The use of the Delaunay Tessellation Field Estimator for peculiar velocities is a very promising technique to
reconstruct such fields.

any signal smaller than the kernel size. There is therefore, a compromise between the large scale and
the small scale signals and the kernel size of the employed interpolation method. In many cases the
interpolation procedure alone is not enough, mainly where the sampling is very poor. Hence, one is
forced to apply smoothing algorithms in order to obtain more coherent velocity fields and to minimize
shot-noise effects, at the cost of erasing the signal of structures smaller than the smoothing kernel.

Adaptive methods have also been implemented. In this “Lagrangian” approach, the locations of
the interpolation are confined to or defined by the point distribution itself. Of this type, of which
the “SPH-type” schemes are the best known in astronomy. The latter refers to the abundantly used
Smooth Particle Hydrodynamics technique (Lucy 1977; Gingold & Monaghan 1977) to follow the
hydrodynamical evolution of astrophysical systems. This approach is not restricted to a specific geom-
etry because it does not make use of a mesh, hence with an unlimited (ideally) spatial resolution. In
practice, this is not possible and one has to make use of a “softening length”. Although, this is usually
smaller than the cell size of an Eulerian scheme. Therefore the spatial resolution of the Lagrangian
technique can be significantly higher. However, the main difficulty of this technique is that it relies on
stochastic arguments which means that it yields only approximate solutions at a given spatial position.

Ideally, one would like to preserve the large and small scale regimes in order to allow consistent
studies of the peculiar velocity field. For example, the analysis of the small scale peculiar velocity
dispersion contains information on the total matter content and dynamical state within a given region.
When directly determined from the particle distribution itself it will lead to misleading conclusions
since the study will be biased toward well sampled regions. A far better approach, assigning equivalent
significance to the poorly sampled low density regions is to determine a continuous velocity field.

In this thesis, we work out an advanced tessellation interpolation scheme which adapts itself au-
tomatically to the geometry of the particle distribution, resolving both small and large scale velocity
fields. The method is based on the Delaunay Tessellation Field Estimator [DTFE] (see Schaap 2005)
technique. This approach for peculiar velocities has been demonstrated to have very reliable velocity
field statistics (Bernardeau & van de Weygaert 1996). The DTFE is based upon a triangular network,
known as Delaunay tessellation, which connects neighbouring points in a fully adaptive and objec-
tively defined fashion (see Okabe et al. 2000). Moreover, the intrinsic characteristics of the method
will allow us to perform studies of velocity-related quantities such as the expansion or contraction of
the velocity field, its rotation, stretching and compression, and the evolution of the structure formation
process in the universe.
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Local Supercluster Dynamics:
External Tidal Impact of the

PSCz sample traced by
Optimized Numerical Least Action

Method

E. Romano-Dı́az, E. Branchini & R. van de Weygaert.

W assess the extent to which the flux-limited IRAS PSCz redshift survey encapsulates the com-
plete or major share of matter inhomogeneities responsible for the external tidal forces affecting

the peculiar velocity flow within the Local Supercluster and its immediate surroundings. We here in-
vestigate this issue on the basis of artificially constructed galaxy catalogs. Two large unconstrained
N-body simulations of cosmic structure formation in two different cosmological scenarios form the
basis of this study. From these N-body simulations a set of galaxy mock catalogs is selected. From
these a variety of datasets is selected imitating the observational conditions of either the local volume-
limited Local Supercluster mimicking NBG catalog or the deeper magnitude-limited PSCz catalog.
The mildly nonlinear dynamics in the “mock” Local Supercluster and PSCz velocities are analyzed
by means of the Least Action Principle technique in its highly optimized implementation of the Fast
Action Method. By comparing the velocities in these reconstructions with the “true” velocities of the
corresponding galaxy mock catalogs we assess the extent and nature of the external tidal influence on
the Local Supercluster volume. We find that the dynamics in the inner 30 h−1Mpc volume is strongly
affected by the external forces. Most of the external forces can be traced back to a depth of no more
than 100 h−1Mpc. This is concluded from the fact that the FAM reconstructions of the 100 h−1Mpc
PSCz volume appear to have included most gravitational influences. In addition, we demonstrate that
for all considered cosmological models the bulk flow and shear components of the tidal velocity field
generated by the external distribution of PSCz galaxies provides sufficient information for representing
the full external tidal force field.
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2.1 Introduction

Migration flows of cosmic matter are one of the major physical manifestations accompanying the
emergence and growth of structure out of the virtually homogeneous primordial Universe. The cosmic
flows displace matter towards the regions where ever more matter accumulates, ultimately condensing
into the objects and structures we observe in the Universe.

Within the gravitational instability scenario of structure formation, the displacements are the re-
sult of the cumulative gravitational force exerted by the inhomogeneous spatial matter distribution of
continuously growing density surpluses and deficits throughout the Universe. This establishes a direct
causal link between gravitational force and the corresponding peculiar velocities. Given a suitably
accurate measurement of peculiar velocities within a well-defined “internal” region of space, Vint, we
may invert these velocities and relate them to the inducing gravitational force. Hence, the source of
the measured motions may be traced and possibly even reconstructed. In principle, it may even allow
us to infer the total amount of mass involved and thus estimate the value of the cosmological density
parameter Ωm and other fundamental cosmological parameters.

The practical execution of such studies of cosmic velocity flows is ridden by various complicating
factors. One major complication is that the cosmic regions in which peculiar velocities have been
determined to sufficient accuracy may have a substantially smaller size than what may be deemed ap-
propriate for a dynamically representative volume. Ideally, in order to account for almost the complete
flow in our local cosmic neighbourhood we should have probed the density field in a sufficiently large
cosmic volume. This should involve a region of space substantially superseding that of the characteris-
tic scale of the largest coherent structures in the Universe. Only then the magnitude of the gravitational
influence of inhomogeneities at larger distances will represent a negligible contribution and, as well,
start to even out against each other.

The size of this dynamically effective volume depends sensitively on the structure formation sce-
nario which is prevailing in our Universe. Hence, it will be closely affiliated to the spatial distribution,
characteristic size and coherence scale of cosmic structures, and its size will therefore be in the order
of the scale of the largest pronounced structures in the Universe. Within the conventional structure for-
mation models, based on Gaussian initial density and velocity fields, this is fully specified through the
scenario’s fluctuations power spectrum P(k). When the power spectrum involves a substantial large-
scale component and the survey volume is rather limited we have to be aware of significant external
influences. Although not yet exactly determined, observational evidence suggests its size to be in the
range of ≈ 100−200 h−1Mpc (where h denotes the Hubble constant in units of 100 km s−1 Mpc−1).

An equally important consideration concerns the spatial resolution at which the velocity field
is studied. Available samples of galaxy peculiar velocities extend out to reasonable depth of ≈
60 h−1Mpc. Yet, they involve a rather coarsely and inaccurately sampled cosmic velocity field. By
absence of precise distance estimators, more accurately and densely sampled velocity information is
therefore mostly confined to a rather limited region in and around the Local Supercluster [LS]. As a
consequence, most analyses of large-scale cosmic flows are necessarily confined to spatial scales at
which the evolving cosmic structures are still residing in a linear phase of development. The dynamics
in more advanced stages of cosmic structure formation are as yet poorly constrained by measurements.

2.1.1 Cosmic Force Fields and Supercluster Dynamics

In this work we wish to extend the analysis of cosmic flows to the more advanced evolutionary stages
pertaining within supercluster regions. Only within the local cosmic neighbourhood of our Local Su-
percluster, the quality, quantity and spatial coverage of the peculiar velocity data are sufficiently good
to warrant an assessment of the cosmic velocity field and the corresponding dynamics at a sufficiently
high spatial resolution. On these quasi-linear or mildly nonlinear scales we hope to find traces of the
onset towards the more advanced stages of cosmic structure formation. In order for this to yield a
meaningful and successful analysis, two major questions have to be addressed. Both form the main
focus of this contribution.
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The first issue, that of the rather restricted sample volume, constitutes the major incentive behind
this work. The volume of the galaxy catalog that best samples our local cosmic neighbourhood, the
Nearby Galaxy Catalog (Tully 1988, hereafter NBG), is certainly substantially smaller than what may
be considered dynamically representative. Any analysis of the (internal) velocity field in our Local
cosmic neighbourhood should therefore take into account the impact of external gravitational influ-
ences.

We focus on two related problems. In the first place, there is the need to quantify the effect of
neglecting the external gravitational influence gext when modeling the cosmic velocity field on scales
comparable to that of the Local Supercluster. Various studies have attempted to determine cosmo-
logical parameters on the basis of a comparison between modeled versus measured velocity field in
the Local Universe (Tonry & Davis 1981; Tully & Shaya 1984; Shaya et al. 1995; Tonry et al. 2000).
For this it is crucial to understand in how far local density perturbations may account for the local
peculiar gravity field within the Local Supercluster. Directly related to this is the need to have a suf-
ficiently accurate description of the external force field gext, in terms of its nature and spatial extent,
in order to properly model the total measured gravity field gtot. For studies intent on a comparison
of modeled versus observed peculiar velocities on scales larger than the Local Supercluster this is an
essential requirement (Faber & Burstein 1988; Han & Mould 1990; Yahil et al. 1991; Webster et al.
1997; Branchini et al. 1999). Similar considerations are equally relevant for the inverse problem, in
which one attempts to infer the external gravitational influence gext from peculiar velocities measured
within the Local Supercluster (e.g. Lilje et al. 1986; Lynden-Bell & Lahav 1988; Kaiser 1991; Hoff-
man et al. 2001). Indeed, both problems concerning the restricted galaxy sample volume have figured
prominently in previous cosmic velocity field studies and were addressed in a variety of publications.
However, usually these tend to discard the fact that the local cosmic region in which we have access to
high quality velocity data has already reached an advanced quasi-linear dynamical state.

Referring to the latter, the second major issue concerns the innovative way in which we evaluate the
dynamical state of superclusters. These structures reside in a mildly nonlinear evolutionary stadium,
having evolved significantly beyond their initial linear phase. Unlike the vast majority of previous
studies, we seek to probe into the more detailed and informative kinematic aspects of these structures.
A conventional linear analysis will not be able to provide an adequate description, and for the most
evolved circumstances not even the Zel’dovich approximation (Zel’dovich 1970) may be expected to
do so. In order to be able to optimally exploit the available velocity information – without suffering the
loss of valuable high-resolution information through a filtering process – we apply the Least Action
Principle [LAP] formalism (Peebles 1989) for dealing with the individual galaxy velocities. To that
end, an optimal implementation developed by (Nusser & Branchini 2000, hereafter NB), the Fast
Action Minimization [FAM] proved an essential tool.

Elaborating on the first issue of the external gravitational influence, one of the as yet undecided
issues is the extent to which a LAP analysis of a cosmological self-gravitating system is dependent on
a proper representation of the external gravitational influence. Various strategies have been followed,
ranging from a complete neglect of external forces (Peebles 1989), or taking account of the influence
of merely a few nearby objects (Peebles 1989, 1990; Dunn & Laflamme 1993; Peebles et al. 2001),
towards methods involving approximate descriptions of external influences. The latter mostly incor-
porated the wider external influence through a frozen, linearly evolving, external tidal field estimated
on the basis of the present-day locations of a extended sample of objects deemed representative for the
external matter distribution (e.g. Shaya et al. 1995; Schmoldt & Saha 1998; Sharpe et al. 2001). This
study does include the influence of force fields, but does so in a fully systematic and self-consistent
fashion, enabled by the FAM method to take into account the evolution of the full sample of external
matter concentrations.

The principal conclusion of our study is that the gravitational forces exacted by the matter inho-
mogeneities encapsulated by the IRAS-PSCz redshift survey sample (Saunders et al. 2000) are indeed
able to account for all motions within our local Universe. In addition, we demonstrate that its external
influence may almost exclusively be ascribed to the bulk and shear flow components.



20 CHAPTER 2: External Tidal Impact on Local Supercluster Dynamics

2.1.2 Strategy

This study is based on a number of artificial galaxy samples mimicking the properties of genuine
catalogs. They consist of several well-defined and well-selected model catalogs of galaxies and galaxy
peculiar velocities. These mock samples are extracted from a set of extensive N−body simulations:
for the nearby Universe models they adhere to the characteristics of the Nearby Galaxy Catalog, for
the deep galaxy redshift samples they are modeled after the IRAS-PSCz catalog. These model samples
allow us to thoroughly investigate the various strategies forwarded for a successful and conclusive
analysis.

Two sets of realistic mock catalogs of galaxies are extracted. The first set, the “local” one, is meant
to mimic the mass distribution within the LS as traced by galaxies in the Nearby Galaxy Catalog of
Tully (1988). It consists of a volume-limited galaxy sample within a (spherical) interior region with
radius 30 h−1Mpc. Each of these interior samples is embedded within a larger mock sample, the “ex-
tended” sample which covers a larger cosmic region. In addition to the interior volume-limited sample
in the inner 30 h−1Mpc they contain an enclosing outer flux-limited sample covering the surround-
ing spherical region located between 30 h−1Mpc < x < 100 h−1Mpc. This exterior sample mimics a
flux-limited galaxy catalog whose characteristics are modeled after the IRAS PSCz sample.

For both the “local” and “extended” mock samples we model the peculiar velocity field at the po-
sitions of the particles in the “local” cosmic region, i.e. for the objects out to a radius x < 30 h−1Mpc.
These model predictions result from the application of Fast Action Minimization method (Nusser &
Branchini 2000). As our FAM reconstruction procedure only takes into account the gravitational forces
between the particles in the mock samples – i.e. does not include contributions from outside objects
– the differences in predicted velocities between the “local” and “extended” samples will reflect the
influence of the mass concentrations in the surrounding region 30 h−1Mpc < x < 100 h−1Mpc. The
comparison with the corresponding N-body velocities, representing the “real” velocities, will inform
us in how far “sky-covering” samples of galaxies with a depth of ≈ 100 h−1Mpc may be expected to
represent a proper cosmic region as far as its dynamics are concerned. The strategy of analyzing and
comparing the velocity models obtained from the small “local” mock catalogs, the large “extended”
mock catalogs, and the “real” velocities in the original N-body simulations, will yield a solid under-
standing of the effect of neglecting the externally induced peculiar gravitational acceleration gext (see
Eqn. 2.1).

When analyzing a dataset of galaxy peculiar velocities in the local Universe. The analysis of
the larger PSCz mimicking catalogs should elucidate if and to what extent such samples will be able
to account for gext. If the galaxies in these samples indeed appear to be responsible for the major
share of the external forces, we may feel reassured to use the PSCz sample of galaxies for a proper
representation of gext.

One aspect of this question concerns the investigation of the question whether the external tidal in-
fluence may be explicitly framed in an analytical approximation consisting of a dipolar and quadrupo-
lar term. Our fully self-consistent FAM reconstructions, in which the “extended” mock catalogs are
processed with the inclusion of all external matter concentrations, enable us to estimate the bulk and
shear components in the induced “local” galaxy motions. By comparing the resulting velocity fields in
the “local” and “extended” samples we will be able to judge the quality of the approximate methods,
and quantify and investigate the possible presence of systematic trends throughout the “local” cosmos.

To account for possible systematic effects due to global cosmology, the mock galaxy catalogs
are extracted from N-body simulations in two different cosmic structure formation scenarios. One
involves a ΛCDM Universe with a characteristic large-scale dominated power spectrum, while the
other concerns a τCDM cosmology. The more small-scale dominated character of the latter leads to
a different character of its gravitational field fluctuations, the smaller coherence scale of the density
field fluctuations yielding a comparatively smaller influence of the external (quadrupolar) tidal field
(the induced bulk flows are similar, as the smaller τCDM fluctuations are exactly compensated by the
larger mass involved). The resulting comparisons of FAM velocity field reconstructions are expected
to reflect these velocity field differences.
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In the end, this study of artificial galaxy samples should allow us to appreciate the manifestations
of the real physical effects we wish to grasp. In this, we also should learn how to deal with the
complications due to the host of measurement uncertainties which beset the observational data. The
scope is to quantify the systematic errors which might have affected similar, local, comparisons based
on real data and to judge whether the information on the external mass distribution available to these
analyses is indeed sufficient to account for gext.

2.1.3 Outline

In the next section, we will elaborate on the astrophysical background of this study, the study of
velocity flows on cosmological scales, and in particular the issue of internal and external gravitational
influences. Ensuingly, we address the specific problem of treating the dynamics and related cosmic
motions within mildy nonlinear structures such as the Local Supercluster. This brings us to a brief
exposition on the LAP analysis for dealing with the complications of mildly nonlinear orbits and
the technical issue of the FAM technique which allows us to apply this to a system composed of
many objects. Special emphasis is put on the inclusion of external gravitational influences within the
LAP/FAM formalism. In section 4 we describe the cosmological setting of the simulations on which
this study has been based. As a guidance towards interpreting our calculations, we address a variety of
theoretical aspects and predictions concerning cosmic velocity fields in these cosmological scenarios.
The basis of this work is the set of two “parent” N-body simulations and the mock catalogs extracted
from these simulations, forty in total. They are presented in section 5. In the subsequent sections
we present the results obtained from the various FAM computations. In section 6 we analyze the
velocity vector maps for the FAM reconstructions. These maps allow a direct and visually illuminating
appreciation of the effects we wish to address. This is followed by a first quantitative assessment in
section 7. This consists of a comparison between the FAM velocity field reconstructions of the Local
Supercluster volume(r < 30 h−1Mpc), the FAM reconstructions for the corresponding PSCz sample
and the complete “real world” N-body velocity field. The comparison is mainly based on a point-by-
point evaluation through scatter diagrams of velocity-related quantities. To encapsulate these results
into a spatially coherent description of the large scale external velocity and gravity field, in section 8
we turn to a decomposition of the peculiar velocity field into multipolar components. In particular,
we demonstrate that a restriction to its dipolar and quadrupolar components, i.e. the bulk flow and
velocity shear, does represent a good description. Thus having looked at the issue of cosmic velocity
fields from different angles, the summary of section 9 will focus on the repercussions of our analysis
and its relation to the study of the (relatively nearby) surrounding matter distribution. On the basis
of these conclusions we provide a description of the various projects which follow up on this work,
together with some suggestions for additional future work.

2.2 Cosmic Flows: Probes of cosmic matter distribution

2.2.1 The Large-Scale Universe: Linear flows

Over the past two decades a major effort has been directed towards compiling large samples of galaxy
peculiar velocities. These samples made it possible to obtain a rather impressive view of cosmic dy-
namics on scales ' 10 h−1Mpc. In particular the Mark III catalog, with an effective depth ≈ 60 h−1Mpc,
stands as a landmark achievement (Willick et al. 1997a; Dekel 1994; Strauss & Willick 1995). Fur-
ther progress has been enabled by the assembly of additional and partially complementary samples
of galaxy peculiar velocities, of which the SFI late-type galaxy and ENEAR early-type galaxy sam-
ples are noteworthy examples. The SFI Catalog of Peculiar Velocities of Galaxies (Giovanelli et al.
1997b,a; Haynes et al. 1999b) consists of around 1300 spiral galaxies with I-band Tully-Fisher (TF)
distances, out to cz < 7500 km s−1. The ENEAR sample (da Costa et al. 2000b) contains around 1600
early-type galaxies, out to a distance cz < 7000 km s−1, with Dn −σ distance estimates available for
nearly all of them.
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Tracing cosmic motions over larger volumes of space is a rather more cumbersome affair and
attempts to do so are mainly based upon the peculiar motions of galaxy clusters. The claim of a puz-
zlingly large flow over scales of 150 h−1Mpc by Lauer & Postman (1994) could not be corroborated.
Nonetheless, flows on such large scales may indeed be a reality, as has been inferred from the far
better defined “Streaming Motions of Abell Clusters” (SMAC) sample of Hudson et al. (2001). They
did recover a bulk flow in the order of 687±203 km s−1, of which 225 km s−1 may arise from sources
at a distance larger than 100 h−1Mpc (Hudson et al. 2004). One prime objective of most analyses of
these large samples of peculiar velocities has been the determination of the cosmological mass den-
sity parameter Ωm The determination of the the cosmological mass density parameter Ωm has been a
prime objective of most analyses of these large samples of galaxy peculiar velocities (Davis et al. 1996;
Willick et al. 1997b; Willick & Strauss 1998; Nusser et al. 2001; Branchini et al. 2001). Such assess-
ments are based on a comparison of observed velocities to a model velocity field. A basic requirement
for obtaining self-consistent estimates of Ωm is that the velocity samples concern a “representative”
volume of space.

However, even while such studies appear to succeed in attuning the large-scale matter distributions
and velocity fields in a reasonably self-consistent fashion, doubts remain with respect to a variety of
practical and systematic problems. Firstly, in these comparisons the random errors on the observed
velocities are substantial, much larger than those in the structure formation models. Considerable
effort has been directed towards quantifying and minimizing errors on the observed peculiar velocities
(Dekel 1994; Strauss & Willick 1995, and references therein). These involve random measurement
errors as well as more subtle systematic, yet reasonably well understood, errors. Secondly, there remain
various systematic effects which have not been addressed and corrected for in an equally convincing
fashion. Even though they also tend to play a role with respect to the model predictions they are often
overlooked.

A major systematic factor concerns the incomplete information on the spatial mass distribution
within the region of the sample itself. This prevents an adequate treatment of artifacts due to the
incomplete sky coverage and limited depth of the available samples, and effects systematic errors
stemming from luminosity and density effects. These systematic errors are usually accounted for by
using large, all-sky redshift surveys, such as the Optical Redshift Survey of Santiago et al. (1995) or
the 1.2 Jy and PSCz surveys of IRAS galaxies (Fisher et al. 1995a; Saunders et al. 2000). In particular
when using IRAS based surveys the effects of incomplete sky coverage are greatly reduced.

Even more problematic for a successful handling of luminosity and density related effects is our
incomplete knowledge with respect to the relationship between the observable galaxy distribution and
the underlying mass distribution. By absence of a compelling theory of galaxy formation this “galaxy
bias” is usually encapsulated in heuristic formulations. The rather ad-hoc and possibly unrealistic
or inadequate nature of the latter may seriously affect the significance of the inferred conclusions.
Most studies make the simplifying assumption of a galaxy population fairly tracing the underlying
density field. This is usually embodied in a global and linear “galaxy bias” factor. A large variety of
results suggest that this may be a reasonable approximation on scales in excess of a few Megaparsec.
Moreover, while this bias may be problematic in the case of early-type galaxies, it has proven to be
quite succesfull with respect to the later type galaxies which figure prominently in IRAS based samples
(Verde et al. 2002).

2.2.2 Internal and External influences

Unlike most studies of cosmic flows which seek to assess and analyze the nature and source of dynam-
ical influences within a confined region of space, we try to get an impression of the cosmic dynamics
on mildly nonlinear scales of only a few Megaparsec. We focus on the Local Supercluster region and
its immediate neighbourhood. The galaxy sample of the NBG catalog is taken to be representative
for this region. Because the catalog entails a volume which is substantially smaller than what may be
considered dynamically representative, the peculiar velocities of the galaxies are partially due to the
gravitational action by outside matter concentrations. That is, the peculiar velocities are not only due to
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the gravitational force induced by the matter concentrations within the “internal” survey volume Vint,
but also reflect the gravitational influence by the “external” matter density distribution, gext. Because
it does not constitute a truely representative volume of the Universe, a meaningful dynamic analysis of
the Local Universe on the basis of the NBG sample is substantially complicated by its limited depth,
which is one of the major systematic problems besetting the analysis of virtually all available surveys
of galaxy peculiar velocities. Theoretical models of peculiar velocities nearly always involve the im-
plicit assumption of the mass being homogeneously distributed outside Vint, so that its gravitational
effect may be neglected. Even in the case of having a sufficiently large volume at one’s disposal, this
approximation is only valid in the central part of Vint, certainly not near its edges.

The distinction between external versus internal gravitational force may be best appreciated by
noting that the total (peculiar) gravity field gtot(x) is the netto sum of the individual contributions by
all patches of matter throughout the visible Universe. At any position within the internal volume Vint,
we may then decompose the full gravitational field into an “internally” induced component gint and an
“externally” generated contribution gext,

gtot(x) = gint(x)+gext(x) . (2.1)

In this way we have defined the internal gravitational force gint as the integrated contribution from the
density fluctuations δ(x) within the volume Vint, while the external gravitational force gext concerns the
combined gravitational force generated by the density fluctuations outside the realm of Vint, so that

gtot(x, t) =
3ΩmH2

8π

∫

Vint

dx′δ(x′, t)
(x′−x)

|x′−x|3

+
3ΩmH2

8π

∫

Vext

dx′δ(x′, t)
(x′−x)

|x′−x|3 (2.2)

The peculiar velocities of galaxies within Vint bear the mark of both the acceleration due to the
matter concentrations within the volume itself, gint, as well as that of the combined gravitational in-
fluence of the external mass distribution, gext. A comparison of predicted internally induced velocities
with the observed local velocity field should therefore enable us to infer the magnitude and nature of
the external field gext. This analysis is usually facilitated by the fact that the fine details of the external
force contribution are largely negligible. The contributions by the various external matter concen-
trations to the combined gravitational force mostly average out such that what remains noticeable is
mainly confined to the low order components of the multipole decomposition of gext. This can be most
readily appreciated from a description of the external gravitational force field in terms of its successive
multipole components. When we expand gext around some central location in Vint – here defined to be
the origin of the coordinates x – we find that to second order

gext,i(x) = gbulk,i−
3∑

j=1

Ti jx j (2.3)

In this, we assume that the additional divergence term 1
3 (∇·gext) xi has been embedded into the (zeroth)

order monopole term. In essence, it corresponds to a “breathing mode” affecting the “local” Hubble
expansion within the volume, and therefore can not possibly be inferred from the local measurement
of the internal gravity field gint.

The leading term in the overall external gravitational acceleration is the bulk gravity term gbulk,i.
This dipole term constitutes the uniform acceleration of the matter within Vint,

gbulk =
3ΩmH2

8π

∫

Vext

dx′ δ(x′, t)
x′

|x′|3 (2.4)

Evidently, when considering peculiar velocities relative to the centre of mass inside the volume Vint

instead of absolute velocities this constant vector disappears. The first term whose magnitude and
configuration is independent of the reference frame is the quadrupolar term Ti j.
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If the contribution to the gravitational potential by the external mass inhomogeneities is φext, the
quadrupolar tidal tensor Ti j is the trace-free part of ∂2φext/∂xi∂x j, evaluated at the centre of Vi. It is
determined by the external matter distribution through,

Ti j(t) =
3ΩmH2

8π

∫

Vext

dx′ δ(x′, t)


3x′i x′j− |x′|2 δi j

|x′|5

 (2.5)

It should be noted that the effects of the quadrupolar component rapidly increase as x4 towards the
edges of sample.

The integral expressions for the dipole and quadrupole components of the external gravity field
(Eqn. 2.4 and 2.5), illustrate that it is unfeasible to exploit the observed local cosmic velocity field
to recover the detailed and complete spatial distribution of the external matter inhomogeneities. On
the other hand, it does indicate how it is that we can infer some overall characteristics of the external
matter distribution from an analysis of the local velocity field. From this we may extract interesting and
significant information on the nature and even distribution of the large scale cosmic matter distribution
and set constraints on the values of some of the fundamental cosmological parameters. The pioneering
work by Lilje, Yahil, & Jones (1986) in which the velocity field of the Local Supercluster was exploited
to infer the presence of a major external source of gravitational attraction has shown the potential of
this approach. Ultimately, it inspired the analysis of Lynden-Bell et al. (1988) that lead to the discovery
of the Great Attractor.

2.3 Cosmic Flows: The mildly nonlinear dynamics of superclus-
ters

Even though a structure’s evolution may have progressed to a dynamical stage at which a first-order
description of cosmic velocity fields will no longer be adequate, it may still be possible to find a
direct link to the structure’s initial configuration. This is in particularly true for the early and mildly
nonlinear phases of evolution. The exemplary archetype of a structure in which such mildly nonlinear
circumstances are prevalent is that of superclusters, the filamentary or wall-shaped elements of the
cosmic foam-like matter distribution.

Over the past two decades intriguing foam-like patterns have gained prominence as a prime char-
acteristic of the cosmic matter distribution. The first indications for the actual existence of a foam-like
galaxy distribution were provided by CfA2 redshift slices (de Lapparent, Geller, & Huchra 1986)
and established as a universal cosmic pattern with the Las Campanas redshift survey (Shectman et al.
1996). With the arrival of the large recent and ongoing systematic galaxy redshift surveys, the 2dF
galaxy redshift survey (≈ 250,000 redshifts, see e.g. Peacock & The 2dFGRS Team 2001) and the
Sloan Digital Sky Survey (SDSS, will determine ≈ 1,000,000 redshifts, see e.g. Zehavi et al. 2002,
for an overview of present-day status wrt. galaxy clustering), we may hope to have entered the stage
in which we will be enabled to explore the formation and the dynamics of these characteristic spatial
structures in the cosmic matter distribution. The typical elements of the cosmic foam – filamentary and
wall-shaped superclusters – are precisely at the youthful yet mildly nonlinear phase of development
mentioned earlier. They were identified as such within the context of Zel’dovich’ “pancake” theory
of cosmic structure formation (see e.g. Shandarin & Zeldovich 1989). The significance of the cos-
mic foam-like network for the understanding of the process of cosmic structure formation has since
been generally recognized. This may be appreciated from the widespread use of the concept of the
‘cosmic web’, coined by Pogosyan, Bond, Kofman, & Wadsley (1996) in their study of the dynamics
underlying its formation (see van de Weygaert 2002, for a recent general review).

Mildly nonlinear cosmic features such as superclusters have recently turned their initial co-
expansion into a genuine physical contraction (or are on the brink of doing so), marking the emerging
structure as a truely identifiable entity. Once it has surpassed this “turn-around” stadium the complex-
ity of its internal kinematics quickly increases. At first moderately, and ultimately dramatically as the
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virialization process advances, the matter orbits inside the structure become more and more complex.
Even in the more moderate early phases of this process, an appropriately sophisticated treatment of
the mildly nonlinear dynamics appears to be a necessary requisite for any study based upon kinematic
information. In and around emerging nonlinear structures a simple linear analysis for reconstructing
initial conditions will therefore no longer suffice. In other words, a sufficiently detailed and profound
understanding of the emergence of these key elements in the cosmic matter distribution cannot be
obtained without the development of a more elaborate technique for the analysis of cosmic velocity
fields.

2.3.1 Structure formation: Mildly nonlinear dynamics

A linear analysis simplifies the dynamical evolution of a system into an initial conditions problem.
It implies the reconstruction of the primordial density and velocity field by means of a simple linear
inversion of the observed matter distribution and galaxy peculiar velocity field. Such an approach may
even be followed towards a slightly more advanced stage. The Zel’dovich formalism, a Lagrangian
first-order approximation for gravitationally evolving systems, has been remarkably successful in de-
scribing the early nonlinear evolution of a supercluster (for a review, see Shandarin & Zeldovich 1989).
Substantially surpassing its formal linear limitations, it proved to be a highly versatile medium for an-
alyzing and explaining the overall spatial morphology and characteristics of emerging structures. The
Zel’dovich approximation elucidated and explained qualitatively the fundamental tendencies of grav-
itational contraction in an evolving cosmos. Perhaps most noteworthy this concerned the tendency
of gravitational collapse to proceed anisotropically, together with its predictive power with respect to
location and timescales of the first phase of collapse into planar mass concentrations, “pancakes”. This
offered the basic explanation for the foamlike morphology of the cosmic matter distribution, stressing
its existence many years in advance of its discovery through observational programs to map the galaxy
distribution (for an extensive review of various nonlinear approximation schemes seeking to expand
upon the Zel’dovich approximation see Coles & Sahni 1996).

In line with the above, the Zel’dovich approximation proved a highly versatile tool for the analysis
of the cosmic matter flows. It was successfully applied to the nonlinear situation of mixed boundary
conditions – tested and calibrated using N-body simulations – by Nusser et al. (1991); Nusser & Dekel
(1992). However, its validity remains restricted to the early stages of nonlinearity at which there is
still a linear and direct relation between velocity and gravity field. Once matter inside the emerging
structures starts to reach densities so high that local interactions become dominant, the Zel’dovich
scheme quickly ceases to lose its applicability. Once matter elements start to cross each each others
path the interaction between the nonlinear matter concentrations within the realm of the contracting
structure will more and more deflect the orbits away from their initial linear trajectory. The linear
kinematics of the Zel’dovich approximation will therefore no longer be able to follow the orbits of the
matter elements. Higher order approximations based on perturbation theory have been advocated in
order to follow such more advanced nonlinear circumstances. However, the improvement over simple
first order Zel’dovich approximation turns out to be quite limited and not warranting the effort invested
at each successive perturbation step. This is particularly so as with the onset of nonlinearity the rate at
which successive perturbative orders terms become significant rapidly accelerates.

2.3.2 Least Action Principle in Cosmology

In more advanced nonlinear circumstances we encounter a more generic dynamical situation than a
simple initial value problem. Typically, one seeks to compute the velocity field consistent with an
observed density structure at the present epoch or, reversely, one deduces the density from the mea-
sured peculiar galaxy velocities. In the case of generic systems, the dynamical evolution represents
a mixed boundary condition problem. This implies the system to be sufficiently constrained by com-
plementing the incomplete dynamical information regarding the initial conditions with that pertaining
to the dynamical state of the system at a different epoch. While N-body codes are particularly con-
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cerned with the ideal circumstances usually embodied in terms of initial value problems, a different
kind of technique needs to be invoked to exploit the typical mixed boundary information yielded by
observations.

A more profound and direct exploitation of the available information to follow the physics of such
a cosmological nonlinear system was forwarded by Peebles (1989, 1990). He pointed out that finding
the orbits that satisfy initial homogeneity – and by implication vanishing initial peculiar velocities –
and match the (present-day) observed distribution of mass tracers constitutes a mixed-boundary value
problem. Such problems lend themselves naturally to an application of Hamilton’s principle. This
naturally leads to the formulation of the Least Action Principle, based on a variational analysis of the
action S of an isolated system of M particles, which at a cosmic expansion factor a(t) is given by

S =
∫ t0

0
Ldt =

∫ t0

0
dt

∑

i

[1
2

mia
2ẋ2

i −miφ(ri)
]
, (2.6)

in which L is the Lagrangian for the orbits of particles with masses mi and comoving coordinates xi

and corresponding peculiar gravitational potential φ(x). For a system of particles interacting by gravity
alone, embedded within a uniform cosmological background of density ρb(t), this yields the following
explicit expression for the action S ,

S =
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The exact equations of motion for the particles are then obtained from finding the stationary tra-
jectories, in particular the minima, amongst the variations of the action S subject to fixed boundary
conditions at both the initial and final time. Confining oneself to a feasible approximate evaluation in
this Least Action Principle approach, one describes the orbits of particles, xi(t), as a linear combina-
tion of suitably chosen universal functions of time with unknown coefficients specific to each particle
presently located at a position xi,0. For instance, by using the linear growth mode D(t) as time variable
(Giavalisco et al. 1993; Nusser & Branchini 2000), one can parametrize the orbit xi(D) of a particle as

xi(D) = xi,0+

N f∑

n=1

qn(D) Ci,n , (2.8)

where the functions qn(D) form a set of N f time-dependent basis functions. The factors Ci,n are then
a set of free parameters, whose value is determined from evaluating the stationary variations of the
action.

The functions qn(D) satisfy both two orbital constraints, necessary and sufficient to define solutions
in agreement with evolution in the context of the Gravitational Instability theory for the formation of
structure in the Universe: qn(1) = 0 ensures that at the present time the galaxies are located at their
observed positions xi(1)= xi,0 and limD→0 D3/2qn(D)θ(D)= 0 (with θ the peculiar velocity with respect
to the time variable D) guarantees vanishing peculiar velocities at early epochs which, in turns, ensures
initial homogeneity.

2.3.3 Fast Action Minimization

The successful application of the Least Action Principle towards probing the kinematics and dynamics
of an evolving cosmological system depends to a large extent on the specific implementation. This will
be dictated by the characteristics of the physical system. In order to enable a meaningful LAP analysis
of large samples of galaxies, like the Local Universe samples studied in this work, an optimized proce-
dure is necessary for dealing with the large number of objects. Nusser & Branchini (2000) developed
an optimized version of Peebles’ original LAP formalism, the Fast Action Minimization method. The
various optimization aspects of the FAM implementation proved to be crucial for our purposes. The
relevant optimization hinges on three major aspects of the FAM scheme.
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The first FAM improvement involves the choice of time basis functions qn(D). Its convenient
choice of time basis functions yields a simple expression for the action of the system and for its
derivatives with respect to Ci,n. Both quantities relate to the internal gravity term gint of the system.
Once the action and its derivatives are evaluated numerically, the minimum of the action is determined
by means of the conjugate gradient method (Press et al. 1992b). The orbits of the system are then fully
specified through the set of parameters Ci,n found in correspondence to the minimum.

Closely related to the first aspect is that of tuning the choice of the time basis functions qn(D)
such that only a limited number N f of basis functions is needed to successfully parameterize the orbits
of the system. This is in particular beneficial to the the physical configuration we are studying here,
involving Megaparsec scale dynamics characterized by quasi-linear or mildly nonlinear motions.

A final major aspect of the FAM implementation involves the efficient computation of the internal
(self-consistent) gravity gint from the particle distribution in the sample. To this end, the gravita-
tional forces acting on the particles at the different epochs are computed by means of the TREECODE
technique (Bouchet & Hernquist 1988). By proceeding in this fashion, the FAM method is able to
reconstruct the orbits of ≈ 104 −105 mass tracing objects back in time. This makes FAM numerically
fast enough to perform a large number of orbit reconstructions, essential for performing the intended
statistical analysis presented in the following sections.

In this work we use N f = 6 basis functions to parameterize the orbits, choosing a tolerance pa-
rameter tol = 10−4 to search for the minimum of the action S and setting a softening parameter of
0.27 h−1Mpc to smooth the gravitational force in the TREECODE. In addition, the cosmological con-
text of our evaluations translates into an orbit search restricted to solutions which do not deviate too
much from the Hubble flow. Therefore, we set the initial guess for Ci,n according to linear theory
prescription and search for the minimum of the action to avoid stationary points which might describe
passing orbits (Peebles 1994) and set Ci,n = 0 for n > 1 and Ci,1 obtained from solving the action at
D = 1. We have checked that this choice of parameters is optimal in the sense that decreasing tol,
increasing N f or changing the input set of Ci,n does not modify the final results appreciably.

Distortions in the resulting FAM-predicted peculiar velocities mainly arise from two systematic
artefacts (Branchini et al. 2002). One is the discrete sampling of the mass distribution within Vint. The
second, and overriding one, is the failure of FAM in reproducing the virial motions within high-density
regions. This deficiency of the FAM reconstructions is clearly illustrated by the residual velocity vector
maps (see Eqn. 2.20) in Fig. 2.7 and Fig. 2.8 (bottom row). These show the velocity vector differences
between the “real” measured, i.e. N-body, velocities and the corresponding FAM reconstructions (here
based on either the galaxy distribution in a 30 h−1Mpc central region or the extended 100 h−1Mpc
region). The maps show how the largest residuals are the ones found in the high density regions:
although the FAM30 and FAM100 velocity fields do show pronounced velocities near these regions
they are not the proper “real” virialized velocities they should have been. The residual fields thus
underline the fact that FAM’s inaptitude to deal with regions characterized by large virial motions.
Instead, in those situations it will lead to a false prediction of coherent inward streaming velocities,
an effect pointed out by Nusser & Branchini (2000) and which can be also noted in our images when
carefully studying them. Because this “virial effect” is local and restricted to ∼ 5% of the points
located in the most nonlinear regions, we partially circumvent this problem by applying a modest
spherical tophat smoothing of 2 h−1Mpc to the FAM-predicted velocities. This tophat filter has been
specifically important for the quantitative aspects of our study, where such systematic problems may
sort distorting conclusions. This smoothing has been invoked in quantitative comparisons between
FAM and N-body velocities presented in this work, in particular in the regression analyses.

Finally, for practical reasons, since we are merely interested in measuring the effect of external
gravity fields we make two simplifying hypotheses. We ignore redshift distortion effects by working
in real space and we neglect the biasing problem by assuming that all particles within the sample fairly
trace the mass of the system.
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Figure 2.1 — 2D projected reconstructed FAM orbits for different values of N f . The black dots represent the
final (present) positions of each object. The solid lines indicate the trajectories followed by the objects as a
function of time. The top-left panel shows FAM reconstructed orbits with N f = 1 (Zel’dovich approximation).
The top-right with N f = 2, the lower-left N f = 3 and the lower-right N f = 6.

2.3.4 Ordered reconstructions

To obtain an idea of the level of improvement obtained through the use of successively higher order
FAM evaluations, Figure 2.1 depicts 2D projections of the corresponding FAM particle orbit recon-
structions within a local spherical volume of ≈ 30 h−1Mpc. The black dots indicate the positions for
each object in the sample, while the lines emanating from each dot represent the computed trajectories
followed by these objects as they moved towards their present location. The illustrated configura-
tion is taken from one of constructed mock catalogs, and resembles that of the Local Universe (see
section 2.5.2.1). Each successive FAM reconstruction is based on the same (present-day) particle dis-
tribution. The four frames correspond to successively higher order FAM approximations, involving an
increasing number N f of basis functions qn(D). The top-left panel shows FAM reconstructed orbits
with N f = 1, which in fact corresponds to the conventional first order Zel’dovich approximation and
thus represent the orbits that would have been obtained by the PIZA method (Croft & Gaztanaga 1997).
These are followed by panels with N f = 2 (top right), N f = 3 (bottom left) and N f = 6 (bottom right).
They show a clear and steady improvement towards the N f = 6 FAM evaluation. Testing proved that
even higher order computations did not yield improvements significant enough to warrant the extra
computational effort.

In summary, the galaxy orbits in our Local Universe environment are found at a minimum of the
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action which is not too far, yet different, from linear theory predictions. The FAM technique thus yields
a significant modification of the recovered galaxy orbits and peculiar velocities for configurations that
evolved well beyond the linear regime (see e.g. Figure 2.1).

2.3.5 LAP and External forces

The original cosmological Least Action Principle formulation by Peebles (1989) considered a fully
self-consistent, i.e. isolated, system of point masses. For practical reasons, the original implementation
had to be restricted to systems of at most a few dozen objects. Almost exclusively, the Local Group of
galaxies formed the focus of these LAP studies (Peebles 1989, 1990, 1994; Dunn & Laflamme 1993).

While these studies did indeed yield a substantial amount of new insight into the dynamical evo-
lution of the Local Group, the issue of incorporating the dynamical influence exerted by external mass
concentrations remained a major unsettled question. External forces do represent a significant compo-
nent of the dynamics of the Local Group, as had been shown by Raychaudhury & Lynden-Bell (1989).
They established beyond doubt that the Local Group cannot be considered a tidally isolated entity,
and demonstrated that the Local Group is acted upon by an appreciable quadrupolar tidal force. The
resulting tidal torque appears to be responsible for the large angular momentum of the Local Group as
a whole, as Dunn & Laflamme (1993) showed in an elegant and pioneering analysis using orbits com-
puted by the LAP variational method. They confirmed that the tidal influence of the external matter
distribution is indeed essential to explain its present angular momentum.

In the course of time various strategies emerged to include external dynamical influences. The
nature of these methods are mainly set by the character of the physical system under consideration,
and to some extent was dependent on the available computational resources. Three strategies are
outlined below.

2.3.5.1 Directly Including External Masses

To incorporate the external tidal influence within the LAP analysis the work by Peebles (1989, 1990,
1994) and Peebles et al. (2001); Dunn & Laflamme (1993) attempted to identify a few principal exter-
nal mass concentrations which would be responsible for the major share of the external gravitational
influence. While in his first LAP study Peebles (1989) considered the Local Group mainly as an
isolated system, sequel studies (Peebles 1990; Peebles et al. 2001) attempted to assess the possible
external influence by neighbouring matter concentrations. In (Peebles 1990) he attempted to condense
the external tidal force into two nearby mass concentrations, the Sculptor and Maffei group, each mod-
eled as a single mass. Both were incorporated as 2 extra particles, with properly scaled masses, within
the action S in order to take them along in a fully self-consistent variational evaluation. A similar
approach was followed by Dunn & Laflamme (1993), be it that they included five galaxies/groups in
the local cosmic neighbourhood which arguably contribute a significant torque on the Local Group.
Also in a later application (Peebles et al. 2001) this approach was followed, be it with an extensive
outer region between 4h−1

75 Mpc and 20h−1
75 Mpc whose mass distribution was condensed into a coarse

sample of some 14 major external objects.
This “self-consistent” strategy is feasible to pursue within the context of the original, computa-

tionally intensive, LAP implementation. This approach may therefore be followed in LG resembling
situations in which a few objects suffice to represent the main aspects of a system’s dynamical evolu-
tion. On the other hand, cosmic systems of a considerably larger scale than the Local Group would
in general be too demanding for. Supercluster sized regions, with scales of up to a few tens of Mega-
parsec, count many more individual objects than a galaxy group. These systems have also not yet
reached a formation stage so advanced that they have already largely decoupled from the global Hub-
ble expansion, so the resulting external gravitational influence is usually the shared responsibility of a
large number of external matter concentrations. Accounting for large-scale tidal field would quickly
become prohibitively expensive in terms of the computational effort for conventional LAP analyses.
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2.3.5.2 Inserting External Tidal Potential

An alternative strategy is to incorporate the external gravity in the LAP scheme via an approximate ex-
pression for the external contribution. This may be most directly achieved by inserting an extra external
tidal potential term Φtidal(t) in the action S (Eqn. 2.6). As on sufficiently large, Megaparsec, scales we
may expect this term to evolve according to linear gravitational instability perturbation growth,

Φtidal(t) = Dφ(t) Φtidal(t0) =
D(t)
a(t)
Φtidal(t0) (2.9)

in which Φtidal(t0) is the tidal term at the present cosmic epoch and Dφ = (D/a) the linear growth term
for the gravitational potential (the growth factor Dφ and cosmic expansion factor a(t) are set to be equal
to unity at the present epoch, D(t0) = a(t0) = 1.). Thus, instead of evolving it self-consistently along
with the considered system, the external field is determined at one epoch – usually the present one –
and then incorporated as an extra linearly growing gravity field term Φtidal(t) in the action S :

S =
∫ t0

0
dt

[∑

i

mia2

2

(
dxi

dt

)2

+
G
a

∑

i, j

mim j

|xi−x j|
+

2
3
πGρba2

∑

i

mix2
i −Φtidal(t)

]
. (2.10)

There are various possibilities to compute the tidal potential term Φtidal, usually from the current
mass distribution. One option is to compute it directly from a sample of Mext external objects which is
deemed responsible and representative for the major share of the external tidal force field,

Φtidal(t0) =
∑

i

mi


G
a

Mext∑

j=1

m j

|xi−x j|


. (2.11)

Note that none of these external objects ( j = 1, · · · ,Mext) is taken into account as far as the action
of the system and the computation of their orbits is concerned, except for their “passive” role in deter-
mining Φtidal. An alternative approach is to insert an approximate analytical expression for Φtidal, in
particular one including the dipolar and quadrupolar contributions, d and T, to the tidal potential,

Φtidal(t0) =
∑

i

[
d ·xi +

1
2

xi ·T ·xi

]
. (2.12)

Equivalently, one may chose to insert the corresponding expressions directly into the expression
for the derivative of the action with respect to an expansion coefficient, ∂S/∂Cα

i,n = 0, evidently equal
to zero within this variational approach.

The first, “direct”, procedure (Eqn. 2.11) was followed by Shaya, Peebles, & Tully (1995), who
for the purpose of studying the velocity field within the surrounding 30 h−1Mpc modeled the relevant
external mass distribution after the distribution of rich Abell clusters from Lauer & Postman (1994).
To some extent, Sharpe et al. (2001) operated along the same lines, be it that they added the resulting
tidal term directly to the reconstructed velocities produced by the LAP procedure. However, while in
principle exact, such a concentrated and static mass distribution may involve considerable uncertainties
and can be highly sensitive to the uncertainties in the location of a few dominant point masses. As this
spatial point distribution is supposed to form a suitable model for the underlying large scale matter
distribution this may be even more worrisome.

Potentially more elegant may therefore be the modelling of a smooth tidal field along the line of the
second procedure (Eqn. 2.12), as suggested by Schmoldt & Saha (1998). The corresponding dipolar
and quadrupolar term may then be based on the best available determinations of these parameters. On
the other hand, when the LAP volume is comparatively large, the analytical approximation may rep-
resent an oversimplification of the force field, neglecting potentially important local variations within
the external force field.
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Cosmology Ωm Λ0 Γ σ8 box length Nob j

ΛCDM 0.3 0.7 0.25 1.13 345.6 1923

τCDM 1.0 0.0 0.25 0.55 345.6 1923

Table 2.1 — N-body simulation parameters. Column 1: cosmological model. Column 2: Ωm mass density
parameter. Column 3: Λ, cosmological constant parameter. Column 4: Γ, power spectrum shape parameter.
Column 5: σ8, density perturbation amplitude spectral normalization. Column 6: size of the computational box
in h−1Mpc. Column 7: number of particles in the simulations.

2.3.5.3 Self-consistent and Direct FAM approach

The indirect “potential” approach which we described above (Eqn. 2.11 or Eqn. 2.12) may not properly
account for the temporal evolution of the external field in the case of nonlinearly evolving systems.
The formalism assumes a static, merely linearly evolving, gravitational potential. However, the matter
concentrations which generate the external tidal forces will themselves get displaced as the cosmos
evolves. These displacements may be relatively minor for distant masses, but for the more nearby
entities this may be entirely different. A detailed treatment of the external mass distribution will
be necessary when the influence of the nearby external objects on the evolution of small “interior”
regions is comparable to or even dominant over the self gravity of the region. It will be equally crucial
to follow the detailed whereabouts of nearby matter concentrations in the case of a large “interior”
region in which a marked contrast between the central regions and the outer realms may result in a
significantly different dynamic evolution.

This prompted us to follow an alternative and direct approach, a fully self-consistent strategy in
which also the external matter concentrations are accounted for in the computation of the system of
evolving particle orbits. Alongside that in the “local” region for which we seek to reconstruct the
velocity field, also the system of objects in the exterior regions (30 h−1Mpc < x < 100 h−1Mpc) are
considered. Non-uniform manifestations of the external influence can only be included by pursuing
such a direct and systematic approach. It is only through the availability of the FAM technology that
we were enabled to do so for a Megaparsec system consisting of a large number of objects.

2.4 Cosmological scenarios

The mock catalogs on which we apply our Fast Action Minimization analysis are extracted from N-
body simulations in two different cosmological settings. Their characteristics, in terms of their relevant
parameters, are listed in Table 2.1. The table also lists the simulation specifications. The first scenario
is a flat ΛCDM model with a cosmological constant term ΩΛ,0 = 0.7 (Ωm = 0.3,Ωm + ΩΛ,0 =

1.0, h=0.83, n=1). The second model is a τCDM Einstein-de Sitter (Ωm = 1.0, ΩΛ,0 = 0, h = 0.5, n = 1)
model, motivated by the decaying particle model proposed by Bond et al. (1991). Both scenarios
were chosen to be viable with respect to the current observational constraints, implying similarities in
many overall properties and appearances, yet with some significant differences with respect to their
dynamical repercussions. This may provide indications on whether the galaxy motions in our local
cosmic neighbourhood do contain information on the structure formation scenario.

In both cases the amplitude of density fluctuations is normalized on the basis of the observed
abundance of rich galaxy clusters in the local universe. This abundance depends on the magnitude of
the matter field fluctuations on the mass scale characteristic for galaxy clusters. This translates into a
dependence on the amplitude of density fluctuations on cluster scales modulated by the mean global
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Figure 2.2 — Spectral characteristics for the two studied cosmological scenarios. Upper left: Power spectrum
for the ΛCDM and τCDM cosmological scenario used in this study. Lower left: velocity power k3Pv(k), the
amount of velocity power per logarithmic waveband interval. Upper centre: expected bulk flow velocities (kms)
over a spherical (tophat) volume of radius RT H . The solid line is the real theoretical prediction, the dashed one
concerns the restricted power spectrum represented in the simulation box. Centre low: the convergence of the bulk
flow, defined according to Eqn. 2.16. Upper left: Expected shear flow ( km s−1 Mpc−1) over a spherical (tophat)
volume of radius RT H . Similar to bulk flow, the solid line concerns the full theoretical power spectrum while the
dashed corresponds to the restricted power spectrum represented in the simulation box. Lower right: convergence
of the shear flow, defined according to Eqn. 2.16. Note that for the righthand frames the corresponding ordinate
axis are the ones on the righthand side of the plotbox, while for the central frames it is the one on its lefthand side.

matter density. A variety of studies (e.g. White et al. 1993; Eke et al. 1996) found that in order to yield
the present-day cluster abundance the amplitude of density fluctuations in spheres of radius 8 h−1Mpc,
σ8, and Ωm are related by

σ8 = 0.55Ω−0.6
m , (2.13)

The resulting power spectra are depicted in Figure 2.2 (top left). On all scales, the density fluctuations
in the τCDM scenario, represented by the dotted lines (for both P(k) and k3P(k)), are less pronounced
than those of the ΛCDM scenario: the two power spectra have a similar shape and differ by a simple
scaling factor over the entire wavelength range. Visually, this is immediately reflected in the stark
differences between the spatial galaxy distribution in the resulting mock catalogs. Figure 2.3 provides
such a visual comparison. It shows the “external” PSCz catalog mimicking galaxy distribution in
three mutually perpendicular central slices in the case of the ΛCDM scenario (top row), together with
the same set of frames for a τCDM mock galaxy catalog (bottom row). On all scales, the τCDM
galaxy distribution looks considerably more uniform than that in the ΛCDM Universe. Not only is the
clustering of galaxies in the ΛCDM scenario more pronounced, it also delineates considerably larger
structures, a manifestation of the power spectrum’s amplitude at the corresponding large wavelengths.

Because the higher average matter density in the Ωm = 1 τCDM Universe does almost fully com-
pensate for the lower amplitude of the density fluctuations the resulting gravity and velocity perturba-
tion fields in the ΛCDM and τCDM scenarios are very similar. The velocity power spectra k3Pv(k)
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Figure 2.3 — Central slices through a mock galaxy catalog realization. Depicted is the galaxy distribution in the
external (r > 30 h−1Mpc) volume. For each catalog, we show the x− y (left), x− z (centre) and y− z (right) plane.
Top row: ΛCDM mock catalog; Bottom row: τCDM catalog.

are shown in the bottom lefthand panel of Figure 2.2: their functional dependence is the same over
the entire wavelength range. The larger mass corresponding to a given density excess in the τCDM
Universe evidently effects a stronger gravitational force. The resulting large scale motions scale as
f (Ωm) ∝ Ω0.6

m . This happens to be almost exactly the inverse of the average density perturbation am-
plitude scaling (Eqn. 2.13), which is proportional to Ω−0.6

m (Eqn. 2.13). While this is exactly the factor
involved in the normalization of the power spectrum, in terms of σ8, the lower level of density fluc-
tuations gets precisely compensated by the higher amount of mass involved with them. This can be
directly observed from the velocity power spectra Pv(k) for the two scenarios (Fig. 2.2, lower lefthand
frame). The velocity power spectra for both scenarios are exactly equal over the entire wavelength
range, both in functional dependence as well as in amplitude. Note that also the gravity perturbations
in the ΛCDM scenario are substantially stronger than those in the τCDM cosmology: because they
scale with 3

2ΩmH2
0 and the amplitude of the density perturbations, which according to Eqn. 2.13 is

∝Ω0.6
m , the average peculiar gravitational acceleration is proportional to Ω0.4

m H2
0 .

The comparison between k3P(k) (Fig. 2.2, top panel) and k3Pv(k) (Fig. 2.2, bottom panel) in the
same figure shows the shift of the velocity perturbations, with respect to the density perturbations,
towards a more large-scale dominated behavior. This follows directly from the continuity equation,
connecting the velocity and density perturbations such that the velocity power spectrum relates to P(k)
through Pv(k) ∝ P(k)k−2.
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The large-scale behavior of the (linear) velocity perturbation field immediately illuminates the
difficulty in tracing the full array of matter inhomogeneities responsible for the cosmic motions within
a specific cosmic region. To account for all noticeable contributions it is necessary to probe out to
large depth. This is manifestly evident for the first order component in the externally induced flow, the
“bulk flow” vbulk. A measure for the expected bulk flow within a (tophat) spherical region of size RT H ,

vbulk(x) ≡
∫

V
dx′ v(x′)WT H(x−x′,RT H) , (2.14)

is represented by the (root square) average value σv, whose value may be inferred from the Fourier
integral

σv(RTH) = H0 f (Ωm) σ−1 (2.15)

≡ H0 f (Ωm)

√∫
dk

(2π)3
P(k)Ŵ2

T H(k)k−2 .

In these relations, WT H(x,RT H) and ŴT H(k) are the expressions for the tophat window filter, spatially
and in Fourier space (see Bardeen et al. 1986, henceforth BBKS).

How substantial the large scale origin of the bulk flow is may be readily appreciated from Figure 2.2
(top centre). Because the linear character of fluctuations on large scales, the spectral σv (Eqn. 2.15)
does provide a reasonable order-of-magnitude estimate of the magnitude of the large-scale bulk mo-
tions. The figure shows the estimated bulk flow amplitudes, ≈σv, as a function of the (tophat) window
radius: the bulk flow is clearly a large scale phenomenon, converging only very slowly towards large
spatial scales. In both the ΛCDM scenario and the τCDM scenario the externally induced bulk flow
on a scale of 30 h−1Mpc will be in the order of 200 km s−1. Of this overall bulk flow, more than
100 km s−1 has to be ascribed to inhomogeneities on scales exceeding 200 h−1Mpc ! When assessing
the motions in a local volume of 30 h−1Mpc radius, in terms of relative external contributions, inho-
mogeneities on a scale larger than 100 h−1Mpc still contribute more than 25% of the total while the
ones larger than 200 h−1Mpc are still responsible for more than 10% (see Fig. 2.2, centre bottom). We
should therefore expect to find substantial external contributions in theΛCDM and τCDM simulations.
Note that this relative contribution to the bulk flow, the “bulk convergence”, is defined as the relative
contribution by matter perturbations within a radius RT H to the externally induced bulk flow on a scale
of 30 h−1Mpc (the size of the NBG volume):

Fbulk ≡ 1 − σv(RT H)

σv(30 h−1Mpc)
. (2.16)

The second order aspect of the velocity field which we seek to study is the induced velocity shear
si j,

σi j =
1
2

{
∂vi

∂x j
+
∂v j

∂xi

}
− 1

3
(∇ ·v) δi j . (2.17)

Also the velocity shear reveals interesting and distinguishing differences between the ΛCDM and the
τCDM scenario. In the linear regime the expected magnitude of the shear tensor si j, on a tophat scale
RT H , may be evaluated through its direct proportionality to the tidal shear Ti j. Quantifying si j by
means of its (root square ) average σs (van de Weygaert & Bertschinger 1996), we find

σs = H0 f (Ωm)σ0(RT H)

√
1−γ2

15
(2.18)

in which the (dimensionless) spectral parameter γ ≡ σ2
1/σ0σ2 is defined through the 0th, 1st and 2nd

spectral moments σ j (see BBKS). The predictions for the two cosmological scenarios are shown in
topright frame of Fig. 2.2. With respect to the bulk flow there is a marked difference in coherence
scale: the major contributors to the tidal shear are located at considerably closer distances than the
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sources of the bulk flow (fig. 2.2, cf. lower right with lower centre). Most of the shear inducing matter
inhomogeneities are found within a radius of 100 h−1Mpc, accounting for more than 95% of its value
(fig. 2.2, lower right). On a scale of 30 h−1Mpc we expect an external tidal shear of ≈ 7 km s−1 Mpc−1

for both the ΛCDM scenario and the τCDM model.

2.5 Mock catalog Construction and Analysis

2.5.1 N-body simulations

The two N-body simulations used in this work were carried out by Cole et al. (1998) within the con-
text of an extensive study of PSCz catalogue resembling galaxy mock samples in a large variety of
cosmological structure formation scenarios. They consist of 1923 particles in a computational box of
345.6 h−1Mpc. They are dynamically evolved using an AP3M code in which the force is smoothed
with a softening parameter of 0.27 h−1Mpc.

The purpose of this study is a demanding task for truely representative N-body simulations. The N-
body simulations should provide an optimal compromise between a high mass resolution on the small
scale side and, on the large-scale side, a cosmic volume large enough to be dynamically representative.
The large dynamic range requirement involves a mass resolution refined enough to resolve mass en-
tities comparable to galaxies. This translates into an average inter-particle separation that needs to be
smaller or comparable to that of galaxies in real observational catalogues. On the other hand, the sim-
ulations have to extend over a cosmic volume which is large enough to incorporate the major share of
the gravitational influence exerted by the inhomogeneous cosmic matter distribution. Given the slow
convergence of the bulk flow and its large coherence scale this is particularly challenging, and will be
in the order of several hundreds of Megaparsec (see discussion in the previous section and Fig. 2.2).
Although hardly any current N-body simulations would fully fulfil the dynamic range requirements,
the used N-body simulations do appear sufficiently adequate for a meaningful investigation of the rel-
evant systematic trends and effects. This remains true in a qualitative sense, even though on the basis
theoretical arguments (see e.g. Fig. 2.2) and observational indications (e.g. Hudson et al. 2004) we
know there may be substantial bulk flow contributions stemming from even larger spatial scales.

In this respect it is important to note is that the mock catalog realizations in this work are con-
strained by the finite size of the simulation box. The practical repercussions of being confined to
a limited simulation volume may be inferred from the dashed curves in Fig. 2.2. They show the
corrections to the expected bulk flow and velocity shear predictions (solid curves) when only the inho-
mogeneities in the restricted volume of the 345.6 h−1Mpc simulation box are incorporated. Because
perturbations on scales exceeding the fundamental scale of the box are absent, the realized power
spectrum has a rather sharp and artificial large-scale cutoff: the limited boxsize Lbox implies a cutoff
in the power spectrum at low wavenumber kbox = 2π/Lbox. From Fig. 2.2 we can conclude that this
correction is particularly apt for the bulk flow, predictions for the velocity shear seem hardly affected.
As a consequence, on scales over ≈ 100 h−1Mpc the bulk flows in the realized N-body simulations
will be severely repressed and far from representative. Although large-scale mode adding procedures
have been proposed to partially remedy this situation (Tormen & Bertschinger 1996; Cole et al. 1997),
our τCDM and ΛCDM simulations did not include such MAP (mode adding procedure) extensions.
Conclusions with respect to the convergence of the FAM reconstructed velocity flows should therefore
be referred to with respect to the suppressed velocity power spectrum indigenous to our N-body sim-
ulations (notice that this dynamic range issue is truely cumbersome to nearly any study attempting to
assess velocity flows in computer simulations).

2.5.2 Mock Catalog Construction

From the full N-body simulations we extract mock catalogs made to resemble the local Universe.
The ΛCDM and τCDM N-body simulations are processed through specified observational masks to
imprint the required characteristics on the resulting mock catalogs. We distinguish two types of mock
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Cosmology Set Number of 〈Nob j〉 Maximum
catalogs radius

ΛCDM NBG 10 2740 30
PSCz 10 10900 100

τCDM NBG 10 2803 30
PSCz 10 11207 100

Table 2.2 — Characteristics of the mock catalogs. Column 1: label of the catalog. Column 2: cosmological
model. Column 3: for each mock catalog type: number of generated catalogs. Column 4: average number of
particles 〈Nob j〉 in each catalog. Column 5: external radius of the catalog in units of h−1Mpc.

catalogs. From each N-body simulation we extract ten different “local” mock catalogs mimicking the
NBG catalogue and, with these “local” samples representing their interior, ten different “extended”
samples resembling the PSCz catalogue.

The “local” class of mock samples is meant to sample the mass distribution within a 30 h−1Mpc
region in and immediately around the Local Supercluster. These catalogs constitute volume-limited
galaxy samples mimicking the Nearby Galaxy Catalog of Tully (1988). Mock catalogs of the sec-
ond type are designed to account for the mass distribution out to distances of 100 h−1Mpc. These
“extended” samples represent flux-limited samples, for which we take the IRAS PSCz galaxy catalog
(Saunders et al. 2000) as template. The PSCz sample is not only ideal for our purposes in that it covers
one of the largest volumes of the Universe amongst the available galaxy redshift surveys, but also in
that it concerns a survey covering a large fraction of the sky and involves a well-defined uniformity of
selection. Assuming that on large linear scales IRAS galaxies define an unbiased tracer of the under-
lying dark matter, Hamilton et al. (2000) found that its real-space power spectrum is consistent with
that of a COBE-normalized, untilted, flat ΛCDM model with Ωm = 0.3 and ΩΛ = 0.7. In Table 2.2 we
have listed the main characteristics of all mock catalogs used in this work.

In constructing the mock galaxy samples the simulation particles were selected randomly, exclu-
sively according to the catalog selection criteria. We did not attempt to include bias descriptions to
model possibly relevant differences in the spatial distribution of dark matter and galaxies. This is dif-
ferent from the original use of the simulations (Cole et al. 1997), in which various bias descriptions
were invoked to construct artificial galaxy samples whose two-point correlation function and large-
scale power spectrum largely matched that of the APM survey (Maddox et al. 1996). The analysis
of the small-scale nonlinear power spectrum of the PSCz by Hamilton & Tegmark (2002) even im-
plies the bias on small scales to be very complex, involving a scale-dependent galaxy-to-mass bias.
We, however, prefer not to include an extra level of modelling prescriptions. Our interest concerns the
kinematics and dynamics of the matter distribution in the Local Universe, and the velocities of galaxies
are thought to reflect these almost perfectly: they are mere probes moving along with the underlying
dark matter flows, irrespective of their particular bias relation with respect to the dark matter distri-
bution. The sole strict assumption is therefore that of having no velocity bias (Carlberg et al. 1990),
which on the large-scale Megaparsec scales at hand should be a more than reasonable approximation.

2.5.2.1 Mock NBG catalogs

The mock NBG catalogs are obtained by extracting spherical volumes of 30 h−1Mpc from the N-
body simulation particle distribution. The positions of the spheres in the parent simulations are not
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Figure 2.4 — Object counts as a function of distance in the PSCz mock catalogs. Upper panel: the two his-
tograms show the average counts in the mock samples for the τCDM and ΛCDM cosmological models. The
continuous line represents the expected counts. Lower panel: the histograms show the fractional difference be-
tween the observed and expected counts averaged over all PSCz mock samples in the two cosmological models
explored.

random but chosen to mimic as close as possible the characteristics of a Local Group look-alike region.
Therefore, each mock catalog is centered on a particle moving at a speed of 625±25 km s−1, residing
in a region in which the shear within 5 h−1Mpc is smaller than 200 km s−1, where the fractional
overdensity measured within the same region ranges between -0.2 and 1.0.

The velocity vector of the central particles defines a Galactic coordinate system and a Zone of
Avoidance. Particles within the Zone of Avoidance are removed and substituted with a population of
synthetic objects distributed using a random-cloning technique (Branchini et al. 1999). The Zone of
Avoidance [ZA] in the mock samples is designed to mimic that of the PSCz catalog (Saunders et al.
2000) and is smaller than the one of the real NBG catalog (Tully 1988).

Each spherical region contains on average 2 × 104 particles. This set of particles is randomly
resampled in order to produce a catalog of around 2800 objects, a number that matches that of the
galaxies in the real NBG catalog (Table 2.2). These NBG mimicking mock catalogs define volume-
limited galaxy samples, so that the number of objects within a distance x therefore increases as x3.
This is indeed what the resulting realizations yield, as may be discerned from the central part of the
corresponding histogram in Figure 2.4 (x ≤ 30 h−1Mpc).

2.5.2.2 Mock PSCz catalogs

The second set of mock catalogs was obtained by carving out spherical regions of radius 100 h−1Mpc
from the N-body simulations. Each of these new mock samples is centered on the same central position
as that of corresponding NBG mock catalogs, with which they share the objects within the central
30 h−1Mpc.

While the central 30 h−1Mpc region coincides with the NBG mock sample, the particle distribution
in the external region (30 h−1Mpc < x < 100 h−1Mpc) is supposed to mimic that of galaxies in the flux-
limited IRAS PSCz catalog. To achieve this the objects beyond 30 h−1Mpc were selected from the
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Figure 2.5 — Compilation of cubic subregions and various mock subsamples of the object distribution in one
of the ΛCDM PSCz mock catalogs. The full mock catalog of objects, the PSCz look-alike volume and the NBG
look-alike volume out to a radius of 100 h−1Mpc, is shown in the large lefthand cubic box (with size 200 h−1Mpc).
The boxes along the top row and those along the bottom row represent mutually exclusive object samples. The
lower ones represents the inner cosmic region (x < 30 h−1Mpc)), the top row represent a corresponding part of the
exterior PSCz region (30 h−1Mpc < x < 100 h−1Mpc). Emanating from the complete cubic volume and running
along the top row are two successive boxes which zoom in on the external PSCz mock catalog objects, with cubic
sizes of 160 h−1Mpc (middle right cube) and 80 h−1Mpc (lower right cube) respectively. The lower row of two
cubic volumes the central (inner) NBG mimicking object sample. The full inner sample, comprising a sphere of
radius 30 h−1Mpc is shown in the lower central cubic volume, whose size of 80 h−1Mpc is equal to the central
PSCz box, while the righthand cube focusses in on the 40 h−1Mpc size central region.

N-body particle samples according to the PSCz selection function used by Branchini et al. (1999):

ψ(x) = Ax−2α
(
1+

x2

x2
∗

)−β
if x > xs . (2.19)

In this expression x is the distance of the galaxy in h−1Mpc, while the parameters have the values
α = 0.53, β = 1.8, xs = 10.9 h−1Mpc, and x∗ = 84 h−1Mpc (Branchini et al. 1999). The selection
function ψ(x) defines the relative number density of the galaxy sample with respect to the number
density of the N-body particle simulation. While the number density of PSCz galaxies is equal to that
of the particles in the simulation at 10.9 h−1Mpc, the amplitude A of ψ(x) is normalized such that
ψ(10.9) = 1.

Two additional steps concern the treatment of “Zone of Avoidance” objects and the evening of the
matter density throughout the full external sample volume. A first step is the processing of sampled
objects in the Zone of Avoidance such that the resulting sample conforms to a reality resembling
situation. The ZA “removal+substitution” is implemented in the same way as in the case of the NBG
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Figure 2.6 — 2D projection of the particle distribution in one of the ΛCDM PSCz mock catalogs (left panel).
The inner circle divides the NBG look-alike volume-limited region from the PSCz flux-limited one. The right
panel shows the 2D projected velocities in a slice of 10 h−1Mpc cut through the inner part of the catalog.

mock catalog construction, with the replacement achieved with the same random-cloning technique.
Finally, in order to guarantee a uniform average mass density throughout the volume, the mass of the
objects in the flux-limited external object sample (30 h−1Mpc < x < 100 h−1Mpc) has been scaled by
the inverse of the selection function ψ(x).

2.5.2.3 Mock catalog realizations

From both Figure 2.5 and Figure 2.6 one can obtain an impression of the spatial context of the local
NBG mock sample within the wider environment of the surrounding 100 h−1Mpc PSCz sample. To
visually appreciate the selection criteria of the catalogs, and their interrelationship, Figure 2.5 shows a
three-dimensional view of one set of theΛCDM mock catalogs, extracted from the particle distribution
in the N-body simulation of structure formation in a ΛCDM scenario. Emanating from the full PSCz +
NBG mimicking galaxy samples in the top righthand cube is a row of two cubes showing the content
of the external PSCz mock catalog (righthand) and the content of the central NBG mock catalog (left-
hand). Figure 2.6 elaborates on this, and shows the projected particle distribution in the same PSCz
+ NBG mock catalog (left panel) while focussing in on the central region (right panel). The circle
(left panel) indicates the boundary of the volume-limited region comprised by the mock NBG galaxy
sample, which in the right panel has been enlarged to show the corresponding velocity field within
this NBG region. Velocities of objects within a 10 h−1Mpc thick slice are shown by means of arrows
whose size is proportional to the amplitude of the galaxy velocity components within this slice.

As a matter of test, we checked the distance distribution of the resulting mock galaxy samples.
The histograms of the resulting mock catalog distributions are shown in Figure 2.4. The upper part
of Figure 2.4 shows the number of galaxies – averaged over all PSCz mock catalogs for both two
cosmological models – as a function of distance x over the full range x ≤ 100 h−1Mpc. Clearly visible
is the discontinuity at 30 h−1Mpc, marking the transition from volume-limited NBG-like region to the
PSCz-like flux-limited outer region. For comparison, the solid line shows the theoretically expected
counts (Eqn. 2.19). The generated mock samples appear to match the expected distance distribution
rather well. This is further underlined by the fractional difference between observed and expected
counts, Nobs/Nexp −1, shown in the lower part of Figure 2.4. The fractional difference between mock
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samples displays a perfect featureless scatter pattern: Poisson noise free of systematic effects.

2.5.3 Mock Catalog Analysis

2.5.3.1 FAM velocity field reconstructions

On the basis of the FAM reconstructions of the galaxy velocities and the comparison with the true
velocities – i.e. those in the original N-body simulation – we assess to what extent the matter distribu-
tion within the confines of each different mock galaxy sample does contribute to the total velocity of
the galaxies. In these idealized circumstances of the N-body world the galaxy positions and velocities
are known to perfect accuracy, thus circumventing the need to investigate the effects of measurement
errors and deceptive systematic biases in the galaxy peculiar velocities. This should provide us with a
better understanding of the nature and magnitude of genuine physical influences.

Three different velocities are accorded to each galaxy located within the “local” spherically shaped
30 h−1Mpc NBG region. The first velocity is that of the “true”, N-body, velocity. For each of the
in total 20 NBG mimicking galaxy mock catalogs, the FAM reconstructions produce two additional
velocity estimates. One FAM velocity results from the application of the FAM analysis to the restricted
inner 30 h−1Mpc NBG-like region itself. The second FAM based velocity is obtained on the basis of
the FAM analysis on the extended, “full”, 100 h−1Mpc PSCz survey resembling sample (in which the
“local” NBG sample occupies the interior central region). In the following, we will indicate these
FAM velocities by the names of FAM30 and FAM100 velocities.

2.5.3.2 FAM30 versus FAM100 reconstructions

The mutual comparison between each of the three different galaxy velocities – the FAM30, the FAM100

and the full N-body velocities – is expected to yield abundant information on the dynamics and devel-
opment of the structure in the interior 30 h−1Mpc region.

The FAM30 velocities are the galaxy velocities which would have been the product of the combined
gravitational interaction of – solely – the matter concentrations within the central 30 h−1Mpc volume.
Any deficiency with respect to the “real” N-body velocity of each galaxy has to be ascribed to the
gravitational impact of matter inhomogeneities outside the local NBG region.

By tracing the mass distribution further out to a distance of 100 h−1Mpc, invoking the matter
distribution in the complete PSCz mimicking mock samples, we will then evaluate the extent to which
matter inhomogeneities within a 100 h−1Mpc scale are able to account for the motions within the local
30 h−1Mpc region. From this we can infer in how far the external influence over the local region can
be ascribed to matter fluctuations situated between a radius of 30 h−1Mpc and 100 h−1Mpc.

In this study we also have to take into account the fact that a single 30 h−1Mpc region cannot be
considered representative for the whole Universe, and generic conclusions on the basis of the kinemat-
ics within a single 30 h−1Mpc volume cannot be drawn. This is also true for the the NBG mock sam-
ples in this work, even though they were selected according to some strict criteria (see Section 2.5.2).
Analysis and conclusions will therefore be based on a straightforward average over the 10 different
30 h−1Mpc mock samples which were constructed for each cosmological scenario. The dispersion in
the extracted parameter values will provide a reasonable estimate for their significance.

2.5.3.3 Analysis of Reconstructions

The basic product of the FAM reconstructions are velocity maps, in essence a velocity vector at the
location of each galaxy in the sample. Our analysis consists of three different but complementary
tracks. The first and most straightforward one is the visual inspection of the resulting velocity vector
maps. It provides a direct impression of the extent to which a FAM reconstructed field reproduces
the true velocities. Also, it will provide a direct impression of a spatial coherence in the differences
between true and reconstructed field, which is an incisive way to uncover systematic contributions like
e.g. a bulk flow component.
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The second examination is a strictly local analysis, a pure point-to-point comparison between the
velocities predicted by the FAM reconstructions on the one hand and the “true” N-body velocity of the
same object on the other hand. To some extent, the analysis by means of scatter plots is the most direct
and objective quantitative comparison between two fields. Various velocity related quantities will be
assessed in this fashion. Note that these localized comparisons cannot address the presence of spatial
coherence in the cosmic flows (even though they may uncover systematic effects caused by external
influences).

Finally, the third track is targeted towards a factual description of the spatial coherence within the
velocity fields or, rather, in the residual fields between the “true” velocities and the reconstructed veloc-
ities. Systematic trends in these residual fields are interpreted as manifestations of external forces. Of
these we shall determine the first-order – bulk flow – and second order – velocity shear – components.

2.6 FAM velocity vector maps

For reasons of consistency and to achieve optimal transparency the illustrated velocity vector maps in
the following discussion all concern the same mock sample of NBG calculations. For the illustration of
the FAM30 (Fig. 2.7) and the FAM100 (Fig. 2.8) reconstructions we use one of the ΛCDM 30 h−1Mpc
NBG mock catalogs. It is the same galaxy sample that was shown in 3-D in Fig. 2.5 and in projection
along the “x-y” plane in Fig. 2.6.

The vector maps in Figure 2.7 and Fig. 2.8 depict the projections of the raw unsmoothed galaxy
velocities, for galaxies within a central slice of 10 h−1Mpc. The size of the arrows is proportional to the
amplitude of the peculiar velocity component within this slice, each arrow starting at the location of
the galaxy. Both figures consist of three successive rows. The velocity maps in the first row correspond
to the “real” world of the N-body simulation. The second row depicts the velocity maps for the FAM
reconstructions, the FAM30 reconstruction in Fig. 2.7 and the FAM100 reconstruction in Fig. 2.8. The
last row shows the resulting residual velocity vector fields,

vres ≡ vFAM −vNbody , (2.20)

the vector difference between the N-body velocities and the corresponding FAM velocity reconstruc-
tions, [N-body - FAM30] and [N-body - FAM100].

Each row has three panels, containing the vector maps in the three mutually perpendicular “central”
slices. Each plane is identified by means of the index combination “x-y”, “x-z” or “y-z” (top figure), the
index pair identifying the horizontal and vertical axis along which the panel is seen. Imagining these
three planes passing through the centre of the 30 h−1Mpc NBG volume provides a spatial impression
of the full 3-D velocity field. Note that here the choice of Cartesian coordinate system does not have
any special significance, arbitrarily set by the axes of the total 345.6 h−1Mpc simulation box (the
“fundamental” box) from which the mock catalogs were distilled. This is unlike vector maps (e.g.
Fig. 2.12) in some later sections.

2.6.1 N-body sample: The “observed” velocities

The velocity vectors in the top row vector maps depict the “real” N-body velocities of the “galaxies”
located within the three “central” slices (the same for Fig. 2.7 and Fig. 2.8). The galaxy distribution
is characterized by a few dense, massive and virialized clumps, visible as high concentrations of large
and randomly directed velocity vectors. The truely massive concentration visible in the lower left of
the x− y panel is part of a superstructure extending beyond the boundaries of the NBG region. It
represents a major and dominant source for the motions in this area. This may be appreciated from
the observed velocity flow towards this clump and the overall distortion of the flow in its vicinity. The
large configuration visible in the “y-z” slice contains several dense compact regions embedded in a
ridge-like structure running curvedly from the lower right-hand corner to a location slightly left from
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Figure 2.7 — 2D projected, unsmoothed velocities at each particles position in one of the NBG-ΛCDM mock
catalogs. Each row contains three frames, corresponding to the central y− z, x− z and x− y plane through the
point sample. Bottom row: projected N-body velocities. Central row: projected FAM30 velocities. Bottom row:
residual N-body-FAM30 velocities.

the centre. At least partially related to this mass concentration in and around the ridge is the bulk flow
along the right-to-left direction.

Overall, the “x-y” and “y-z” vector maps indicate the presence of a dominant coherent “bulk flow”
pattern which can be traced throughout the whole NBG volume. By coincidence, the orientation of
the coordinate axes is such that the direction of the bulk flow is almost perfectly aligned along the
“y”-axis: for this particular mock sample the “y”-axis does represent a physically significant direction
defined by the streaming pattern itself. The bulk flow seems to be directed towards some (fictitious)
point outside the local 30 h−1Mpc region.

A dominant and conspicuous coherent flow pattern also characterizes the “x-z” velocity vector
map. While the flow in the two other planes seems to be almost exclusively dominated by a bulk
flow, here the pattern has a more complex geometry, readily recognizable as a typical “velocity shear”
pattern. The specific shearing motion in this plane consists of a compressional component along the top
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Figure 2.8 — Same as Fig. 2.7, for the PSCz based FAM100 reconstructions. Shown are the 2D projected,
unsmoothed velocities at each particles position in the central NBG mimicking volume of the full PSCz-ΛCDM
mock catalogs, the same region as depicted in Fig. 2.7. Each row contains three frames, corresponding to the
central y− z, x− z and x− y plane through the point sample. Bottom row: projected N-body velocities. Central
row: projected FAM100 velocities. Bottom row: residual N-body-FAM100 velocities.

left-hand to lower right-hand direction, in combination with a dilational stretch along the perpendicular
direction from the lower left-hand towards upper right-hand corner.

2.6.2 NBG samples: FAM30 velocity vector maps

The role of the local cosmic matter distribution on the motions in the local Universe is assessed on
the based of the “FAM30 velocities”. They are the peculiar velocities computed by FAM on the basis
of the local matter distribution, supposedly reflected by the galaxies within the NBG catalogs. The
corresponding reconstructed velocities are shown in the second panel row of Figure 2.7. With their
final position as boundary condition, each velocity vector is located at the same galaxy position as
in the N-body maps (top row). Note that the vector maps in Figure 2.7 and Figure 2.8, and also the
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later ones in Fig. 2.12. Fig. 2.7 and Fig. 2.8, show the pure unsmoothed velocity vectors (and do not
“correct” for the virialized regions).

The FAM30 velocity maps are distinctly different from the corresponding N-body velocity maps
(top row): a coherent flow pattern is almost entirely absent. The FAM30 reconstructions obviously did
not recover the strong bulk flow observed in the N-body velocity maps, nor the striking shear pattern in
the x−z plane. Because the FAM30 velocity field reconstructions solely relate to the matter distribution
within the inner 30 h−1Mpc NBG region, this indicates that the major share of coherent bulk flow and
the velocity shear are due to the matter distribution outside the central 30 h−1Mpc. This is most readily
apparent in the velocity residual maps [N-body - FAM30], the difference between the N-body and the
FAM30 velocity vector fields (bottom row of Fig. 2.7). In the residual field [N-body - FAM30] we
recognize the same characteristic flow patterns, strong spatial correlation, long-range coherence and
overall morphology as in the full N-body velocity field. This represents convincing evidence for the
external origin of the large-scale “bulk” and “shear” component in the local velocity flow.

Prominently visible in the residual velocity field is the strong bulk flow along the “y”-axis. Overall,
the spatial pattern of the residual bulk flow appears to reproduce that of the N-body flow field. How-
ever, some minor yet significant differences between the residual and the full N-body bulk flow can be
discerned. The amplitude of the corresponding velocities in the residual map is somewhat smaller than
the equivalent N-body velocities: apparently part of the bulk flow is induced by the local NBG matter
distribution. This does not seem to be true for the velocity shear: the shear patterns in the “x-z” plane
of the residual and N-body velocity fields are almost identical (except for the virialized motions in
high-density clumps). Apparently, the velocity shear component is almost exclusively due to external
matter distribution. As a locally flattened matter configuration would induce an internal shear flow,
this appears to imply a local matter distribution whose geometry is hardly flattened or elongated.

Closer inspection of the FAM30 velocity field provides a more detailed view of the small-scale
flow pattern mentioned above. In the “x-y” plane the large-scale (N-body) bulk flow has virtually
completely disappeared. Instead, the dominant motion in the “x-y” plane is a streaming flow towards
a prominent matter concentration within this region (lower left). On the other hand, in the “y-z” slice
a trace of the N-body bulk flow along the “y” axis remains, be it that the corresponding velocities
have considerably smaller amplitudes than their N-body counterparts. These local motions appear to
be effected by the matter located along the lower ridge, supporting the impression that this feature
is a local extension or outlier of the large-scale matter configurations responsible for the full bulk
flow. Examination of the panels in Fig. 2.5 and Fig. 2.6 indeed seems to suggest that the density ridge
in the lower half of the “y-z” plane is indeed connected to structures just outside the NBG volume,
while this perhaps may be true for the massive matter clump in the “x-y” plane too. This may not
come as a surprise: the local matter distribution will to some extent be correlated with the external
matter configuration so that the locally induced bulk flow is expected to reflect at least partially the full
N-body bulk flow.

In summary, the inability of the FAM30 reconstruction to recover the large-scale bulk flow and
velocity shear is a consequence of the fact that they are a result of the action of the mass distribu-
tion on scales larger than the internal 30 h−1Mpc size region while the FAM30 velocities are entirely
and self-consistently determined by the mass distribution within this interior region. The residual
[N-body - FAM30] maps, which are a model for the possible findings of a real-world observational
campaign, provide the most elucidating illustration of their “external” origin. Even though they do
provide convincing evidence for their external nature, they do not provide sufficient information to
infer the identity and nature of the main source of the flow patterns. In principle, however, we may
deduce a substantial amount of information on the basis of a careful quantitative analysis: the work by
Lilje, Yahil, & Jones (1986) still sets a prime example. To this end, we will investigate the external
matter distribution in the PSCz 100 h−1Mpc sized regions.

As a final note, we point to the rather artificial nature of velocity vectors in the vicinity of the
massive clump in the “x-y” slice as indicative for the self-consistent nature of the FAM reconstructions.
Its location near the edge of the NBG volume even appears to have generated the rather contrived infall
motions along the rim of the NBG sphere.
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2.6.3 PSCz samples: FAM100 velocity vector maps

The contribution by the relatively nearby external matter agglomerations, within a distance of
100 h−1Mpc, to the motions in the local Universe is investigated on the basis of the “FAM100 ve-
locities”. FAM produces these peculiar galaxy velocities on the basis of the galaxy sample in the full
mock PSCz galaxy sample, extending out to 100 h−1Mpc around the center of our local region. The
corresponding reconstructed velocities are shown in the second panel row of Figure 2.8. It is the anal-
ogy for the “FAM100 velocities” of Figure 2.7, and concerns the same 30 h−1Mpc central region (the
NBG region is the central subregion of the PSCz mimicking catalog). The FAM30 maps showed the
dominant influence of externally induced forces on the motions in the local 30 h−1Mpc NBG region:
on the basis of the FAM100 maps we seek to assess whether the major share of the responsible external
matter agglomerations may be identified within the realm of a PSCz like volume.

Comparison of the first and the second row of panels in Fig. 2.8 shows the large degree of similarity
between the FAM100 velocities (panels 2nd row) and the N-body velocities (panels top row). Unlike
the FAM30 maps in Fig. 2.7 we find that the FAM100 maps successfully reproduce most of the large-
scale behavior and most of the finer details of the N-body velocity field. The degree of similarity
is particularly evident in the corresponding residual velocity field [N-body - FAM30] (bottom row
panels). With the exception of the high-density virialized regions the residual velocities are very small
and mostly randomly oriented: no significant spatial correlations and spatial coherence can be detected.

The detailed similarity between the N-body and the FAM100 maps shows that it is sufficient to take
account of the mass distribution out to 100 h−1Mpc for explaining, in considerable detail, the velocity
flows in the local NBG volume. Moreover, the detailed rendering of the velocity field by FAM is a
convincing demonstration of the capacity of the FAM technique to accurately describe the dynam-
ics implied by the observed local galaxy distribution. The quantitative comparisons in the following
sections will provide ample support to this claim.

Of course, the above conclusion is partially related to the realizations of the cosmological scenarios
we have studied. The behavior of the power spectrum P(k) on large scales will considerably influence
the generality of our findings. A power spectrum with more power on large scales would modify our
findings: potentially it may be so that we need a representation of the matter distribution out to larger
radii than 100 h−1Mpc. In this respect it is important to note that the used N-body velocity fields do
not have any contributions from wavelengths larger than ≈ 175 h−1Mpc (both for τCDM as well as
ΛCDM simulations, see Fig. 2.2). This merely for the technical reason of the simulation box imposing
an upper limit to the scale on which we can represent P(k). The extent to which this may influence
our conclusions may be readily appreciated from Figure 2.2 (right column, top and bottom panel:
compare solid lines with dashed ones). The velocity field perturbations of τCDM and ΛCDM carry
out considerably further than the fundamental scale of the simulation box, in particularly affecting the
resulting bulk flows.

2.7 Point-to-point comparison

Scatter diagrams are used to assess the point-to-point comparisons between quantitative aspects of the
“real” galaxy velocities in the original N-body samples and the computed velocities in the FAM30

and FAM100 reconstructions. This analysis is meant to be a direct, in principal local, assessment of
systematic trends in the velocity flows in a volume of the NBG sample. The comparisons involve
a component of the “true” N-body velocity (abscissa) versus the equivalent quantity for either the
FAM30 or FAM100 velocities, or of the corresponding residuals (ordinate). Since the objects had
been artificially added to the Zone of Avoidance, any particles inside this region (see sec. 2.5.2.2) are
excluded from these diagrams.
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2.7.1 Systematics

If we neglect the small-scale sources in the deficiencies of FAM reconstructions, the differences be-
tween FAM30 and FAM100 scatter plots are mainly to be ascribed to the corresponding differences in
the external gravitational influence acting over the two corresponding sample volumes. In the external
gravitational influence the the corresponding leading velocity terms are the bulk flow vbulk and the
velocity shear si j,

vNbody,i ≈ vFAM,i+vbulk,i+

3∑

j=1

si jx j+ . . . . (2.21)

In the above i, j denotes the Cartesian component indices. The vectors x̂ j represent the vector com-
ponents along the Cartesian j direction of the spatial unity vector oriented along the object position
vector x. Following this definition, xx̂ j is the j-component of the position vector x, with x the distance
of the object.

Systematic differences in FAM velocity-N-body velocity scatter diagrams are therefore to be at-
tributed to differences in bulk flow, shear and possibly higher order contributions. Because each of
these large-scale phenomena will manifest themselves in distinctly different ways, we seek to identify
them from the scatter diagrams. An horizontal offset in the scatter diagram would be the trademark
for a bulk flow component. Velocity shear would manifest itself as a distinctly characteristic correla-
tion between residuals and velocities, although the prominence of this signal will be dictated by shear
magnitude, configuration, and orientation with respect to the reference system (as is true for the bulk
flow). In reality, the situation will be more intricate. Subtle correlations between small-scale and large-
scale contributions will bring about a change in the slope of the scatter diagram of FAM reconstructed
velocity components against their full N-body values (see 2.7.3.2).

2.7.2 Velocity Scatter Diagrams Analysis

Scatter diagrams are presented in three successive figures. The depicted scatter diagrams all relate
to a ΛCDM mock catalogue, and each of these point-to-point analyses relates to a different aspect of
the velocity field reconstructions. Figure 2.9 contains four different panels, of which each contains
two scatter diagrams: FAM30 versus N-body quantity (left) and the equivalent FAM100 versus N-body
quantity (right). The diagrams in Fig. 2.10 focus on the correlations between these quantities and the
scatter around regression relations. The figure addresses three velocity-related quantities, each taking
one column of each 2 panels: the top one for the comparison of the FAM30 components with their
N-body counterparts, and the same for the FAM100 components in the bottom frame.

A straightforward comparison is that between the Cartesian velocity components vi of the FAM
reconstructed velocities and the N-body velocities (Fig. 2.10, right-hand column). The choice of the
Cartesian reference system is arbitrary and may not form an optimal reflection of the local physical
circumstances. Complementary regressions involve coordinate system independent aspects of galaxy
velocities. These involve the velocity amplitude |vFAM| (Fig. 2.9, top left-hand panel), the component
of each FAM velocity parallel to the corresponding N-body velocity, v‖ (≡ vproj), and the additional
perpendicular component v⊥ (Fig. 2.10, first column). Misalignments between the real N-body veloc-
ity and the FAM velocity reconstructions should indicate in how far a reconstruction has been failing
to take into account all relevant gravitational forces along the path of a particle. Systematic mis-
alignments reveal themselves in the scatter diagram of the angle θ between the FAM velocity and the
N-body velocity (in Fig. 2.9 we plot µ≡ cos(θ), bottom right-hand panel). In terms of the character and
systematics of the underlying physics and dynamics the residual velocities, [N-body - FAM], represent
highly informative aspects in our analysis. They are assessed in Fig. 2.9 (top right-hand panel) and
Figure 2.11.

The significance and strength of correlations between the N-body and FAM velocity components
in the scatter diagrams are analyzed by means of a linear regression and correlation analysis. To
circumvent excessive pollution of the computed parameters by the virialized motions in high-density
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Figure 2.9 — Point-to-point comparison (scatter plot) of four quantities related to FAM reconstructed velocities
and the corresponding “real” object velocity in the underlying N-body samples. The N-body realization, and the
mock sample, concern the ΛCDM scenario. For each quantity two panels are shown: the lefthand one is the one
for FAM30 reconstruction, the righthand one for the FAM100 reconstruction. Top lefthand: the amplitude of the
velocities. Top righthand: residual velocity amplitudes FAM-N-body. Bottom lefthand: FAM velocity component
projected along the N-body velocity. Bottom righthand: angle between FAM velocity and N-body velocity, in
terms of µ = cos(θ).

regions (see sect. 2.3.3), the galaxy velocity components in these regression analyses involve 2 h−1Mpc
tophat filtered velocity fields. The resulting numerical values of the correlation parameters are listed
in Table 2.3. This Table is organized in two separate sections, one for the regression analysis results
of the ΛCDM mock samples (top section) and a second for the τCDM samples (bottom section). For
both the ΛCDM and the τCDM section we list the results for four velocity related quantities, each
separately for the FAM30 and the FAM100 reconstructions.

The presence of significant correlations between FAM reconstructions and their N-body counter-
parts is evaluated on the basis of the nonparametric Spearman correlation coefficient RS pear. The linear
regression parameter Rlin quantifies the linearity of the relation. Prevailing in most situations, the lin-
ear regression parameters are used to characterize the relation between reconstructed and real N-body
velocities: the zero-point (offset) a0, the slope alrg and the dispersion σlrg around the linear regression
relation. We assume equal errors in FAM and N-body velocities, as both are affected by similar shot
noise errors (while 2 h−1Mpc top hat smoothing significantly reduces the impact of virial motions on
FAM velocity predictions). In addition, we also list the rms scatter of the parameters, estimated on the
basis of the results for the 10 different mock catalogs (for each of the four different configurations).

2.7.3 Inventory

2.7.3.1 Velocity Amplitude

In the top left-hand frame of Fig. 2.9 the FAM30 and FAM100 velocity amplitudes are compared with
their N-body counterpart |vNbody|. The FAM30 diagram differs considerably from the FAM100 diagram:
the FAM30 velocities are systematically smaller than their FAM100 counterparts. Also, while the latter
have a strong one-to-one correlation to the N-body velocities, the FAM30 diagram shows a systematic
offset with respect to this relation (the solid line) and a somewhat larger scatter.
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Figure 2.10 — point-to-point comparison of the perpendicular (first column) and parallel (second column) com-
ponents of the reconstructed FAM30 (top-row) and FAM100 (lower-row) velocities with respect to the “real”
N-body velocities for one ΛCDM mock catalog. The continuous lines represent the one-to-one relation for eye
guidance. The third column shows the N−body vs. FAM velocities for one Cartesian component. The dashed
lines represent the best linear fit. The contours are lines of equal point densities.

While the FAM100 diagram tapers out to higher velocities and even shows a few points with
|vFAM| > 2000 km s−1, there is a firm ceiling of |vFAM| ≈ 1300 km s−1 for the FAM30 velocities. It
is a direct reflection of the FAM30 reconstructions missing out on the gravitational force contributions
by the external mass distribution. The asymmetric nature of the scatter in both diagrams is due to
particles in high density regions: the discrepancy between N-body and FAM velocities in these highly
virialized regions reflects itself in the substantially higher amplitudes of the corresponding N-body
velocities.

To a good approximation, the correlation between the FAM100 velocity amplitudes and |vNbody|
is that of a linear identity relation: the solid line, |vNbody| = |vFAM|, forms a good fit to the scatter
diagram (see Table 2.3: alrg→ 1). The significantly higher value of Spearman’s correlation coefficient
(Table 2.3: RS pear ≈ 0.68 vs. RS pear ≈ 0.54 for FAM30) indicates and confirms the visual impression
of Fig. 2.8) of the tight correspondence between the FAM100 and N-body vector velocity fields. The
FAM30 results stand in marked contrast: the majority of the FAM30 velocities have a systematically
lower amplitude than their N-body counterparts. It results in a relation with a significantly shallower
slope than that of the identity relation |vNbody| = |vFAM| (also see Table 2.3): objects with a higher
velocity have a larger discrepancy. The contribution by the missing large-scale velocity component
vlss to the amplitude of the FAM velocity includes a cross-term (−vNbody · vlss), a term dependent on
the velocity vNbody of the galaxy. Most of the missing large-scale velocity component vlss is due to
the absence of a bulk flow term in the FAM30 reconstructions. Subtle and/or higher order external
gravitational effects play an additional role: the velocity vector diagrams did already reveal that the
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presence of shear should be one of the main contributors (cf. Eqn. 2.21).
When comparing the ΛCDM FAM velocity amplitudes with those of the τCDM reconstructions

it is evident that in the case of the FAM30 reconstructions the latter adhere considerably better to the
corresponding N-body values. The linear fitting slope alrg (see Table 2.3) is considerably closer to
unity for the τCDM samples than for the ΛCDM samples. Over a 30 h−1Mpc volume the external
density inhomogeneities in the ΛCDM cosmology will induce considerably higher bulk flows than the
more moderate τCDM perturbations, which is entirely in line with the theoretical expectation (fig 2.2).
In the case of the FAM100 reconstructions the qualitative differences are far less prominent. On the
scale of ∼ 100 h−1Mpc the mass distribution in both the τCDM and ΛCDM simulation volumes have
converged to homogeneity and no major bulk flows are to be expected.

2.7.3.2 Velocity Decompositions

In the two right-hand frames of Fig. 2.10 we show the scatter diagrams for the x-component of the
FAM30 (top) and FAM100 velocities (bottom). Although with a significant level of scatter, the FAM100

diagram can be fitted quite well by a straight line with a slope close to unity (linear regression line:
dashed, unity line: solid). That the equivalent FAM30 diagram may also be fitted by a straight line,
be it with a slope significantly smaller than unity is not entirely straightforward. It stems from an
intricate interplay between the small scale velocity field and its larger scale contributions, which in
most circumstances are not uncorrelated (Berlind et al. 2000).

Table 2.3 lists the linear regression parameters. Although the average best fitting slopes for the
FAM100 velocities are either larger (τCDM) or smaller (ΛCDM) than unity, the deviation from unity
is considerably smaller than that for the FAM30 velocities, well within the ∼ 1σ uncertainty inter-
val. In all, these regression results do adhere to the expected and noted trend of FAM100 velocities
accounting for practically all contributions to the local velocity field and FAM30 velocities systemat-
ically neglecting significant external contributions. Notice that the scatter around the regression lines
for the FAM30 and FAM100 reconstructions is of comparable magnitude (as may be inferred from the
superposed number density contours). It indicates the corresponding origin, the failure of FAM to
properly account for nonlinear (virial) motions.

While the choice of any Cartesian coordinate system is an arbitrary one we have also adressed the
decomposition of the particle velocities in one defined by the system itself. The FAM velocities are
decomposed in a component projected along the corresponding N-body velocity, vpro j (or v‖) and the
complementary perpendicular component, v⊥. The second column of figure 2.10 contains the scatter
diagrams for the parallel component of the FAM30 (top) and FAM100 (low) velocities. Qualitatively,
the behaviour of both diagrams resembles that of the velocity amplitude scatter diagrams in Fig. 2.9.
A 1−1 relation between FAM100 velocities and N-body velocity amplitude represents a reasonable fit
(solid line: slope alrg ≈ 0.99). The FAM30 diagram not only appears to deviate strongly from such a
1− 1 relation, it may even fail to fit any linear relation. Also, none of the projected FAM30 velocity
components appears to supersede a value of ≈ 1200 km s−1. Given the fact that the equivalent FAM100

component even surpasses values of ≈ 2000 km s−1, this confirms the systematic deficiency of the
gravitational field in the FAM30 evaluations.

From the scatter diagrams for the perpendicular FAM velocity components, v⊥, one can infer
that almost all systematic effects are confined to the parallel components v‖. For both FAM30 and
FAM100 the complementary perpendicular component lacks a systematic correlation with the N-body
velocity. It mainly represents unrelated scatter, with a magnitude concentrated around values of ∼
200−250 km s−1. The only difference between the FAM30 and FAM100 reconstructions is that for the
latter v⊥ involves considerably higher values, reflecting the higher amplitude of the FAM100 velocities.
FAM30 velocities, on the other hand, involve stronger misalignments (Section 2.7.3.3).
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2.7.3.3 Velocity Alignments

Misalignments between the reconstructed FAM velocities and the N-body velocity vectors are the re-
sult of a few effects. A major source is that of localized small-scale effects. These are not expected to
lead to systematic offsets: they will have a noisy character and reflect random motions in highly non-
linear environments, in particular those of dense virialized regions. Because these have no preferred
direction, they behave like randomly oriented “residual” velocities wrt. to the real N-body velocities
of galaxies. Of an entirely different nature are misalignments stemming from the systematic neglect
of the external gravitational forces. Because the resulting residual velocity vectors comprise system-
atic components along one or a few preferred directions, a distinctly anisotropic distribution is the
result. This reflect itself as a systematic trend for total N-body galaxy velocities to be aligned along
the residual velocity components.

For both the FAM30 and FAM100 reconstructions we computed the angles between the N-body
velocity vector and the FAM velocities. The lower righthand panel in Figure 2.9 confirms that the
alignments of “residuals” and total velocity is indeed considerably stronger for the FAM30 reconstruc-
tions than the FAM100 ones. The figure plots, for each galaxy in the sample, the misalignment angle
θ (or, rather, µ = cos(θ)) versus the N-body velocity magnitude vNbody. For the FAM100 velocities
we see a near isotropic distribution of angles. With the exception of a minor concentration near per-
fect alignment, cos(θ) = 1, the distribution is sweeping out nearly uniformly over the full range of
µ ≡ cos(θ) = 1→−1. If at all there is a trend in velocity amplitude, it appears to be the weak tendency
for large velocities to be better aligned.

The above results reflect the observation that FAM100 residual velocities do mainly consist of small-
scale random effects. The FAM30 residuals form a telling contrast. They are heavily aligned along the
full N-body velocities, with a very strong concentration near θ = 0. Although occasionally there are
serious misalignments, their occurrence diminishes rapidly towards large θ. When they occur it almost
exclusively concerns small velocities, mostly corresponding to serious misalignments between the
locally induced velocity and the added external velocity component.

2.7.3.4 Velocity Residuals

The residuals accumulate all systematic physical effects as well as random artefacts which the FAM
procedure does not (properly) take into account. They are therefore an excellent source of information
on the dynamical role of matter concentrations in the various galaxy sample volumes. If there are
large external contributions to the galaxies’ velocity these will constitute a major part of the residu-
als. On the other hand, if most of those influences are contained within the sample volume treated
by FAM, the residuals may mainly reflect localized nonlinearities and artefacts of the FAM method.
Scatter diagrams involving the residual velocities will indicate systematic trends and are well suited
for elucidating the character and underlying dynamics of external influences.

Figure 2.11 elaborates on this observation. In two successive rows, the top one for the FAM30

reconstructions and the bottom one for the FAM100 reconstructions, it displays the residuals vres for
each of the three Cartesian velocity components, vx, vy and vz. Each panel plots the velocity component
residual as a function of the corresponding N-body velocity component.

The mark of a bulk velocity is a constant offset of the scatter diagram, a translation of all FAM
velocities by a constant term. This is indeed what is observed in the FAM30 vy scatter diagram: the
vast majority of points is located beneath the vy = 0 km s−1 Mpc−1 line. It is a telling confirmation of
the impression yielded by the corresponding velocity vector fields in Fig. 2.7. The velocity vector field
revealed the presence of strong bulk flow oriented almost perfectly along the y-axis: clearly visible in
the N-body velocity field, hardly present in the corresponding FAM30 velocity field, and representing
a major component of the residual field [N-body - FAM30]. When turning to the equivalent FAM100

diagram, the indicative offset for a bulk flow has almost completely disappeared. This implies that the
source(s) for the bulk flow should be found within the region between 30 h−1Mpc and 100 h−1Mpc.
The equivalent vx and vz FAM30 residual scatter diagrams do confirm the visual impression of there
hardly being a bulk flow contribution along the x- and y-directions.
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Figure 2.11 — point-to-point comparison (scatter plot) of the Cartesian components of the residual velocity
vFAM − vN−body components against corresponding N-body velocity vN−body. From left to right: vx, vy and vz.
Top row: FAM30 reconstructed velocity. Bottom row: FAM100 reconstructed velocity.

Additional systematic behavior is readily apparent in Fig. 2.11: the diagrams show an almost linear
increase of residual velocity with N-body velocity. Also, we find that the vx scatter is skewed towards
negative vres values while the vz diagram is skewed towards positive vres values. In the equivalent
FAM100 scatter diagrams the linear increase of vres and the asymmetry in the vx and vz diagram has
almost disappeared: the dense core of points has turned into a compact and nearly horizontal bar
symmetrically distributed around the vres = 0 km s−1 line. To a large extent this is explained by the
much smaller contribution of external tidal shear to the flows over 100 h−1Mpc volumes (cf. Fig. 2.2).

The mark for external shear is a near linear increase of residual velocities as a function of their N-
body (or measured) velocity. Depending on the location x of a galaxy within the sample volume and
with respect to the shear configuration its participation in a shear flow will involve a velocity compo-
nent vs ≡

∑
si jx j. This may involve a negative or a positive contribution. With such shear contributions

representing a non negligible component to the total velocity, its systematic contribution to a largely
random local residual signal reshuffles the velocities such that on average the largest velocity involves
the largest residual contribution.

With prominent large-scale bulk and shear motions at large, the FAM100 residual scatter diagram
has largely transformed into a featureless and purely random point distribution. The residuals mainly
involve uncorrelated small-scale effects and are nearly independent of the amplitude of the N-body
velocity. Some additional artefacts are seen upon closer inspection: the presence of diffuse “S”-shaped
point clouds in both the FAM30 and FAM100 residual diagrams, tapering off towards a steep tail at both
the negative and positive side of the plots. Given their presence in the FAM100 diagrams, they seem to
be manifestations of the nonlinear motions FAM fails to take into account properly.

The corresponding scatter diagrams for the velocity residual amplitudes |vres| = |vFAM − vNbody|
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represents a summary of the systematic trends (Fig. 2.10). The FAM30 velocity residuals show a near
linear increase as a function of the N-body velocity, starting with an offset, indicative of the ingredients
of bulk and shear flow in the residuals. The lack of any clear correlation between |vres| and |vNbody| in
the case of the FAM100 residuals confirms the absence of such systematic components. More clearly
than in the case of the individual Cartesian components, the presence of local nonlinear motions may
be discerned from the extensive surrounding clouds of outliers.

2.7.4 Power Spectrum Dependence

The contrast between FAM30 and FAM100 scatter diagrams is more pronounced in the case of the
ΛCDM mock catalogs than in those assembled for the τCDM universes. This clearly reflects the fact
that within theΛCDM scenario cosmic structure is characterized by a larger coherence scale. It implies
the presence of larger and more coherent structures whose size exceeds 30 h−1Mpc. Their combined
gravitation impact will yield a stronger systematic impact in the velocity-velocity comparisons. On the
other hand, the dispersions listed in table 3 also show that it would hardly be possible to infer infor-
mation on the cosmological scenario on the basis of one individual realization. The large dispersion
around the average slopes, in particular in the case of the ΛCDM Universe, show that the magnitude
of the external dynamical effects may vary appreciably as a function of the location of the (mock)
NBG sample within the simulation box. Local measurements will therefore be unable to separate
cosmological effects from those stemming from local variations.

2.7.5 Nonlinearities

The point-to-point diagrams discussed above all contain a substantial level of scatter around the in-
ferred regression relations. With a few exceptions the scatter of velocity quantities is in the order of
∼ 200−250 km s−1, for both the ΛCDM as well as the τCDM FAM reconstructions. The main source
for this scatter are the virial motions in the high density and mildly nonlinear environments. Also shot
noise provides a substantial additional contribution. In the case of small filter radii, another source of
scatter is formed by spurious very close pairs of points in the parent N-body catalog which for artificial
reasons failed to collapse into a single object (Branchini et al. 2002). Scatter may also be due to higher
order multipole components in the external gravity field. An inspection of the particle configurations
and the velocity vector maps does unmistakably show significant systematic variations on top of dipo-
lar and quadrupolar components. However, tests restricting the analysis to points in the central regions
of the sample produced no substantial decrease in level of scatter. This seems to argue for a minor role
of such contributions.

2.8 Bulk Flow and Tidal Shear:
Velocity Flow Multipole Components

In the previous sections we have found that in order to obtain a good representation of the local cosmic
velocity field it is necessary to take into account the external gravitational influence. This was ac-
complished through the incorporation of the fully detailed external mass distribution contained in the
(flux-limited) galaxy catalogs. This involved the galaxy distribution out to distances of 100 h−1Mpc.
The reconstructions showed that modelling of velocity fields by FAM with the inclusion of matter
concentrations on such large scales is indeed rewarding.

In nearly all situations where the local volume Vint is suitably large, the small-scale details of the
external mass configuration are rather irrelevant for constructing an appropriate model of the flows in
the local Universe. An appropriate approximate expression for the the gravitational potential Φext(r)
inside the internal volume Vint due to the surrounding external matter distribution follows from its
expansion in multipole contributions. Assuming a spherical local volume with radius Rint, the potential
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Φext may be written in terms of a multipole expansion of spherical harmonics Ylm(θ,φ) (see e.g. Jackson
1975)

Φext(x) = −
∫ ∞

Rint

Gρ(x′)
|x−x′| dx′

(2.22)

= −
∞∑

l=0

m=l∑

m=−l

4πG
2l+1

Qlm Ylm(θ,φ)rl ,

in which the multipole moments Qlm relate to the external density field ρ(x′) as

Qlm =

∫ ∞

r
ρ(x′)r′l−3 Y∗lm(θ′,φ′)dx′ . (2.23)

Most contributions to the external gravity gext will be confined to these dipole and quadrupole com-
ponents, induced by the corresponding large-scale constellations in which the surrounding matter con-
centrations have grouped themselves. Here we will assess the approximation in which the potential
expansion (Eqn. 2.23) is restricted to the monopole term l = 0, the dipole term l = 1 and the quadrupole
term l = 2,

Φext(x) ≈ Φ0(x) + Φ1(x) + Φ2(x)

with

Φl(x) = −
m=l∑

m=−l

4πG
2l+1

Qlm Ylm(θ,φ) xl . (2.24)

To explore the nature of the external component in the total gravitational field in the Local Universe
we proceed by probing it through the resulting peculiar velocity field. The amplitude of higher order
terms may be assumed to be so small that one cannot expect to deduce any significant value, given the
sizeable errors in the available galaxy peculiar velocity datasets, we may expect this to be a reasonable
approximation. We investigate the velocity field by decomposing the residual velocity field – i.e. the
component in the velocity field which could not be accounted for in the FAM30 reconstruction and
supposedly induced by external influences – into its multipole components. Once we have determined
the bulk flow component and shear tensor components in the tidal velocity field, we will assess whether
we can indeed relate this to the external gravitational (“tidal”) influence within the local Universe.

Restricting the description of the external gravitational influence to the first few orders of its mul-
tipole expansion has several advantages. The large-scale external dipole and quadrupole gravity per-
turbations retain a largely linear character, simplifying the velocity field analysis and thus retaining
the direct linear relation between gravity and velocity field. Also, by discarding its small-scale fluctu-
ating contributions a physically more transparent image of the velocity field is obtained. This allows
a straightforward relation and translation towards the corresponding large-scale pattern of the sur-
rounding mass distribution. A final practical issue of some importance is the fact that the dipole and
quadrupole characterization is particularly suited for an implementation in FAM. Restricting the ex-
ternal force field to these moments alleviates the need to take into account a large sample of external
galaxies. Not only is the latter computationally expensive, in practice it is even not always feasible.

2.8.1 Velocity Field Multipole Decomposition

In the multipole analysis we restrict ourselves to the externally induced velocity components, vext,
which in the following we frequently designate by the term “tidal”1. For each object, the “tidal”
velocity vector is determined by subtracting the internally induced velocity field, vint, from the object’s
full velocity. The latter is usually the N-body velocity of the mock galaxy, although we will assess

1in the following we regularly use the word “tidal” to shortly indicate the externally induced component of a gravity or
velocity field. As it includes a dipolar contribution, strictly speaking this is not an appropriate term. Also see sect. 2.3.5.2.
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the possibility of using the FAM100 velocity as a reasonable alternative. The internal velocity vint is
deduced by evaluating, through our FAM computations, the impact of the internal matter distribution
within the internal catalog volume Vint. The resulting (residual) peculiar velocity vector vext field may
then be expressed in terms of a Taylor series description as function of spatial position x.

For the practical implementation, we follow the general scheme described by Kaiser (1991). The
velocity field Taylor expansion is truncated at the quadratic term and is restricted to the dipole and
quadrupole moments (and a minor monopole term). The tidal velocity field vext, is then modeled by
the the first two components, a bulk flow vector, ũi, and a quadratic shear tensor contribution, s̃i j,

vext,i = ũi+ s̃i jxx̂ j, where i, j = {1,2,3} , (2.25)

in which i, j denotes the Cartesian component indices. As in Eqn. 2.21, the vectors x̂ j represent the
vector components along the Cartesian j direction of the spatial unity vector oriented along the ob-
ject position vector x. Using these notations, we can easily reconfigure Eqn. 2.25 and express the
i-component of the velocity of object n into a product of the vectors Fn,I and VIi,

vn,i =

4∑

I=1

Fn,I(x)VIi

in which the data 4-vector FI and the velocity field component 4-vector VIi are defined as

Fn,I = {1, xx̂1, xx̂2, xx̂3}
VIi = {ũi, s̃i1, s̃i2, s̃i3} . (2.26)

The “dipolar” bulk flow components ũi and “quadrupolar” velocity shear components s̃i j can then be
obtained by solving for the vectors VIi on the basis of a fitting analysis (to be precise, s̃i j also includes
a minor residual “monopole” expansion/contraction term). We accomplish this by computing for each
Cartesian component i the values for the multipole elements ũi and s̃i j which minimize χ2

χ2 =

Nob js∑

n=1

(
vn,ext,i−

∑

I

Fn,I(x)VIi

)2
, (2.27)

to be evaluated on the basis of the data sample of Nob j objects at locations xn and with inferred “exter-
nal” velocities vn,ext. The bulk flow and velocity shear in the externally induced velocity component
vext, along with a residual expansion term,

vext,i ≈ vexp,i+vbulk,i + vshear,i (2.28)

will follow directly from the inferred values of the 4-vector components VIi:

vexp,i =
1
3

Tr(s̃) xx̂i

vbulk,i = ũi ; vshear,i =

3∑

j=1

s̃′i jxx̂ j (2.29)

in which Tr(s) is the trace of the tensor si j and s̃′i j the traceless shear tensor

Tr(s̃) ≡ s̃11+ s̃22+ s̃33

s̃′i j = s̃i j−
1
3

Tr(s̃)δi j . (2.30)
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2.8.2 Velocity Multipole Analysis: Results

The results of our analysis are summarized in Table 2.4. It lists the average quantities for the tidal bulk
flow and shear components for the two cosmological scenarios discussed in this work. The table has
been organized in four (horizontal) sections. Each corresponds to another “differential” velocity field,
the difference between two differently processed velocity fields.

For both the ΛCDM and the τCDM model each of the quoted values in Table 2.4 involve the
average and standard deviation determined on the basis of ten different realizations. This adds up to 8
configurations, two cosmologies per section. For each of the 8 configurations, in the third column the
table lists the dipole component of the external velocity field, the bulk flow vbulk. Subsequently, the
velocity shear is specified in terms of the three eigenvalues s1, s2 and s3 of the traceless shear tensor.
This is preceded in the fourth column by the amplitude s of the shear. Finally, in the 8th column, the
monopole contribution of the velocity divergence is specified. Note that shear and velocity divergence
are each quoted in two units. First, they are specified in proper units of km s−1 Mpc−1, followed by
the equivalent velocity differential in km s−1 over a volume of 30 h−1Mpc radius. The intention of the
latter is to offer a directly appreciable comparison between the relative importance of bulk flow and
shear contributions.

Each of the four sections specifies the values of the computed monopole, dipole and quadrupole
moments of the velocity field of the corresponding sample. The first section relates to a multipole
analysis of the differential velocity field between the full N-body velocity field and the FAM30 ve-
locity reconstructions of the inner 30 h−1Mpc region, N-body - FAM30. Except for the monopole
contribution the resulting residual velocity field has been generated by the mass distribution beyond
a radius of 30 h−1Mpc. On these linear scales the inferred dipole and quadrupole components of the
velocity field may be directly related to the moments of the surrounding mass distribution. The in-
ferred residual velocity divergence (the monopole contribution), on the other hand, is the result of the
effective under/over density of the inner 30 h−1Mpc region.

The second section of Table 2.4 does the same for the larger 100 h−1Mpc region. The outcome of
similar analyses are presented in the third and fourth section. The third section repeats the analysis
of the first section, except that the external tidal influences are determined on the basis of the dif-
ference between the FAM velocity reconstructions within the large 100 h−1Mpc region and the inner
30 h−1Mpc region. Earlier, in Section 2.6.3, we have found that the major share of the origin of the
external tidal field is confined to this region and that it therefore may well be determined from the
residuals between FAM100 and FAM30. The comparison between the inferred multipole moments of
the velocity differences between FAM100-FAM30 in the third section and those in the first section are
therefore expected to be rather similar, any systematic differences originating in tidal effects generated
beyond a radius of 100 h−1Mpc. This is emphasized by means of the fourth section in Table 2.4, which
refers to the values of the residual tidal velocity field between N-body - FAM100. If indeed all signif-
icant contributions are located within the inner 100 h−1Mpc, the multipole values in this section are
expected to be negligible.

2.8.3 Velocity Multipole Contributions: Maps

For a direct visual appreciation of the various multipole contributions to the tidal velocity field we
assess the “tidal” velocity field N-body - FAM30, the velocity field generated by the mass distribution
beyond a radius of 30 h−1Mpc, for one of the ΛCDM catalogs. The presented maps concern the same
ΛCDM catalog as those presented in the maps of Figures 2.7. The map of the projection of this “tidal”
velocity flow onto three central planes is shown in the top row of Figure 2.12.

2.8.3.1 Monopole component: Local expansion/contraction

In the above (Section 2.8.1) we have also taken account of the presence of a residual expansion (ve-
locity divergence) term vexp,i in the velocity flow. While the dipole and quadrupole components are
exclusively related to the external matter distribution, the residual monopole term is a result of the
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Figure 2.12 — 2D projected peculiar (residual) velocities for the same mock catalog as in Fig. 2.7 and Fig. 2.8
in three perpendicular central planes of 10 h−1Mpc width. The coordinate frame is rotated such that the bulk flow
velocity is oriented along the x-direction. Within the plane perpendicular to the x-axis, the y and z axes are chosen
arbitrarily. First row: the residual velocity (ie. tidal velocity) N−body - FAM30. Second row: residual velocities
after subtraction bulk flow component. The resulting residual field is clearly dominated by a shear pattern, most
notably in the y− z plane.

effective over- or underdensity of the inner region. The corresponding velocity perturbations tend to
be relatively small: even over a region as large as 30 h−1Mpc these density fluctuations tend to be
relatively minor, be it not negligible (see Table 2.4).

From the quoted values of the inferred velocity divergences ∇ · v in Table 2.4 we also notice that
there is not only a large variation of values, but that nearly as many values have a positive as a negative
sign. This translates into either a local underdensity or overdensity. This is an artefact of our mock
catalogs not having been tuned enough towards local cosmic circumstances (see also section 2.5.2.1).
By means of better constrained simulations we seek to achieve this in a forthcoming publication.

2.8.3.2 Dipolar component: Bulk flow

The externally generated velocity flow is dominated by its bulk flow component. This is in general
true for both cosmologies. The large impact of the bulk flow over the local 30 h−1Mpc volume can be
immediately inferred from the values in the first section of Table 2.4, revealing contributions in excess
of 200 km s−1.

To facilitate visual appreciation of this observation we have have reoriented the reference system
in Figure 2.12 such that the x-axis is oriented along the bulk flow. While the original Cartesian system
is an arbitrary one and thus lacks a physical context, the “bulk flow reference system” confines the
inferred bulk flow ũ exclusively to the x-direction. As a result there are no bulk flow components
in the corresponding y- and z-direction (note that within the y− z plane their direction is arbitrarily
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Cosmology RS pear Rlin a0 alrg σlrg

(km s−1) (km s−1)

ΛCDM 0.62 ± 0.17 0.58 ± 0.22 -4.03 ± 75.45 0.83 ± 0.20 246 ± 134
τCDM 0.75 ± 0.11 0.71 ± 0.14 -9.31 ± 30.19 0.93 ± 0.13 219 ± 86

Table 2.5 — Average final results for the N−body velocities vs. the corrected FAM30 after adding to it the tidal
Bulk and Shear contributions. The errors represent the 1σ scatter around the average value. Col. 1: Cosmological
model. Col. 2: non parametric (Spearman) correlation coefficient. Col. 3: linear correlation index. Col. 4: zero
point of the best linear fit. Col. 5: slope of the best fitting line. Col. 6: dispersion around the fit.

defined). The pre-eminence of the bulk flow component can be immediately seen in the x− y and x− z
frames in the top row of Figure 2.12. Note that the same velocity maps, mostly so the y− z frame,
reveal a clear shear pattern.

2.8.3.3 Quadrupolar component: Velocity shear

Seeking to assess the quadrupolar term in the external velocity field we first remove the remaining
expansion term from s̃i j. Diagonalization of the resulting traceless shear tensor s̃′i j yields the shear
eigenvalues and eigenvectors. The eigenvalues s1, s2 and s3 are indicative for the strength of the
tidal force field induced by the surrounding matter distribution, while the principal directions of this
quadrupolar velocity perturbation field are indicated by the corresponding eigenvectors ês,i.

The “shear ellipsoid”, the quadratic surface defined by the shear tensor s̃′i j with principal axes
aligned along the eigenvectors and with axis size set by the corresponding eigenvalue si, defines a
natural reference system to assess the tidal shear flow field. The coordinate axes of this “shear refer-
ence frame” are identified with the orthonormal basis defined by the (normalized) eigenvectors. The
x-axis is chosen to be aligned along the major axis of the “shear ellipsoid”, the direction defined by
the largest (positive) eigenvalue s1 and directed along the strongest dilational (stretching) motion in-
cited by the external tidal field. Likewise the z-axis is chosen to coincide with the lowest (negative)
eigenvalue s3, aligned along the strongest “compressional” component of the tidal velocity flow. This
leaves the y-axis as the one coinciding with the intermediate eigenvalue s2.

The imprint of the shearing motions can be discerned within the y− z plane and, most prominently,
along the “x-z” projection of the “bulk flow reference system”. After subtraction of the bulk flow com-
ponent, i.e. N-body-FAM30-vbulk, the quadrupolar component of the externally induced velocity flow
represents its principal constituent (Fig. 2.12, lower row). This is confirmed by the values quoted in
Table 2.4 for the shear contribution. In particular when stated in the velocity equivalent unit of km s−1

these shear values suggest that the quadrupolar shear contributions are of a comparable magnitude to
those of the bulk flow. The maps in the lower row of Figure 2.12 suggest that there are strong dilational
and compressional motions within the y− z plane. By contrast, the shear motions in the x-direction ap-
pear to be uncommonly weak. Given the “bulk flow reference system”, it implies that for this particular
realization we see a bulk flow directed almost perpendicular to the shear flow motions.

Figure 2.13 depicts the same ΛCDM mock sample as presented in Figs. 2.7, 2.8 & 2.12, here in the
“shear reference frame”. The top row shows the full externally induced flow field, N-body - FAM30,
in this reference system. The tidal shear flows are almost exclusively confined to the x− z plane. This
is most evidently illustrated in the central row of frames showing the velocity field without its bulk
flow component: hardly any systematic flow is noticeable in the y-direction of the intermediate shear
eigenvalue.
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Figure 2.13 — 2D projected peculiar velocities for the same mock catalog as in Fig. 2.7 and Fig. 2.8 in three
perpendicular central planes of 10 h−1Mpc width. The coordinate frame is defined by the three eigenvectors of the
shear tensor. The x-axis is aligned along the direction of the largest (stretching) eigenvalue, the y-axis is aligned
along the middle eigenvalue and the z-axis along the smallest (compressional) eigenvalue. The first two rows are
the same as Fig. 2.12, within the “shear reference system”. The third row depicts the final residual field after
substraction of the quadrupolar shear component.

2.8.4 Multipole Scale Dependence

When turning to the external influences over a large 100 h−1Mpc region, we may conclude from the
second section of the table that most of the external contributions are accounted for, both bulk flow
and shear are at least a factor of 3-4 smaller than for the inner 30 h−1Mpc region.It is tantalizing to
notice that this does not appear to be true for the velocity divergence. The third and fourth section
show that the explicit contributions from the regions between 100 h−1Mpc and 30 h−1Mpc and those
beyond 100 h−1Mpc are indeed significantly different, those beyond 100 h−1Mpc tending towards
zero contributions and as far as the shear is concerned almost an order of magnitude smaller than the
equivalent contributions by the 30−100 h−1Mpc region.
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A similar graphical assessment involving the FAM100 reconstructions emphasizes the minor sig-
nificance of tidal contributions stemming from density fluctuations beyond a radius of 100 h−1Mpc.
No coherent velocity pattern can be recognized in the residual velocity field between full N-body and
FAM100 reconstruction. The comparison between this residual velocity field with the velocity maps
including the contributions of the inferred bulk flow and shear flow do hardly show any difference. In
all cases the velocity fields are dominated by the same thermal motions.

2.8.5 Multipole Velocity Flow Model

Following our argument that the externally induced velocity flow within the inner 30 h−1Mpc mainly
consists of a bulk flow and shear contribution, we may expect that the effect of the external gravity field
can be sufficiently accounted for by adding these components to a local velocity field model based on
the mass distribution in and around the Local Superclusters.

By separating the “internal” FAM velocity field from the “external” multipole contributions of the
(monopole,) dipole and quadrupole components of the “tidal” velocity field and adding the two, we
obtain a total “FAM-multipole” model velocity v f ammpl,i,

v f ammpl,i ≈ vFAM,i + vexp,i+vbulk,i + vshear,i (2.31)

A visual impression of the extent of the successive multipole contributions may be obtained from
Fig. 2.14. The vector plots of the four velocity contributions to v f ammpl (Eqn. 2.31) are depicted in four
successive rows, each within the mutually perpendicular three central slices (wrt. the shear reference
system). The top row concerns the FAM30 velocity field reconstruction, followed successively by the
expansion/contraction term (monopole), the bulk flow (dipole) and velocity shear (quadrupolar).

From Fig. 2.14 and Fig. 2.13 we conclude that the differences between the “full” N-body velocities
and v f ammpl, the total sum of the internal FAM30 and external dipole and quadrupole contributions,
do not appear to show systematic trends. Wherever there are large deviations, these are are mainly
confined to the high density virialized regions, where virial motions are known to pose problems for
FAM.

2.8.6 Point-to-Point Comparison

A quantitative quality assessment of the “FAM-multipole” model is offered by the point-to-point com-
parison between the full N-body velocity and its difference with respect to the successive modes of
the “FAM-multipole” velocity in Fig. 2.15. The vx, vy and vz of the various velocity components refer
to the “bulk flow reference system”. The top row, plotting vNbody vs. the residual N-body-FAM30,
reveals the expected systematic differences due to missing externally induced contributions. Given the
fact that the bulk flow in this reference system is confined to the x-component, we may note the uni-
form systematic shift of the x residuals with respect to the zeropoint (vNbody,vres) = (0,0) (top lefthand
frame). The subsequent addition of the dipolar bulk flow contribution to FAM30 leads to a systematic
downward uniform vertical shift of N-body-FAM30-Bulk (middle row Fig. 2.15): also the residuals in
the x-direction now center on vres = 0 (note that by virtue of the bulk flow the N-body velocities in the
x-direction are also skewed to values larger than vNbody = 0).

The three point-to-point diagrams in the middle row of Fig. 2.15 show that even while the bulk flow
is taken into account systematic motions remain in all three directions. The point-to-point comparisons
still follow a strong correlation with respect to the the N-body velocities. It mainly involves the
presence of the quadrupolar velocity shear component (in addition to a minor ingredient contributed
by the monopole expansion/contraction term). This can be immediately inferred from the comparison
between the diagrams in the central and lower row of Fig. 2.15: once the quadrupole component
“Shear” has been added to the “FAM30+Bulk” velocities the systematic effects seem to have largely
vanished. What remains in the residuals is mainly random scatter, centered on the vres = 0 km s−1

line, with some exceptional outliers originating in the virialized regions (where FAM fails to perform
properly).



62 CHAPTER 2: External Tidal Impact on Local Supercluster Dynamics

Figure 2.14 — Velocity Field Multipole Decomposition: the total N-body velocity field, involving the same one
as in Fig. 2.12 and Fig. 2.13, decomposed into its four different components. The coordinate system is that defined
by the tidal shear tensor, see Fig. 2.12. At each row we depict the velocities in the (x−y), (x− z) and (y− z) plane.
Top: the locally induced velocity, approximated by the FAM30 realization. Second row: the monopole component,
a result of the slight local expansion due to its underdensity wrt. the global Universe. Third row: the bulk flow, of
which most is concentrated in the (x− y) and (y− z) plane. Fourth row: the shear flow component.
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Figure 2.15 — point-to-point comparison between the three successive residual velocities and the corresponding
mock catalog N-body velocity. The three panels in each row correspond to the x, y and z velocity components.
The coordinate system is the “shear reference system”. Top row: the tidal velocity field N-body-FAM. Middle
row: residual velocity field after subtraction bulk flow. Bottom row: residual velocity field after subtraction of
both tidal bulk and shear components.

We have quantified the point-to-point comparisons by performing linear regressions similar to
those presented in Section 2.7. Table 2.5 summarizes the results of this comparison for all catalog
samples for both cosmologies. In both cosmological models the slope of the best fitting line is con-
sistent with unity at ∼ 1σ confidence level. As expected, the scatter around the fit is similar to that of
all previous analyses (see Table 2.3). Offsets around the zero-point are consistent with zero, although
with a large dispersion. The strength of the point-to-point correlations has increased considerably with
respect to their FAM30 counterpart (Table 2.3) and it is very similar to the FAM100 case.

2.8.7 Surrounding Matter Distribution: Tidal Source

The surrounding external matter distribution is the source for the tidal velocity field which we inferred
in the previous sections. For various purposes we wish to relate the computed dipolar bulk flow and
quadrupolar shear flow components to the surrounding matter distribution which induced them.

The induced tidal velocities involve spatial scales ranging from 30 h−1Mpc to 100 h−1Mpc. Over
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this range the linear theory of gravitational instability holds to good approximation. This translates
into a direct linear relationship between induced velocity vext and the cumulative external gravitational
force gext,

vext(x, t) =
2 f (Ωm,Λ)

3HΩm
gext(x, t) , (2.32)

with f (Ωm,Λ) the linear velocity growth factor. This linear relationship also holds for every compo-
nent of the velocity and gravity fields, and thus also for the individual dipolar and quadrupolar compo-
nents of the externally induced velocity field. They are directly proportional to equivalent dipole and
quadrupolar components of the gravity field:

vbulk(x, t) =
2 f (Ωm,Λ)

3HΩm
gbulk(x, t)

si j(x, t) = −2 f (Ωm,Λ)
3HΩm

Ti j(x, t) (2.33)

with the (external) gravitational tidal shear tensorTi j is defined as (see van de Weygaert & Bertschinger
1996),

Ti j =
∂2Φtidal

∂xi∂x j
. (2.34)

Notice that because of its external nature, the term 1
3∇2Φtidal δi j is always equal to zero.

Ideally, we would like to infer the external tidal potential Φtidal directly from the galaxy distribu-
tion in a sufficiently large surrounding region. This is specifically true for its dipolar and quadrupolar
moments, with the intention to insert these terms directly into the expression for the FAM potential
(Eqn. 2.12 and Eqn. 2.10). The required externally induced bulk flow velocity and velocity shear
should be the result. The comparison of the FAM computed velocities for the local volume, in combi-
nation with the computed tidal velocities (Sec. 2.8.2), and the observed and measured velocities would
then enable us to determine the amount of mass and average density in the local volume.

To determine the gravitational influence of the surrounding matter distribution, we set out to assess
the sky distribution of galaxies in the local NBG volume, out to rNBG = 30 h−1Mpc, along with the
external mass distribution in radial shells out to a distance rPS Cz ≤ 100 h−1Mpc. A prominent dipolar
matter configuration in the sky distribution will translate into a strong bulk gravity force. Similarly,
quadrupolar anisotropies will translate into an effective tidal shear force. In Figure 2.16 we have plotted
the galaxies in one of our ΛCDM mock catalogs in five successive distance shells. Aitoff projections
of the angular positions of the galaxies, as seen from the centre of the local NBG volume, provide an
impression of the level of anisotropy in the mass distribution at successive radii.

The first sky plot (top sphere) depicts the sky position of the galaxies in the local NBG-mimicking
mock sample. It involves a highly flattened distribution, perhaps reminiscent of the Supergalactic
Plane. The four subsequent shells correspond to successive cuts through the PSCz mimicking sam-
ples, at sampling depths dsur = [0−30], [30−55], [55−70] and [85−100] h−1Mpc. The first and direct
observation is the deminishing sample density as a function of survey depth, in accordance with the
selection function (Eqn. 2.19). Structure is most prominent in the first shell, at dsur = [30−55] h−1Mpc
(central left sphere). The structure contained in this shell also shows a clear affiliation with the mat-
ter distribution in the local NBG volume. The compact massive concentration at l ≈ 220◦ is clearly
connected to a dense region in the local “plane”. A superficial inspection of the angular galaxy distri-
bution reveals the presence of strong dipolar and quadrupolar components, effecting considerable tidal
forces. Note that both external shells display a rather strong concentration of galaxies in their southern
hemisphere, in the vicinity of l ≈ 180−200◦. Similar but weaker contributions can also be recognized
from the galaxy distribution in the shell between dsur ≈ 70− 85 h−1Mpc. Beyond dsur > 85 h−1Mpc,
however, the angular pattern appear to be considerably less pronounced. This is in line with the earlier
findings that there were hardly noticeable tidal contributions from large distances.

To see to what extent the depicted galaxy distribution can indeed be held responsible for most of
the inferred tidal bulk flow and tidal shear, we have determined the corresponding bulk force gbulk
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Figure 2.16 — Aitoff projections of the galaxy distribution of a NBG + PSCz ΛCDM catalog. The top-
most panel shows the corresponding NBG distribution, dsur = [0,30] h−1Mpc. The subsequent panels depict
the external galaxy distribution enclosed by the shells defined by survey depth dsur = [30− 55] h−1Mpc, dsur =

[55−70] h−1Mpc dsur = [70−85] h−1Mpc and dsur = [85−100] h−1Mpc.

(Eqn. 2.4) and tidal shear Ti j (Eqn. 2.5) evoked by the external galaxy distribution (r > 30 h−1Mpc).
Since we do not have a continuous density field but the positions of a finite number of objects in our
galaxy flux-limited and full mass distribution catalogs, the bulk acceleration on the LG is computed
from the discrete equivalent. For a sample of galaxies at locations xi, with an average number density
n of selected objects, this leads to

gbulk =
H f (Ωm,Λ)

4πn

∑

i

1
ψ(xk)

xk

|xk |3
. (2.35)

where ψ(xk) is the sample selection function at distance xk, whose inverse functions as weighting
factor. For practical reasons, comparison with the inferred bulk flow vbulk, we have translated the bulk
acceleration into equivalent velocity units by means of the transformation H f (Ωm,Λ)/ 3

2ΩmH2. The
equivalent “discrete” expression for the external tidal shear is

Ti j =
H f (Ωm,Λ)

4πn

∑

i

1
ψ(xk)

3 xki xk j

|xk |5
. (2.36)

For the ΛCDM mock galaxy sample depicted in Fig 2.16 we determine the gravity dipole by
computing for a set of spherical external shells the resulting bulk flow acceleration (Eqn. 2.35) and
the gravity quadrupole by computing external tidal shear (Eqn. 2.36). Recently, a similar approach
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Figure 2.17 — Sky distribution of galaxies in external shell of survey depth dsur = 30−100 h−1Mpc. This galaxy
distribution should reflect the mass distribution inducing the local tidal velocity flow. By means of symbols we
have indicated the track of the gravity dipole and quadrupole eigenvector directions (cf. Eqn. 2.35 and Eqn. 2.36)
on the sky, by radially expanding outward the survey depth dsur in steps of 1 h−1Mpc, from dsur = 30 h−1Mpc
to dsur = 100 h−1Mpc. For comparison the same symbol, but then enlarged, indicates the directions for the
corresponding bulk velocity and velocity shear eigenvector directions. Diamond: dipole. Triangle: stretching
component shear. Square: middle component shear. Star: compressional component shear.

was followed by Teodoro et al. (2003). The spherical shell volumes are defined by an inner radius
rinn = 30 h−1Mpc and an outer radius rout. The width of the shell is gradually enlarged by increasing
rout from rout = 30 h−1Mpc to rout = 100 h−1Mpc. The convergence of the resulting gravity dipole
direction on the sky can be observed in Fig. 2.17. The small red diamonds are consistently located
near l ≈ 230◦, and converge at a sky location close to the direction of the velocity dipole (large red
diamond). To get an idea of the amplitudes involved, Fig. 2.19 (top panel) shows the development of
the cumulative gravity dipole as a function of external distance dsur (30 h−1Mpc < dsur < 100 h−1Mpc).
By means of symbols the corresponding velocity dipole, for each of the three directions x, y and z, are
inserted at the outer radius of dsur ≈ 100 h−1Mpc. Note that we have restricted ourselves to a case study
example. A more extensive and proper assesment, including a proper error estimate of both gravity
dipole and quadrupole as well as the bulk and shear flow, is beyond the scope of the present argument.
This issue, involving the shot noise influence on gravity dipole and quadrupole and the role of FAM
uncertainties on the velocity flow components, will be treated in more detail in a forthcoming study.

We see that in the x-, y and z-directions of the gravity and velocity dipoles are in reasonable agree-
ment, within a margin of ≈ 30 km s−1. This observation justifies our expectation that the dipole can be
estimated to sufficient accuracy from the surrounding external galaxy distribution. These observations
form a justification of our expectation that the dipole may be estimated from the surrounding external
galaxy distribution, so that the latter can be invoked to correct for the influence of the external tidal
field in the dynamics of the local volume.

The situation is comparable for the cumulative tidal shear, in terms of its three eigenvalues and
eigenvectors. Also the gravity quadrupole appears to converge relatively smoothly towards the velocity
shear. This may be inferred from the plotted directions of the eigenvectors êT 1, êT 2 and êT 3 of the tidal
shear Ti j. They are indicated by means of three symbols, the triangle corresponding to the stretching
component T1, the star the middle component T2 and the square the compressional component T3.
The tidal shear tensor wanders extensively across the “sky” as we push the outer radius of the external
shell outward, as is shown by the paths of the corresponding eigenvectors. Interestingly, once the shell
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Figure 2.18 — Aitoff projections of the galaxy distribution of a NBG + PSCz τCDM catalog. The top-most
panel shows the corresponding NBG distribution, dsur = [0,30] h−1Mpc. The subsequent 4 panels depict the
external galaxy distribution enclosed by the shells defined by survey depth dsur = [30−55] h−1Mpc, dsur = [55−
70] h−1Mpc dsur = [70−85] h−1Mpc and dsur = [85−100] h−1Mpc. Bottom panel: convergence gravity dipole and
quadrupole. By means of symbols we have indicated the track of the gravity dipole and quadrupole eigenvector
directions (cf. Eqn. 2.35 and Eqn. 2.36) on the sky, by radially expanding outward the survey depth d sur in steps
of 1 h−1Mpc, from dsur = 30 h−1Mpc to dsur = 100 h−1Mpc. For comparison the same symbol, but then enlarged,
indicates the directions for the corresponding bulk velocity and velocity shear eigenvector directions. Diamond:
dipole. Triangle: stretching component shear. Square: middle component shear. Star: compressional component
shear.
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Figure 2.19 — Cumulative gravity dipole and tidal gravity shear. As a function of survey depth dsur the Cartesian
components of the gravity dipole, gx, gy and gz is followed (in equivalent velocity unit km s−1). The symbols at
dsur indicate the corresponding velocity dipole. Top panel: ΛCDM. Bottom panel: τCDM.

radius starts to approach 100 h−1Mpc, each of the eigenvectors appear to converge near the location
of the corresponding stretching, central and compressing velocity shear tensor eigenvectors. However,
also here we notice significant deviations in individual cases.

For comparison, we can appreciate the role of the external tidal field on local dynamics for the case
of the τCDM cosmology. Figure 2.18 combines the galaxy sky distribution for a τCDM mock galaxy
sample, in the same radial shells as in Fig. 2.16. The final frame shows the Aitoff projection of the
gravity dipole and gravity quadrupole eigenvectors for a set of gradually increasing radial shells. From
the galaxy sky distribution in the four slices at sampling depths dsur = [0− 30], [30− 55], [55− 70]
and [85−100] h−1Mpc we notice that these involve considerably more isotropic distributions. Hardly
any prominent patterns can be discerned in the sky distribution. This is expressed in a more erratic
wandering of gravity dipole and quadrupole directions (lower frame, Fig. 2.16). Even though they
appear to converge near the derived velocity dipole and shear flow quadrupole, it agrees less good than
in the case of the more prominent anisotropies in the ΛCDM cosmology. In this, we have to realize
that the amplitude of dipole and quadrupolar contributions in the two scenarios are not too different
(cf. Table 2.5). The less prominent anisotropies in the τCDM catalogues are compensated by a higher
average matter density. Possibly the considerable deviations of the τCDM dipole and quadrupole are
due to the smaller coherence length of the τCDM fluctuations and the considerably more isotropically
oriented contributions by the individual external matter concentrations.

2.8.8 Multipole Components: Summary

The above results reassure the fact that the external tidal field can be well characterized by its main
multipole components, the bulk flow and velocity shear. In terms of multipole amplitude convergence,
these results show a better agreement for the ΛCDM model than for the τCDM one. This is due to
the intrinsic characteristics of both cosmic models. As has been discussed in Section 2.4, and may
be directly appreciated from Fig. 2.2, the relatively lower amplitude of the τCDM perturbations is
compensated by a higher mass content. It leads to an equally strong external gravitational influence.
On the other hand, the smaller spatial coherence of density features in the τCDM scenario causes the
orientation of the gravity dipole and quadrupoles to be rather jittery. The direction of the cumulative
gravitational force in the τCDM scenario wanders erratically over the sky as we move further out from
the local volume. This differs from the situation in theΛCDM samples, where we observe a consistent,
systematic and coherent convergence towards the final dipole direction.

The above results confirm the fact that the external tidal velocity field can be well characterized by
its main multipole components, the bulk flow and velocity shear. This depends to some extent on the
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cosmology. In terms of multipole amplitude convergence, these results show a better agreement for
the ΛCDM than for the τCDM model.

2.9 Conclusions

In this work we have applied the FAM technique to construct model velocity fields using mock catalogs
resembling the NBG and IRAS-PSCz galaxy catalogs. The mock catalogs were extracted from N-
body simulations in which the central observer mimics some of the properties of the Local Group
environment. Comparing FAM velocities obtained from the NBG mock catalogs with those obtained
from the larger PSCz mock catalogs and, finally, to the N-body velocities, allowed us to quantify the
importance of the gravity field generated by the mass distribution within and beyond the LS.

Neglecting the mass distribution outside the LS leads to a systematic underestimate of the gravity
field. The amplitude of this bias depends on the amount of power on scales larger than the LS, and thus
on the cosmological models. In a τCDM universe model peculiar velocities are ∼ 20% smaller than
the true ones. In the case of a ΛCDM model, which has more power on large scales, model velocities
are underestimated by ∼ 35%.

The results of the described FAM analyses are encouraging in the sense that the presently available
all-sky, flux limited catalogs such as PSCz appear to be capable of accounting for the major share of
the velocity field on the scale of the Local Supercluster. While the 30 h−1Mpc restricted NBG sample
showed a substantial deficiency in its capacity to generate the local cosmic motions, in particular in the
case of the ΛCDM Universe models, in both cases the 100 h−1Mpc mock samples appear to embody
nearly all matter concentrations responsible for the generated velocities in our local (NBG catalog)
neighbourhood.

Also we notice a telling difference between the performance of both FAM30 and FAM100 recon-
structions for the case of the ΛCDM cosmology catalogs on the one hand and the τCDM model cat-
alogs on the other hand. The fact that the ΛCDM model involves substantially more power on large
scales, r > 30 h−1Mpc, than the τCDM model is reflected in the better quality of the FAM30 recon-
structions for the τCDM catalogs. The presence of substantial mass inhomogeneities with a scale in
excess of that of the local Universe regions implies a larger external contribution to the local velocity
field. This is also borne out by the fact that for the ΛCDM catalogs we see a considerable improve-
ment in velocity field reconstruction quality going from the FAM30 to the FAM100 reconstructions (see
Table 2.4), while this is far less so for the τCDM catalogs.

Of course, whether the resulting models do indeed form an unbiased representation of the actual
velocity field will to some extent also depend on whether the galaxy distribution in the flux limited
galaxy catalogs does represent an unbiased reflection of the actual (external) mass distribution sur-
rounding the Local Supercluster resembling region. The results of recent studies (Verde et al. 2002;
Lahav et al. 2002; Tegmark et al. 2001) are quite encouraging in this respect. They seem to indicate,
certainly on scales larger than ≈ 5 h−1Mpc, that both IRAS and 2dF galaxies trace the underlying mass
distribution in an unbiased fashion.

Nonetheless, observations along the lines of the presented mock catalogs seem to suggest that a
proper analysis of Local Universe dynamics based on a combination of information of local small-scale
(peculiar) galaxy velocities and a rough yet well-founded idea of the matter distribution on scales of a
few hundred 100 h−1Mpc may help us towards acquiring far more insight into the dynamical history
of the emergence and assembly of the striking nonlinear patterns we have discovered in the large scale
matter distribution. Moreover, we have uncovered evidence that a meticulous point-to-point analysis
of such velocity samples may help towards modelling the total local force field, including a proper
model for the external forces.

When modeling the peculiar velocity of a LS look-alike region by only considering the matter
distribution within 30 h−1Mpc, the end product is a biased velocity field lacking of any large scale
signature. This bias can be eliminated by accounting for the mass distribution beyond the LS. Our
experiments demonstrate that sampling the mass distribution out to scales of 100 h−1Mpc, in a flux



70 CHAPTER 2: External Tidal Impact on Local Supercluster Dynamics

limited fashion, is sufficient to account for the large scale contribution to the peculiar velocities in
our cosmological neighborhood. More precisely, we have found that the cosmic velocity field within
the LS, modeled by FAM using the mass distribution traced by PSCz galaxies out to 100 h−1Mpc is
unbiased. The differences between true and FAM velocity field are random and mainly occur in high
density environments which are dominated by virial motions that are not modeled correctly by FAM.

The gravity and velocity fields generated by the mass distribution beyond the scale of the Local Su-
percluster are well characterized by their bulk flow and shear components. Therefore, one can obtain
an unbiased model velocity field by superimposing a local model velocity field within the Local Super-
cluster to the bulk flow and shear components of the velocity field generated by the mass distribution
between 30 and 100 h−1Mpc.

These considerations suggest that velocity models which only consider the dynamics within the
Local Superclusters (e.g. that of Shaya et al. 1995), might have been affected by systematic errors. In
particular, our work suggests that, when compared with observed velocities, they might have underes-
timated the value of the density parameter, Ωm, by 15− 25%. A more precise evaluation of this bias
will be performed in a future work in which we will perform the same analysis presented here using
a new set of mock catalogs that are constrain to reproduce the distribution of the mass in our local
Universe (see e.g. van de Weygaert & Hoffman 2000; Mathis et al. 2002; Klypin et al. 2003).

Furthermore, our analysis shows that all model velocity fields of the Local Supercluster which are
based on the PSCz catalog (e.g. Branchini et al. 1999; Schmoldt et al. 1999; Valentine et al. 2000;
Sharpe et al. 2001) are free from systematic biases arising from having neglected the large scale con-
tribution from scales beyond its realm. Moreover, since the IRAS PSCz survey is considerably deeper
than 100 h−1Mpc, it is reasonable to assume that the PSCz catalog can be used to predict unbiased
velocities well beyond our Local Supercluster. The plausibility of this hypothesis has been recently
confirmed by the analysis of Hoffman et al. (2001) that shows that the bulk and shear components of
the external velocity field in the local universe inferred from the peculiar velocities in the Mark III
catalog (Willick et al. 1997b; Willick & Strauss 1998) are qualitatively consistent with those expected
from the mass distribution traced by IRAS PSCz galaxies. On the other hand, the claim on the basis
of the SMAC cluster peculiar velocity sample (Hudson et al. 2004) of an extra 225 km s−1 bulk flow
component generated by matter concentrations on a scale exceeding 100 h−1Mpc should issue some
caution with respect to claims of having accounted for all external influences on the local cosmic flow.

Coupling the local velocity model provided by FAM to the large scale contribution provided by
linear theory allows to obtain a model velocity field which is unbiased, nonlinear and fast to compute.
This means that, for the first time, we are in the position of performing a large number of experiments
aimed at studying the nonlinear evolution of cosmic structures, such as filaments and clusters, and
explore the role of tidal fields during their gravitational collapse. This relates to the observation that
filaments are forming as a consequence of anisotropic collapse, induced a compressional tidal force
acting perpendicular to the “axis” of the filament. By tracing out the coherent paths of the compres-
sional modes of the primordial tidal field one can identify the sites of the later nonlinear filaments
(Bond et al. 1996; van de Weygaert 2002). In turn this is directly related to cluster locations: the
strong primordial tidal shear is the result of a local quadrupolar mass distribution. The corresponding
overdensities tend to evolve into rich clusters, explaining the intimate link of clusters and filaments in
the cosmic web.

Finally, it is worth stressing that in this work we have neglected the fact that we measure galaxy
redshifts rather then positions. By means of an elegant formalism, Phelps (2000) demonstrated the fea-
sibility of working out the action principle in redshift space. With respect to FAM, Nusser & Branchini
(2000) have shown that it can be easily implemented in redshift space and Branchini, Eldar, & Nusser
(2002) demonstrated that it performs equally well in real and redshift space. Therefore, our unbiased,
nonlinear model velocity field also allows to perform an accurate correction for redshift space distor-
tions and thus lead to a precise reconstruction of the mass distribution in real space. Mapping the mass
in the local universe down to nonlinear scales and comparing it with the distribution of baryonic mass
(in form of stars or diffuse, ionized gas) is of considerable astrophysical interests as it will constrain
and help understanding the process of galaxy formation and evolution within the Universe
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3
Dipole & Quadrupole moments of the

local cosmic velocity field

E. Romano-Dı́az, R. van de Weygaert, E. Branchini & Y. Hoffman.

W have compared the bulk flow and velocity shear components of reconstructed peculiar ve-
locity fields with respect to the expected values within a volume of 60 h−1Mpc centred at the

Local Group. The velocity reconstructions were performed by means of the Zel’dovich approxima-
tion, linear theory and our implementation of the Least Action Principle, FAM. The velocity fields
where extracted from mock galaxy catalogs that mimic as close as possible the real mass distribution
up to 150 h−1Mpc from the Local Group from constrained N−body simulations of our nearby Uni-
verse. These catalogs were constructed to sample properly the LS region (30 h−1Mpc), and the large
scale structure following the selection function from the PSCz catalog (30−150 h−1Mpc). Our mock
catalogs successfully reproduce the main structures of our nearby cosmic region such as, the Local
Supercluster, Great Attractor, Perseus-Pisces supercluster, Coma, Cetus. The reliability of the catalogs
was assessed by computing their dipolar moment of the mass distribution. The velocity component’s
comparison show that the 3 methods give similar results (provided a smoothing procedure) and consis-
tent with the expected values within the 1σ errors. However, the FAM technique proved to give more
accurate and reliable results along the whole range in distances than the other two methods, proving in
this way to be the tool to study the dynamics of the Local Group and the Local Supercluster.
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3.1 Introduction

Within the Gravity Instability [GI] scenario for the growth of cosmic structures, the peculiar veloc-
ity field of galaxies provides a direct and reliable probe of the matter distribution, under the natural
assumption that these objects are unbiased tracers of the large scale, gravitationally induced, velocity
field. Furthermore, since peculiar velocities are non-local and have contributions from many different
scales and regions, their respective analysis provides information on regions not covered by the data,
e.g. the Zone of Avoidance (e.g. Kolatt et al. 1996; Zaroubi et al. 1999), and on scales larger than the
sampled regions (Hoffman et al. 2001).

The present large scale structures of our Universe and their motions are due to the growth of
gravitational instabilities from an initially homogeneous Gaussian density field. This implies that
peculiar velocities at early epochs were negligible. Under this assumption, the peculiar velocity of
cosmic regions like our Local Group is mainly due to the gravitational pull of the mass distribution
surrounding them.

An important characteristic of the peculiar velocity field is that if GI is valid, then the large scale
velocity field is expected to be irrotational, i.e. ∇× v = 0. Any vorticity mode would have decayed
during the linear regime as the Universe expanded, and based on Kelvin’s circulation theorem the flow
remains vorticity-free (irrotational) in the quasi-linear regime, even in the presence of nonlinearities,
provided these are not so large as to cause dissipative processes (e.g. Peebles 1990; Dekel 1994). This
property of the velocity field will prove to be very useful along this chapter.

The dipole anisotropy of the cosmic microwave background (CMB) radiation is generally inter-
preted as a Doppler effect due to the motion of the Sun with respect to the CMB rest frame. The
velocity of the Local Group [LG, hereafter] is now well determined from COBE (Kogut et al. 1993),
627± 22 km s−1 toward l = 276± 3◦, b = 30± 3◦. Less well known is the depth and degree to which
nearby galaxies share in this motion and the scales and amplitudes of the mass fluctuations responsible
for the flow. The boundaries of the LG are not very clear and they change from study to study. A
common one is to consider a spherical volume of radius of 5 h−1Mpc around the galaxy-pair-system:
Milky way - Andromeda. A dynamical definition is given by determining the zero-velocity surface
separating the LG from the local Hubble expansion flow. With a total mass of ∼ 3×1012 M�, and an
internal velocity dispersion ∼ 60 km s−1 (Sandage 1986), such a region has a radius ∼ 1.8 h−1Mpc.

Provided that the acceleration is dominated by long wavelength modes, implying that linear theory
is applicable, the velocity and acceleration vectors should be parallel with a constant of proportionality
from which we may determine the density parameter Ωm. In biased theories of galaxy formation light
does not trace mass, but on large scales at least the fluctuations on light should be proportional to the
underlying fluctuations in mass, so one can still expects that the velocity and gravity vectors to be
parallel, but now the constant of proportionality is the bias parameter b.

The analysis of peculiar velocities plays a major role in Cosmology and the formation of structure
in the Universe. Some of the most important goals of peculiar velocity fields and their surveys are the
confirmation of the gravitational instability picture, the determination of Ωm, to find whether initial
fluctuations were Gaussian, if so, then if the power spectrum was scale-invariant, and the characteri-
zation of the mass distribution on very large scales. Because of shot noise, existing redshift surveys
cannot account properly for fluctuations at distances larger than 150 h−1Mpc. Nevertheless, large am-
plitude coherent peculiar velocities on very large scales can be detected at such distances with modest
samples (e.g. Lauer & Postman 1994; Dekel 1994). This is one of the most important features of
peculiar velocities, the detection of large scale flows (dipole) due to matter concentrations. Hence,
the peculiar velocity field of galaxies and clusters provides a direct and reliable probe of the matter
distribution, under the natural assumption that these objects are unbiased tracers of the large-scale,
gravitationally induced, velocity field. In order to measure peculiar velocities of galaxies, observers
use a variety of distance indicators. In general, these indicators relate two quantities, one of those is
distance dependent (e.g. galaxy luminosity), and the other one is distance independent (e.g. galaxy
rotational velocity). The best known examples of such relations are the Tully-Fisher (Tully & Fisher
1977) and Faber-Jackson (Faber & Jackson 1976) relations, although in the last decade many others
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distance indicators have been employed to measure cosmological distances (e.g. SNIa, Cepheids, etc.).
The availability of an increasing number of galaxy peculiar velocity catalogs, some of them with few
thousand objects, have turned cosmic flows to one of the main probes used to study the large scale
structure in the nearby Universe.

On scales large enough, where the dynamics is dominated by gravity and the deviations from
homogeneity are small, the velocity field reflects the dynamical evolution of structure and the total
underlying mass distribution, observed and unobserved. On more nearby and shorter scales, it can
serve to help us to understand the dynamics of our own Local Group and to realize the role and
influence of the large scale structure over the LG. One way to achieve these goals is by reconstructing
or modelling the full dynamical structure in the local cosmic neighborhood.

Spatial variations in the mass distribution in our Universe induce (as a consequence) variations in
the gravitational force field measured by an observer. These, in turn, induce a peculiar velocity field
characteristic of this particular cosmic region, hence exhibiting corresponding spatial variations, which
are manifested as a velocity shear.

Our Local Group is located in a very peculiar cosmic location in our Universe. Indeed, as it has
been shown by different analysis of surveys (e.g. IRAS 1.2 Jy, MARK III, etc.), the LG is situated
at a saddle point between two huge structures, from one side, the Great Attractor [GA], and at the
opposite site the Perseus-Pisces supercluster [PP]. Furthermore, the LG is just at the edge of a bridge
connecting these two structures, the Local Supercluster [LS]. Even more amazing is the fact that all
these structures reside almost along the same plane, the supergalactic x − y plane. This particular
and unique situation gives a special flavour to the dynamics of the LG. Within this large scale mass
configuration, the LG moves towards the direction of the GA.

The influence of the structures conforming the LS, more in concrete the Virgo Cluster, over the
dynamics of the LG is of considerable importance. There is a net peculiar motion of the LG towards
Virgo, known as the Virgocentric infall (see Pierce & Tully 1988). This motion accounts for ∼ 46% of
the total amplitude of the LG motion (Davis & Peebles 1983b). The LS has the shape of a wall located
right in front of the LG at the x− y supergalactic plane, and at a distance of about 15 h−1Mpc. The LS
is similar in shape to a flattened ellipse (pancake), with the Virgo Cluster near its center its extent in
the longest direction is about 40−50 h−1Mpc.

The fact that galaxies within a volume enclosing the LS seem to fall into Virgo is a mere coin-
cidence. They are directed towards a rather central, wide region of the LS which coincides with the
positions of the Virgo cluster and the Ursa Major cluster (Burstein et al. 1990). It has been measured
that galaxies within the plane of the LS are falling towards this central region with velocities that in-
crease with distance outward. The LG, which lies near the edge of the LS, has a velocity ∼ 300 km s−1

to its centre, but only 150 km s−1 is directed towards the central region of the LS.
Lilje, Yahil, & Jones (1986), estimated that at the LG location the velocity shear had a value

∼ 200 km s−1 with respect to the Virgo cluster. They argued that the source of this shear had to be
a considerable mass concentration at a distance of ∼ 3 times the distance to the Virgo cluster. This
study uncovered the source of our local velocity flow, the Great Attractor, from a sample of peculiar
velocities of galaxies within a radius of 60 h−1Mpc around the LG. Hoffman et al. (2001) reconstructed
the tidally induced component of the cosmic velocity field out to a distance of 60 h−1Mpc. Their results
revealed that the Shapley supercluster is a major tidal source even at scales of ∼ 140 h−1Mpc, although
it is not the only relevant external perturbation. With a constructed toy model composed by a big mass
concentration (Shapley supercluster), and two voids, they were able of fitting the observed results given
by the Mark III catalog (Willick et al. 1997a) and SFI data (Haynes et al. 1999b).

Several methods for modelling peculiar velocity fields from galaxy positions have been proposed
in the last decades. Most of these methods fail in reproducing the velocity fields even at mildly
non-linear regions, being their predictions only valid at the linear regime. Hence, the success of
the methods is limited by the results of linear theory or some first order approximation (Zel’dovich
approx.). The necessity of an algorithm capable of dealing with the mildly non-linear regime and
predicting/reconstructing/modelling bias-free peculiar velocity fields is of great importance. Such a
method would help us to understand in a more consistent, systematic and complete way, the inter-
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play between the different structures that shape the portion of Universe under study, our local cosmic
neighborhood. Furthermore, it would allow us to make more realistic estimates of the real velocity
field even at the mildly non-linear regime without loosing generality by applying large smoothing
procedures. A method that has proved to be able to overcome the problems mentioned above is the
Fast Action Minimization algorithm [FAM] (Nusser & Branchini 2000). This method is a very effi-
cient implementation of the Least Action Principle introduced by Peebles (1989, 1990). Some of its
advantages over other methods are the capability to deal with a large number of objects, an efficient
computing gravity method (making it as a consequence a fast method), and the ability to deal with the
mildly non-linear structures (clusters and superclusters of galaxies).

In this Chapter we will address two main questions. The first one is how well we can construct
synthetic mock galaxy catalogs from specific purpose constrained N−body simulations aimed to mimic
as close as possible our nearby Universe. We will assert the degree of confiability by computing one of
the most characteristic statistical quantities, the gravity dipole. After having asserted the reliability of
our mock catalogs, we will ask ourself how well we can recover the main characteristics of the peculiar
velocity field of galaxies from the galaxy mocks even at the mildly non-linear regime, the bulk flow
and shear velocities. To do so, we will apply two standard reconstruction techniques: linear theory and
Zel’dovich approximation, together with the FAM technique presented in Chapter 2. We will compare
the estimated modeled velocity quantities with respect to those from the real velocity field. We will
show that the estimates derived with the FAM algorithm are in good agreement and closer to the real
measured bulk flow and shear velocities than the ones computed by means of the linear and Zel’dovich
approximations.

We will assume in this Chapter that the motion of our Local Group has been generated by gravita-
tional perturbations. Because of these reasons and in order to minimize errors like the “Kaiser effect”
(Kaiser 1987), we will simplify our approach by working in “real” space instead of redshift space.

A very important quality of our analysis is that we attempt to model as realistically the actual
observations by using constrained simulations of our nearby Universe. For this reason, we will limit
our analysis up to distances of 60 h−1Mpc from the LG location.

3.2 Theoretical framework

In linear perturbation theory, initial peculiar velocities are damped by the expansion of the universe,
and the peculiar velocity field v(x) is directly proportional to the gravitational acceleration due to the
matter distribution around the position x (Peebles 1980). We can express such acceleration due to
matter with density contrast δ(x) in a given volume like:

g(x) =
3

4π

∫
dxδ(x)

x′−x
|x′−x|3 . (3.1)

The acceleration g is related to the peculiar velocity according to the relation (Peebles 1980):

v(x) =
1
3

f H0 g(x) , (3.2)

where H0 is the Hubble constant measured in units of 100h km s−1 Mpc−1. The quantity f =
d ln D/d lna is the logarithmic derivative of the amplitude of the growing mode of density perturbations
with respect to the scale factor a. This factor carries information about the underlying cosmological
model, and is related to the cosmological matter density parameter Ωm, cosmological constant ΩΛ
and z (redshift). A common approximation is given by f (Ωm) ≈ Ω0.6

m (Peebles 1980), while a more
complete approximation in the general case at z = 0.0 is given by Lahav et al. (1991)

f (Ωm,Λ) = Ω0.6
m +

ΩΛ
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(
1+

1
2
Ωm

)
. (3.3)

In the present study, we will adopt this form for being the most complete approximation for f .
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Following Eqn. 3.2, the peculiar velocity field v(x), and the linear mass density contrast δ(x), are
then related to one another according to the local differential relation (the continuity equation)

∇ ·v(x) = −H0 f δ(x) , (3.4)

which has as a solution or global (integral) representation, valid under the GI regime for an irrotational
field

v(x) =
H0 f
4πb

∫
dxδ(x)

x′−x
|x′−x|3 , (3.5)

where b is the “linear biasing” factor, which transforms the observed galaxy density into a mass den-
sity: δgal = bδmat. Along this analysis we will make the assumption that b is constant, independent of
position or smoothing scale. Notice that the peculiar velocity field is determined by the distribution of
the matter with all its components, especially by the dominant dark matter component.

It is well known that the peculiar velocities of nearby galaxies are not randomly oriented but they
rather participate in a coherent flow (bulk motion) together with our LG, at least for a volume of radius
∼ 60 h−1Mpc. However, there should also exist velocity components related to the linear and non-
linear local dynamics of each region acting over the nearby galaxies and cluster of galaxies. In this
way, we can understand peculiar velocities as a composition of several modes coming from the large
scale distribution which will be reflected in a coherent flow and local contributions.

When expanding the peculiar velocity field in a multipolar decomposition, the first component
is related to the Hubble expansion, this monopole term introduces a “breathing mode” which affects
the Hubble expansion within the volume, hence having no measurable effect. The second term is the
dipolar moment, this term presents a very coherent pattern within the sample that disappears when
considering peculiar velocities relative to a central observer instead of absolute velocities. This term
is known as the “bulk flow”. The next term in the velocity expansion is the quadrupole, which effects
rapidly decrease with distance. This component of higher order in the decomposition is the outcome
of the linear and non-linear configuration of the mass distribution. In the case of the peculiar location
of the LG (as shown in Figs. 3.3, 3.4 & 3.5), the configuration between the GA and PP introduces a
distortion pattern in the peculiar velocity field, plus the influence of the LS. This term is well known
like the “shear” velocity. The other higher order terms will be related to the highly non-linear regime
(e.g. cluster dynamics). The influence of these terms will be very local because of their strong depen-
dence in distance. So, we can fit a model to the several components that conform the velocity field of
the sort:

vi(x) = Vbulk,i+ςi j x̂i+O(x) , (3.6)

where i, j refer to the 3 Cartesian components and x̂ j refers to the distance component along the j
direction. Vbulk represents the bulk component, and ςi j is the second order velocity component, the
other higher terms are included in O(x).

Before proceeding, we want to make a distinction between the dipolar moment computed from
the mass distribution and the one computed from the peculiar velocity field; we will call dipole to the
quantity inferred from the mass distribution, while we will call bulk flow the one obtained from the
velocities.

3.2.1 The velocity bulk flow

The Bulk flow is defined as the average streaming motion within certain volume. The motion direction
and amplitude of this bulk flow on different scales are the simplest quantities to measure from peculiar
velocity data. Nevertheless, they provide constraints on the power-spectrum of mass fluctuations.
Theoretically, the mean square bulk velocity within a sphere of radius R, is given by,

〈v2(R)〉 = H2 f 2

2π2

∫ ∞

0
P(k)W̃2(kR)dk , (3.7)
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where P(k) is the mass fluctuation power spectrum and W̃(kR) is the Fourier transform of a top-hat
window of radius R. The rms expected bulk velocity is then given by,

Vb(R) =
√
〈v2(R)〉 . (3.8)

It is interesting to compare the fluctuations in the bulk flow velocity within a sphere of radius R
with the corresponding mass fluctuations within the same sphere,

〈(
δM(R)
M(R)

)2〉
=

1

(2π)3

∫ ∞

0
P(k)W̃2(kR)dk . (3.9)

Both Eqns. 3.8 and 3.9 differ with two powers of k in the integrand. This means that the peculiar
velocity field on a given scale is more sensitive to components of the power spectrum on larger scales
than is the density field, and thus is a useful probe of the large scale power. Therefore, the rms velocity
includes contributions from much larger scales than do the rms mass fluctuations (dipole).

In practice, the bulk flow is computed from velocity surveys in the following way; let vi be the
radial peculiar velocity of the ith galaxy in the sample and εi the uncertainty on that quantity. The bulk
flow vector Vb will be obtained from minimizing the merit function (e.g. Lynden-Bell et al. 1988)

χ2 =
∑

i

wi

(
vi−Vb · x̂i

εi

)2

, (3.10)

where x̂i is the unit vector in the direction of the ith galaxy, wi is a weight given by the selection
function of the sample, and εi is obtained from the distance indicator used in the catalog (e.g. Tully-
Fisher, SNIa, Faber-Jackson relations, etc.)

3.2.2 The velocity shear

The second term in the expansion of the peculiar velocity field is conformed by 3 components and it
can be expressed as:

ςi j =
∂vi

∂x j
= Θ

δi j

3
+ si j+ωi j , (3.11)

in the matrix representation of this tensor we can understand them as 3 different components: the
symmetric part, trace, and antisymmetric part. ωi j represents the antisymmetric part, known as the
vorticity term, but because we have assumed that the peculiar field is irrotational, this term is equal
to zero. The trace-free symmetric part si j is the shear tensor. Θ accounts for possible local isotropic
perturbations about the Hubble expansion (δi j is the identity matrix), and it represents the divergence
of the velocity field Θ = ∇ ·v.

The gravitational source of ςi j is the tidal field determined by the structures surrounding the ob-
server. In the case of the LG the possible structures responsible for this cosmic shear are mainly: the
GA, PP, Coma, Cetus, the local void.

3.3 Setting the environment: Initial conditions

Because we are interested in studying how well we can model the main components of the peculiar
velocity field of our cosmic neighborhood, we not only demand that the N−body simulations should
resemble the statistical properties of our “real” Universe, but also should be able of reproducing the
distribution and spatial configuration of matter at linear and weakly non-linear scales. The standard
approach for producing the desired realizations is to assume a cosmological model and to use the
appropriate primordial power spectrum to construct a random realization of the density field within a
desired simulation volume and to evolve them via N−body machinery. This method was followed in
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Chapter 2. An alternative approach is to find a way of producing simulations which reproduce and
mimic the matter distribution at large and intermediate scales of our real Universe. Our intention is to
reproduce the matter distribution as close as possible up to considerable large volumes (& 60 h−1Mpc)
as revealed by the actual large scale surveys. This can be done by setting up the initial density fields
by constrained realizations of Gaussian fields (Bertschinger (1987); Hoffman & Ribak (1991) and
its implementation van de Weygaert & Bertschinger (1996)), thereby constructing the density and
velocity fields in such a way that both agree with the observed large scale structures and the assumed
cosmological model. This procedure is usually referred as “constrained simulations” [CS, hereafter].
For these reasons, we have adopted this technique for the present study. In the following subsections we
will introduce the procedure of the CS while a more rigorous and complete mathematical description
can be found at the end of this chapter (Appendix 3.A and 3.B) and Chapter 8.

3.3.1 Constrained Simulations

CSs have been performed in the past by several authors with the purpose of investigating several
properties of our local Universe (Kolatt et al. 1996), the morphology of the density field and dynamics
(Klypin et al. 2003), the coldness of the local flow (van de Weygaert & Hoffman 1999), the formation
of the local galaxy population (Mathis et al. 2002), etc. Nonetheless, none of the previous studies
have tackled the problem of the kinematics of the LG & LS and its origins, the origin of the bulk flow
velocity, the structures responsible for this motion and their influence range.

Within the GI scenario, the primordial perturbations responsible for the large scale structure con-
stitute a Gaussian Random field, which is defined by its power spectrum and a normalization power.
It is assumed that in these random fields, the density peaks are the progenitors of objects like galaxies
and clusters, while their minima will correspond to the centers of voids. The theory specifies only
the statistical properties of the amplitudes and phases in the plane waves representation. Thus, for
Gaussian fields the real and imaginary parts are independently normally distributed around zero with a
variance given by half of the power spectrum, which implies that the phases are uniformly distributed.
This is being used in setting up the initial conditions for large N−body simulations. Nevertheless, there
are many interesting problems where one is interested in generating special-purpose initial conditions,
which are designed to obey some given constraints (see van de Weygaert & van Kampen 1993; van
Haarlem & van de Weygaert 1993; van de Weygaert & Babul 1994). This is the case for the present
Chapter where we are interested in modelling the main components of the velocity field of our Local
Universe. A very successful tool for reconstructing the Large scale structure of our Universe and set-
ting up the initial conditions that prevailed at the primeval Universe is the combined use of the Wiener
filter (Wiener 1949; Rybicki & Press 1992; Lahav et al. 1994; Bond 1995; Fisher et al. 1995b; Zaroubi
et al. 1995, 1999) and Constrained Realizations (Bertschinger 1987; Hoffman & Ribak 1991; van de
Weygaert & Bertschinger 1996).

The present available redshift and radial velocity surveys provide us with relevant information that
enables the reconstruction of the large scale mass distribution of our nearby Universe. An efficient
algorithm for reconstructing such density and velocity fields from incomplete, sparse and noisy data
from observations is provided by the formalism of the Wiener filter (WF, Lahav et al. 1994; Fisher
et al. 1995b; Zaroubi et al. 1995, 1999). The application of the WF requires some model for the power
spectrum that defines statistical properties of the perturbation field. In particular, this method holds on
scales where the linear theory is valid and the underlying perturbation field is Gaussian.

The Wiener filter provides an optimal estimator of the underlying field in the sense of a minimum-
variance solution given the data (e.g. peculiar velocity data) and an assumed prior model. The prior
defines the data autocorrelation and the data-field cross-correlation matrices. In the case where the
data are drawn from a random Gaussian field, the WF estimator coincides with the conditional mean
field and with the most probable configuration given the data. In the case of Gaussian fields where
quadratic entropy can be assigned, the WF also coincides with the maximum entropy solution (Zaroubi
et al. 1995).

The WF is a very conservative estimator, in the absence of good data (regions where the data
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is sparse and/or noisy) it attenuates the estimate toward its unbiased mean field. This means that
by construction the WF suppresses some of the power spectrum that is otherwise predicted by the
assumed model. As a consequence the WF often produces an estimated field that is much smoother
than the typical random realization of the assumed power spectrum would be. Furthermore the WF
estimator is not statistically homogeneous. A way of providing the missing power and regaining
statistical homogeneity consistent with the data and the theoretical model is provided by the method of
Constrained Realizations [CR] of Gaussian fields (Bertschinger 1987; Hoffman & Ribak 1991; van de
Weygaert & Bertschinger 1996). The CR method provides a realization of the underlying field made
of two parts. The first one is dictated by the data and the model (provided by the WF approach) and
the second one is random in such a way that in those places where the WF suppresses the signal, the
random component compensates for it.

The WF and CR are constructed assuming that linear theory is valid on all scales. Hence, in
principle it can be done with any desired resolution, even on scales that at present lie in the non-
linear regime. This means that the WF/CR algorithm provides a reconstruction of how the present-day
structures would appear if the linear regime is still valid.

The Initial conditions were then generated by using data on scales where the linear regime is still
valid, so we could apply it to recover the large scale fluctuations and to supplement them with fluctua-
tions due to a random realization of a specific power spectrum on small scales. These fluctuations are
then extrapolated back in time using linear theory to provide the reconstruction of the initial conditions.

The WF/CR approach has been applied to several data catalogs and with different purposes: to
study the two-dimensional IRAS galaxy distribution (Lahav et al. 1994), the velocity potential out of
POTENT (Ganon & Hoffman 1993), the COBE/DMR cosmic microwave background mapping (Bunn
et al. 1994), etc.

3.3.2 Reconstructing the Initial Density Fields

3.3.2.1 Parent catalog data

The WF/CR algorithm was applied to the MARK III catalog (Willick et al. 1997a). This catalog
has been compiled from several data sets of spiral, elliptical and SO galaxies with the direct Tully-
Fisher and the Dn −σ distances. The sample consist of ≈ 3400 galaxies and provides radial velocities
and inferred distances with fractional errors around 17− 21%. It has an anisotropic and non-uniform
density that is a strong function of the distance. The sampling of the density field is reliable out to
∼ 60 h−1Mpc in most directions outside the Galactic plane, and out to ∼ 70 h−1Mpc in the direction
of the GA and PP. In some other directions the data extends out to ∼ 80 h−1Mpc. The data has been
corrected for the Malmquist biases. This sample enables a reasonable recovery of the dynamical fields
with ∼ 12 h−1Mpc smoothing.

The cosmological model assumed is the currently popular flat low-density cosmological model
ΛCDM with ΩΛ = 0.7, Ω0 = 0.3, where ΩΛ measures the cosmological constant Λ in units of the crit-
ical density and Ω0 is the cosmological density parameter. The Hubble constant is h = 0.7 (measured
in units of 100 km s−1 Mpc−1) and the power spectrum is normalized by σ8 = 0.9. The ΛCDM model
assumed here is consistent with the newest and current observational constraints (WMAP Spergel et al.
2003). This model is also consistent with the radial velocity surveys including the MARK III.

Zaroubi et al. (1999) performed a detailed analysis of the Large scale structure reconstructed from
the Mark III survey. The most robust features of the structures recovered from this catalog are the Great
Attractor (GA), the Perseus-Pisces (PP) supercluster, the filamentary local supercluster connecting GA
and PP, and the local void.

3.3.2.2 Reconstruction of the density field

The WF/CR algorithm has been applied to the MARK III catalog with the assumed cosmological
model. This was done on a 1283 grid with a grid size of 2.5 h−1Mpc, thus reconstructing the density
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Figure 3.1 — Initial constrained density fields for two catalogs of our sample (S1 & S2). The panels show
projections along the 3 supergalactic planes. The top panel corresponds to the x-axis projection, the middle one
to the y-axis, while the bottom one to the z-axis. The density fields have been smoothed with a Gaussian filter of
5 h−1Mpc radius.
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Figure 3.2 — Initial constrained density fields for the other two catalogs of our sample (S3 & S4). The panel
distributions are the same as in Fig 3.1. The panels show only the central regions of the catalogs within a radius
of 80 h−1Mpc from the center (LG). The initial seeds of the main structures surrounding the LG can be better
noticed. The density fields have been smoothed with a Gaussian filter of 5 h−1Mpc radius.
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and velocity field within a box of 320 h−1Mpc on a side with the LG located at the center of the
simulation box.

For statistical purposes we have made four WF/CR realizations. All of them have been produced
for the same cosmological scenario. The variations among the CRs thus provide an interesting repre-
sentation of the uncertainty in the reconstructing algorithm, and the CRs provide clear indications for
the robustness of the various structures. Furthermore, this also will allow us to estimate the statistical
significance of our results. In the regions where the data dominates over the noise (. 70 h−1Mpc), the
WF maps are characterized by a high S/N (Zaroubi et al. 1999), and there is little variation between the
different CRs. At small scales (< 12 h−1Mpc), the properties of the structures, depend on the nature
of the prior model, hence the CRs exhibit high variations, consistent with the low S/N. All these can
be better noticed in Figures 3.1 & 3.2. These figures show the linear density fields resulted from the
outcome of the WF/CR algorithm after being extrapolated back in time (initial density fields). The 3
panels in each column represent projections along the 3 different supergalactic planes. Each density
field has been convolved with a Gaussian kernel of RG = 5 h−1Mpc. The top panel of each figure corre-
sponds to slides which coincide with the supergalactic y− z plane. The middle one to the supergalactic
x− z plane, while the bottom panel to the x− y supergalactic plane. All slides have been centered at
the Local Group position. In all plots the lines corresponds to regions of equal densities, the contin-
ues lines represent the high density regions while the broken lines to under-dense regions. The thick
continues line indicates the mean density.

Figure 3.1 shows for simulations S1 & S2 the full planes [−160,+160] h−1Mpc. In these plots
can be noticed that the distribution and shape of structures at large scales (> 80 h−1Mpc from the
LG, and correspond to the unconstrained random realization part of the method), differ from catalog
to catalog. Still, their statistical properties will be similar because they are given by the same prior
assumed cosmological model. Nevertheless, the central regions of the catalogs contain similar kind
of structures which correspond to the constrained realization part of the method, these regions are
strongly constrained by the data. This can be better noticed in Fig. 3.2 which shows the inner regions
([−80,+80] h−1Mpc) of the initial density fields for the simulations S3 & S4. The locations of the
original seeds of the massive structures like the GA and PP superclusters do not change in spatial
location substantially from catalog to catalog. The conspicuousness of the density peaks and voids are
also very similar between the different catalogs.

Finally, a useful feature of the WF/CR reconstruction method is that it can relate two data sets that
differ in many ways. As an example it can translate velocities into densities allowing comparisons
between velocity and density data, even if the data have been sampled with different resolutions and
not exactly the same positions (van de Weygaert & Bertschinger 1996; Zaroubi et al. 1999).

We are aware of the fact that all constraints are within a radius of < 80 h−1Mpc from the LG, and
that structures smaller than 12 h−1Mpc cannot be resolved properly in the maps as a consequence of
the previous smoothing procedure on the MARK III data. Beyond the > 80 h−1Mpc radius the velocity
constraints in the local volume still work out, as the velocity is a non-local constraint. Any similarly
between the structures at these ranges (< 12 h−1Mpc, or� 80 h−1Mpc) with the real Universe will be
a consequence of the random constrain procedure, e.g. mere chance.

3.4 N−body simulations

3.4.1 The particle distribution

The evolution of the WF/CR initial density fields was performed by means of the public numerical
code HYDRA (Couchman, Thomas, & Pearce 1995). This code uses an adaptive P3M code as a
gravity solver, and a SPH algorithm to solve the hydrodynamic equations. Here we restrict ourselves
to trace only the mass distribution of our Universe. Therefore, we have performed pure N−body
analysis carrying out simulations of dark matter alone.

The initial particle positions were interpolated from a uniform grid which covers the whole com-
putation box of side L = 320 h−1Mpc. The amplitude of the initial displacements are proportional to
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the computed WF/CR initial density fields. The initial velocities (peculiar velocities) are proportional
to their respective displacements in accordance with the Zel’dovich approximation (Zel’dovich 1970).

Shapley (?)

LS

GA

PP

Coma

Cetus

Figure 3.3 — Particle distributions along the three Supergalactic Planes for the S4 simulation at the final output
time (actual time). The left-column slides are 40 h−1Mpc thick while the right-side plots are zooms of the central
marked areas. The top panels correspond to projections along the supergalactic x-axis, the middle panels to
projections along the supergalactic y-axis, while the bottom panels to the z-axis projection. The LG is located at
the center of each computational box and marked by a circle. The position of the main structures like GA, PP,
Coma, Cetus and Shapley are also indicated.
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The four simulations were started at z = 50 and evolved up to actual time z = 0 (with z being the
redshift). We have started the simulations at that initial time to assure the validity and linearity of the
initial input density fields.

The simulations were run with 1283 particles of equal mass, with a mass resolution of 6.4 ×
1011h−1M�. The force computation was done on a grid of 2563, and a spatial resolution of 25 h−1kpc.
Figure 3.3 shows for the S4 simulation slides of the 3 Cartesian projections centered along the 3 Super-
galactic planes. The top panels correspond to projections along the supergalactic x-axis. The middle
panels refer to projections along the y-axis, while the bottom panels to the z-axis projection. The left-
hand boxes correspond to the full simulation box length (320 h−1Mpc), and a thickness of 40 h−1Mpc.
The right-hand plots are zooms of the central regions. The position of the LG is marked on the zooms
by the central circles. One may clearly notice how well the N−body simulation traces the Local Su-
percluster as well as the presence of the GA, PP, and similar structures like Cetus and Coma. It is
interesting to notice how it seems that the LS is connected with the GA and PP superclusters. An-
other interesting feature is the presence of a Shapley-alike structure located at the region where the
real Shapley supercluster resides, although this region correspond to the weakly constrained part of the
WF/CR algorithm.

The similarities and differences between the different simulations as a consequence of the WF/CR
algorithm can be better noticed in Figure 3.4, where zooms of the central regions ([−80,+80] h−1Mpc)
of the S1 & S4 simulations are presented. For comparison purposes the fields have been convolved
with different Gaussian kernels of radius 2&5 h−1Mpc (S1 & S4 respectively). We have done this
in order to resolve the small scale structure (S1) and the LG. Despite the different map resolutions,
the similarities between the two simulations are quite remarkable; the location and geometry of the
structures (peaks and voids) between the two set of maps are very similar. The prominence of the
LS can be clearly seen in the z-projection of S4, and how this structure connects with the GA and PP
superclusters. The presence of the Coma cluster can also be located at the top right of the z-projection,
the Cetus region at the bottom central part of the same slides. We can also compare the smoothed S4
density fields with its initial density maps showed in Fig. 3.2. As can be noticed between the two set
of plots, the linear regime remained almost intact, the location, prominence, shape and geometry of
peaks and voids are quite similar between the 2 density fields. The final outputs of the four simulations
have reproduced the Local Supercluster, the Great Attractor region, the Perseus-Pisces supercluster,
the Coma cluster and the Cetus region.

The location of the LG in our nearby Universe is confirmed to be found at a saddle point of the
density field between two big nearby surrounding structures, the Great Attractor and Perseus-Pisces
superclusters. This situation is depicted in Figure 3.5 where surface plots of the same slides of Fig. 3.4
for the S4 simulation are presented. The plotted planes (±60 h−1Mpc) coincide with the three super-
galactic planes and have a thickness of 2.5 h−1Mpc. The peaks correspond to high density regions
(like the GA and PP structures). The location of the LG is at the center of the plots and marked in
black. Notice that the location of the LG is very close to a minima in the three projected density field
surfaces.

3.5 Observing the simulated Universe: Mock catalogs

Our aim is to study how well we can model the main characteristics of the full, real local cosmic
peculiar velocity field. For these reasons we construct mock galaxy catalogs from the final output of
the N−body simulations aimed to resemble the real mass distribution as revealed by galaxy surveys.
For statistical purposes, we have produced four sets of mock catalogs, one set from each N−body
realization. We follow the mock catalog procedure presented in Chapter 2 (Sect. 2.5.2). The only
difference is that this new set of mock catalogs extends up to volumes of 150 h−1Mpc. We will only
mention here the main characteristics of the catalogs.

Each catalog consists of two different sampled regions. The first one (internal region) is a volume-
limited sample and is aimed to trace the mass distribution within a region of 30 h−1Mpc, mimicking the



86 CHAPTER 3: Dipole & Quadrupole moments of the local cosmic velocity field

S1) S4)

GAGA

LS

LG

Coma

PP

LG

LG

LG

LS

LGLG

Coma

PP

Figure 3.4 — Final output projected density fields for simulations S1 & S4. The plots show zooms of the central
regions of the simulations (±80 h−1Mpc) centered at the location of the LG. The main structures (LS, GA, PP &
Coma) have been also labeled for reference. The slides are 5 h−1Mpc thick and coincide with the 3 supergalactic
planes. The fields have been smoothed with Gaussian filters of RG = 2&5 h−1Mpc respectively for comparison
purposes.



3.5. OBSERVING THE SIMULATED UNIVERSE: MOCK CATALOGS 87

PP
LS

GA

LG

LG

LG

Figure 3.5 — Surface plots corresponding to the plots shown in Fig. 3.4 for the S4 simulation. The peaks shown
the prominence of the structures in terms of the average density. The location of the main structures have been
identified and labeled.

Nearby Galaxy Catalog of Tully [NBG] (Tully 1988). This catalog includes around 2800 galaxies and
it can be considered as a fair volume-limited sample of our Local Supercluster and its surroundings.
The second region is a flux-limited sample and it is aimed to trace the mass distribution of regions super
exceeding the LS from 30 up to 150 h−1Mpc. This region mimics the IRAS-PSCz galaxy catalog
(Saunders et al. 2000). To do so, we have chosen objects beyond 30 h−1Mpc from the real mass
distribution according to the PSCz selection function used by Branchini et al. (1999, see Chapter 2,
Sec. 2.5.2.2). The catalog-making algorithm can be described as follows:

1. We select all particles within a radius of 150 h−1Mpc from the closest galaxy located at the
geometrical centre of the parent N−body simulation.

2. We proceed to split the parent catalog into a “Volume” and “flux” limited regions.

3. For the volume-limited region NBG, we enclose all particles within a radius of 30 h−1Mpc.
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Figure 3.6 — 2D projections of one Mock catalog particle distribution from our sample (S4). The plane projec-
tions correspond to the 3 supergalactic planes centered at the LG position.

Because the total number exceeds the one of the NBG, we proceed to re-sample this region by a
Monte Carlo selection process to match the observed number of galaxies.

4. For the flux-limited region (30−150 h−1Mpc), objects were selected accordingly to the following
IRAS-PSCz Selection Function, (Branchini et al. 1999, Chapter 2, Sec 2.5.2.2).

ψ(x) = Ax−2α
(
1+

x2

x2
∗

)−β
if x > xs . (3.12)

where x is the distance of the galaxy expressed in h−1Mpc, and α = 0.53, β = 1.8, xs =

10.9 h−1Mpc, and x∗ = 84 h−1Mpc (Branchini et al. 1999). The total number of selected ob-
jects is in good agreement with the expected number of objects (Figure 3.7).

5. The zone of avoidance was treated in the same way that in Chapter 2.

We justify the first step in the catalog-making procedure by noting that the WF/CR initial density
fields were constructed in such a way that the LG would be located at the center of the simulation
box, and that the linear regime still prevails at actual time. Therefore, the position of the Local Group
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Figure 3.7 — Number density of the PSCz mock galaxies as a function of distance. The histogram shows the
average counts of the four mock samples. The continuous thick line show the expected counts in a homogeneous
Universe.

in the evolved density fields should also be located at the center. This can be noticed in Figures 3.3
& 3.4. Under these assumptions we have chosen the geometrical centers of the original simulation
boxes to be the geometrical centers of our mock catalogs. Nevertheless, this assumption is not totally
valid because of the fact that the region corresponding to the LG corresponds to the small scale part
of the power spectrum, and as we have pointed out earlier, this part has been produced by random
realizations. However, from Figures 3.3 & 3.4 we can see that the LG is located at the centre of the
simulation box, so our assumption is not far from reality.

Figure 3.6 shows the outcome of this procedure, the projected spatial distribution of objects along
the three supergalactic planes for one of our catalogs (S4). The centre of each projection corresponds
to the location of an observer situated at the LG position. As can be noticed, the number of objects
decreases with distance from 30 h−1Mpc outward. The inner circle represents the transition part from
volume to flux limited regions. It has been noticed before that there are several structures that expand
beyond the 30 h−1Mpc region, this is the case for the LS filament and others.

Figure 3.7 shows the average object counts as a function of distance for the four set of catalogs.
As can be noticed, there is a good match between the theoretical expected counts (solid line) and the
galaxy catalogs (histogram). The discontinuity at 30 h−1Mpc where the transition from volume-limited
to flux-limited regions can be clearly seen. The distribution of mock-galaxy objects projected along the
sky can be noticed in Figure 3.8, where we have plotted in galactic coordinates the particle distribution
of the same mock catalog shown in Fig. 3.6.

3.6 Testing the Mock Universe

In this section we want to asses the confidence of our N−body simulations and their corresponding
mock catalogs. In particular, we are interested in checking that our Mock catalogs have been sampled
properly and that they have accounted for the whole mass distribution. We have already seen that the
simulations have been able of reproducing the cosmography of our nearby Universe. Nevertheless
a more rigorous and quantitative analysis is necessary. Zaroubi et al. (1999) studied in detail and
performed several statistical tests for the WF/CR method. In our case we will do so by estimating a
dynamical characteristic of the galaxy density field, the dipole moment.
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Figure 3.8 — Aitoff projection in galactic coordinates for the mock catalog of Fig. 3.6.

We would like to make clear that while we will consider only the dipole moment from the mass
distributions for testing the reliability of our catalogs, we do not assume that this alone provide a good
description of the inhomogeneity around us. The dipole is a convenient statistics for which it seems to
be reasonable to compare with the real observed mass distribution.

We will focus on 2 aspects of the gravity dipole, its amplitude and direction. The amplitude will
give us information about how large the contributions from structures located at different distances
from the central observer are, while the direction will point the region towards the central observer is
moving.

The direction of the LG is that given by the dipole component of the cosmic microwave background
radiation field. In principle, any sample of objects (catalog) that traces the mass distribution “fairly”
should converge to this velocity and direction as the samples get deeper. This phenomenon is known
as the dipole convergence, and the distance at which the shells’ dipole motions begin to match the LG
motion is call the convergence depth. This distance (R in Eqn. 3.13) is to be believed in the order of
150−200 h−1Mpc.

3.6.1 The gravity dipole

The mass distribution of galaxies exerts a pull over an object due to gravity effects. The amplitude and
direction of this pull is determined by the distribution, concentration and distances of galaxies around
the observer’s vicinity.

The dipole moment provides an estimate of the gravitational acceleration acting on the LG, and
hence of the large scale mass distribution around the LG. In linear theory, the peculiar acceleration
dipole vector is given by the following expression:

gD(x) =
3ΩmH2

8π

∫ R

0
dx′ δ(x′)

x′

|x′|3 . (3.13)

In this equation, the inferred acceleration vector must be aligned with the LG velocity vector. But,
while this is a necessary condition to apply, it is not sufficient, one must also be sure that the radius of
the sample (R) of mass tracers is sufficiently deep that it does not miss any contribution from distant
density fluctuations. This means that the dipole vector of the mass distribution must converge to its
total value within the effective depth of the sample R.

The peculiar configuration of our cosmic vicinity imposes strong characteristics in gD, this region
which is enclosed within a volume of ∼ 40−50 h−1Mpc is responsible of at least 60% of the dipole.
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Figure 3.9 — Cumula-
tive gravity dipole for the
full N−body (continues
line) and mock (dotted
line) galaxy mass dis-
tributions corresponding
to the S4 simulation.
The bottom dashed line
represents the shot-noise
contribution to the dipole.
The long-dashed gray
line represents the dipole
after being corrected for
shot-noise effects.

Since we do not have a continuous density field, but the positions of a finite number of objects in
our galaxy flux-limited and full mass distribution catalogs, our estimate of the acceleration on the LG
is given by a discrete form of Eqn. 3.13 in velocity units (relation valid only in the linear regime),

gD =
f (Ωm,Λ)H0

4πn

∑

i

1
ψ(xi)

xi

|xi|3
, (3.14)

where n is the average number density of objects selected in the sample, and ψ(xi)−1 is a weighting
factor associated to the selection function evaluated at the distance xi. This weighting factor is equal
to 1 for all objects inside the volume-limited region. Despite the discreteness of the Eqn. 3.14, the
estimate of gD does not loose generality in the sense that the weighting factor corrects for the relative
number density of objects with respect to the number density in the “real” (N−body) mass distribution.

We have computed then the gravity dipole from Eqn. 3.14 for the N−body and mock catalogs.
Figure 3.9 shows the cumulative gD computed for the N−body mass distribution (continues line) and
for the mock galaxy distribution (dotted line) from the S4 simulation. We started the calculation from
an initial radius of 5 h−1Mpc and up to 150 h−1Mpc. This was done due to two reasons, the first one
is due to the lack of objects to compute the dipole inside this region (which introduce a large disper-
sion in the calculation), and the second and most important one is because we want to determine the
origin and influence radius which is responsible for the movement of the LG. As it can be noticed,
the estimate inside the inner zone [0−30 h−1Mpc] of the mock catalog matches the one from the full
distribution showing an almost perfect sampling. Deviations from the N−body estimate start to arise
around 30 h−1Mpc and they become more pronounce at larger radii. This effect is due to the fact that
these regions represent the tail of the selection function which does not account properly for all objects.
We observe a rapid raising in the dipole in the first 10− 30 h−1Mpc, after which it remaining almost
flat up to 60 h−1Mpc. This quick increase (≈ 400 km s−1) means that the mass distribution enclosed in
this region exerts most of the gravitational pull onto the LG. Indeed, as seen in the corresponding mass
distributions maps of Figs. 3.4 & 3.6 and reflected in the corresponding velocity maps, the particular
configuration between the Local Supercluster, the GA and PP structures over the LG are responsible of
this movement, matching the observational results. Nevertheless, after remaining almost constant for a
range of distances, the dipole amplitude continues raising as the volume increases, meaning that there
are still mass concentrations at those distances which also play a major role into the dynamics of the
LG. In the real world, a similar phenomenon is observed. Several authors (e.g. Rowan-Robinson et al.
2000; Plionis & Kolokotronis 1998; Basilakos & Plionis 1998) have pointed out that the Shapley su-
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percluster is a very likely candidate responsible for this increase in amplitude which contributes almost
20 to 30% to the total cumulative dipole. This huge mass overdensity is located at ≈ 140 h−1Mpc in
the direction of the Hydra-Centaurus supercluster (GA). In all our catalogs the dipole amplitude does
continue raising at the limit of our catalogs (150 h−1Mpc). This effect can be explained in terms of
the WF/CR initial density maps. The input velocity field used to generate the WF fields has imprinted
on itself the influence of the mass distribution at very large scales. Hence, registering a general flow
towards the direction of GA and Shapley (Hoffman et al. 2001). In this sense the evolution of the
WF/CR has successfully reproduced the observations in the sense that there might be still structures
influencing over the LG (e.g. Hoffman et al. 2001). Nevertheless, the region which corresponds to the
location of the Shapley concentration, corresponds to the weakly constrained part of the WF/CR algo-
rithm, so the real presence of this structure in our simulations is dubious, although we have measured
the same effect.

The speculation that the Shapley supercluster is not the major contributor to the motion of the LG
but that it is coming even from larger distances was proposed by Raychaudhury (1989) and Plionis
& Valdarnini (1991). These authors speculated that large structures like the Horologium supercluster
still plays an important role over the LG. Nevertheless, Rowan-Robinson et al. (2000) used the PSCz
catalog to compute the dipole even at scales up to 300 h−1Mpc. They found that there is indeed a rise
in the dipole after 150 h−1Mpc but it finds a convergence before the 200 h−1Mpc with no evidence for
a significant contribution to the dipole, excluding in this way the speculation about the Horologium
supercluster. This result should be met with caution in the sense that the errors in the PSCz catalog and
its selection function increase considerable with distance, so that the reliability of the result at these
very large scales decreases accordingly.

3.6.2 Shot-noise effects

It has already been pointed out that the discreteness and sampling effects introduce uncertainties in the
calculation of the dipole. Furthermore, these effects introduce an additive dipole term, the shot-noise
dipole. In order to correct for this extra dipole, we need to compute the corresponding shot-noise and
to correct for it our dipole estimates.

There are two alternative approaches to correct for shot-noise effects. The first one concerns to
generating several Monte Carlo realizations of mock catalogs and keeping the number of objects and
selection function unchanged, while the second one is by computing the shot-noise by the analytic
estimate of Strauss et al. (1992). Due to the fact that we are also interested in reconstructing their cor-
responding peculiar velocity fields, it will be very cumbersome and expensive in consuming computing
time to use the Monte Carlo approach. The latter would imply necessary to produce a large amount of
catalogs per set. We will therefore resort to the second method, supported also by the demonstration
by Basilakos & Plionis (1998), who showed that both methods seem to give equivalent results.

From the Appendix A of Strauss et al. (1992) it follows that the shot-noise is given by the expected
variance between the contributions to the acceleration from all galaxies on a shell at distance x and the
galaxies within the flux-limited sample at the same shell. In this case, the expected value is given by:

σ2 =

(
H0β

4πn1

)2 ∑

galaxies i

1

ψ(xi)xi
4

[
1

ψ(xi)
+1

]
, (3.15)

where n1 is the average density of galaxies, ψ(xi) is the selection function at the distance x of the
shell and β is the bias factor, that for our case is equal to f (Ωm,Λ). In Figure 3.9 the effects of shot-
noise are shown. The dashed line is the shot-noise contribution according to Eqn. 3.15 to the dipole.
This is almost zero at the inner 30 h−1Mpc due to the fact that this region is volume-limited sampled.
The shot-noise starts to be noticed from the 30 h−1Mpc outward. This effect is due to the fact that
the selection function depends strongly on distance, so as a consequence the shot-noise will increase
at larger distances. The gray long dashed line represents the dipole estimate corrected for shot-noise.
The agreement between the real and corrected mock dipole amplitudes, even at large distances, is quite
remarkable.
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In general, the shot noise amplitudes represent almost the 10%−15% of their total magnitudes for
all catalogs in our sample, and they show the same behavior as in Fig. 3.9.

3.6.3 Dipole direction and convergence

The direction and convergence of the dipole will help us to asses the reliability of our samples. There-
fore, we have computed the direction of the dipole by using Eqn. 3.14 as a function of depth. This is
shown in the left panel of Figure 3.10. The directions for the cumulative N−body mass distribution
(black diamonds) and for the mock galaxy catalogs (gray triangles) are shown in galactic coordinates.

Figure 3.10 — Dipole directions and convergences for the S4 catalog. The left panel shows in galactic coor-
dinates how the dipole wanders around when increasing the computing radius. The diamonds correspond to the
full, N−body mass distribution, while the triangles to the mock galaxy catalogs. The right panel shows the angle
θ between the acceleration vector and the CMB dipole vector for the real mass distribution (continues line), and
for the mock galaxy catalogs (broken, gray line).

The convergence of the direction of the dipole has been computed with respect to the one measured
by COBE. The right panel of Figure 3.10 shows the angle θ between the estimated dipole and the COBE
one as a function of depth. These two plots refer to the same catalog shown in Fig. 3.9. Around the first
20−30 h−1Mpc the angle θ does not converge due to the big influence of the Local Supercluster over
the LG (Virgocentric infall). The sudden convergence at ∼ 60− 80 h−1Mpc means that the massive
structures like the GA and PP supercluster have been enclosed. This result agrees with those obtained
by Strauss et al. (1992) for the 1.2-Jy IRAS catalog. The slight rise at 100 h−1Mpc and its convergence
at ∼ 130 h−1Mpc can be possibly interpreted like the enclose of structures similar to the Shapley
concentration at this radius. In effect, as may be seen from the mock catalog particle distribution
(Fig. 3.6) and from the density fields (Figs. 3.1 & 3.3, 3.4) the most prominent mass density structure
beyond the GA location coincides along the same direction and ∼ 110 h−1Mpc far from the LG. It is
this Shapley-alike structure responsible for this effect.

3.6.3.1 Averaged Dipole results

The robustness of our results can be noticed from Figure 3.11 where the average cumulative gD (top
panels) and the average dipole direction (bottom panel) for the four samples are shown. The top-left
panel shows the corresponding cumulative dipole for the full N−body mass distribution, while the top
right panel for the mock galaxy catalogs. The gray shadows represent the ±1σ dispersion around the
average values at each radius. The agreement between the two curves is quite remarkable, meaning
that the mock catalogs have successfully traced the real mass distribution. The rapid increase in gD

for the first 15 h−1Mpc is due to the gravitational attraction of the LS in combination with the GA
influence, which is reflected after this radius. The magnitude of this increment varies from realization
to realization as may be noticed from the large dispersion around the mean. The almost flat behavior
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Figure 3.11 — Average cumulative gravity dipole (continues line) for the 4 catalogs of our set (top panels), and
average direction (bottom panel) at 150 h−1Mpc and 60 h−1Mpc for both samples in galactic coordinates. The
top-left panel corresponds to the full mass distribution, while the top-right panel to the mock galaxy catalogs. The
gray shadows represent the 1σ dispersion around the mean value.

after 40 h−1Mpc and up to 80 h−1Mpc means that there are no considerable structures which exert a
strong influence over the LG. The sudden raise in the dipole after 80 h−1Mpc without convergence,
even at the edge of the catalogs, imply the presence of big(s) structure(s) acting still over the LG.
All catalogs show a dipole mass concentration in the density fields along the direction of the GA and
Shapley concentration which in turn is responsible for this result. The bottom panel of Fig. 3.11 shows
the positions of the average dipole directions computed at 2 different radius, at 60 and 150 h−1Mpc,
projected in the sky in galactic coordinates of the N−body mass distribution (black square), and the
mock galaxy dipole (gray diamond) and their corresponding error bars. The separation between the
two quantities gets larger at larger radius. At 60 h−1Mpc both directions differ only 3◦, while at
150 h−1Mpc the difference is ∼ 8◦, being this is an effect of the sampling procedure. The dipole at
60 h−1Mpc is ∼ 12◦ far from the real dipole direction, while the one computed at the edge of the
sample around 20◦. These results agree with those obtained from the literature for the bulk velocity
direction and the gravity dipole. Because our initial density fields were computed from real observed
velocity fields, then it is expected that our estimates should coincide with those obtained from the
velocity bulk flow.

In conclusion, we can say with a high degree of confidence, that our Mock catalogs trace very well
the full and real mass distribution got from the N−body simulations, and that in principle we have
taken into account possible effects that could influence any results obtained from these mock catalogs.
Furthermore, the fact that the dipole estimates reproduce quite well the real observed dipole behavior
even at very large scales (∼ 150 h−1Mpc) justify the use of constrained simulations being extended by
unconstrained regions.
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3.7 The velocity field

The intricated and very peculiar location of the LG in our Universe is reflected in its corresponding
peculiar velocity field. This field not only shows as well the complexity of the local cosmography, but
also reveals the entangled dynamical state around the LG.

Figure 3.12 shows slides of the peculiar velocity fields corresponding to the 3 supergalactic planes
and centered around the LG position (black central circle) for the S4 simulation. The left-column
corresponds to the peculiar velocities at each particle position represented by arrows proportional to
their magnitude and pointing towards their projected direction. As can be noticed the structures around
the LG influence considerably the dynamics of the surrounding mass distribution. This can be noticed
more clearly in the right-column panels. These plots are zooms of the regions enclosed in boxes at
the left-hand panels. In these plots, the peculiar velocity field have been interpolated into a grid. The
contours correspond to mass density contrast located along the same projections; the continuous line
indicate overdensities, while the dotted lines underdense regions, and the thick black line corresponds
to the mean density. In these representations, the local flows around the big mass concentrations are
more clear. Furthermore, a more general dominant flow along the upper part of x− y direction can be
recognized. This is the influence of the GA, and the movement and direction of the LG.

The inhomogeneities in the mass distribution (clusters and superclusters of galaxies) are the origin
of the local flows. The configuration of those inhomogeneities also plays an important role. The
clumpiness of the mass distribution distorts the amplitude and direction of the peculiar velocities.
These distortions have the shape of a shear pattern. These shear patterns can be more easily recognized
in the left-hand panels of Fig. 3.12 around the non-virialized structures.

In all panels of the Fig. 3.12, it can be noticed that the LG participates in a very general velocity
flow (indicated by the size of the arrows), and it is very well defined towards the direction of the
GA region. The influence of the PP supercluster can also be recognized at the lower right of the LG
position in the x− y supergalactic plane. Even more, the LS also participates in this intricate game.
It exerts a gravitational influence over the LG (indicated by the verticality component of the arrows),
the Virgocentric infall. Another peculiarity of this scenario is the elongation of the LS along the same
direction of the dominant flow, towards the GA location.

3.7.1 Modeling the peculiar velocity field

Several methods have been proposed to reconstruct/model the peculiar velocity fields. The common
approach is to construct the peculiar velocity field from galaxy catalogs (mass densities) using the re-
sults of linear theory, or a higher order approximation (quasilinear) like the Zel’dovich approximation.
In the present study, we will use these two methods and the advanced implementation of LAP (FAM)
to model the peculiar velocity field.

The large scale mass distribution is within the linear regime. Therefore, the inferred bulk flow
using linear, Zel’dovich or FAM methods should in principle reproduce the N−body bulk flow. In the
more local neighborhood, the structures are within the weakly non-linear regime, so the reconstruction
of the velocity shear component will tell us what kind of method performs better at this regime. At
these scales, linear theory is not totally valid and Zel’dovich could in principle reproduce properly the
main characteristics. In the case of FAM, as shown by Romano-Dı́az, Branchini, & van de Weygaert
(2004, see Chapter 2), this could be the ideal scenario to test it.

3.7.1.1 Linear Theory

Within linear theory, Eqn. 3.2 relates the velocity and gravity fields. The linear peculiar velocities are
proportional to H0 f (Ωm,Λ)g(x), where g(x) is the gravitational force field obtained from the particle
distribution (Eqn. 3.14). Hence, we have used this relation to compute the linear peculiar velocity field
of our catalogs.
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Figure 3.12 — Peculiar velocity fields for the S4 simulation. The left column represents the velocities at the
particle positions for ±60 h−1Mpc regions around the LG along the 3 supergalactic planes. The right panels show
zooms of the velocities interpolated onto a grid for the LS region, ±30 h−1Mpc. The position of the LG is marked
by a black circle at the center of the maps.
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3.7.1.2 FAM approach

We have reconstructed the peculiar velocity fields following the prescription of Romano-Dı́az, Bran-
chini, & van de Weygaert (2004) presented in Chapter 2 (Sec. 2.3.3). We have chosen N f = 6 basis
functions to parameterize the orbits, a tolerance parameter tol = 10−4 to search for the minimum of the
action S and setting a softening parameter of 0.25 h−1Mpc to smooth the gravitational force. We have
checked that this choice of parameters is optimal in the sense that decreasing tol or increasing N f does
not modify the final results appreciably.

3.7.1.3 Zel’dovich approximation

Velocities in the Zel’dovich approximation can also be obtained by means of FAM (Nusser & Branchini
2000; Romano-Dı́az et al. 2004). For this, we set the number of expansion basis functions N f = 1,
while keeping the tolerance parameter unchanged. The straight-line orbits are then of the form xi(D) =
x0,i +DCi,1, where D is the linear growing mode; x0,i is the position of the particle at actual time and
the vectors Ci,1 are the expansion coefficients with respect to which the action in FAM is going to be
minimized, the subindex 1 indicates that the gravitational force field at present time is used for the
calculation. These velocities should be similar to those that would be obtained by applying the PIZA
method (Croft & Gaztanaga 1997).

3.8 Results

In order to extract the bulk flow and the shear component from the peculiar velocity field, we have
followed Romano-Dı́az, Branchini, & van de Weygaert (2004, see Chapter 2) in using the procedure
by Kaiser (1991). This procedure computes the bulk velocity from a multipolar decomposition of the
peculiar velocity field of the form of Eqn. 3.6 up to the quadrupolar expansion term.

Because we want to compare our results with respect to the real Universe, we will only present
results concerning to the fully constrained part of our catalogs (60 h−1Mpc).

3.8.1 Multipolar velocity decomposition

We decomposed the velocity field by means of a field Taylor expansion truncated at the quadratic term
(Kaiser 1991, see also Chap. 2). The velocity field v, is then modeled by the first two components, a
bulk flow vector, ũi, and a quadratic shear tensor contribution, s̃i j,

vi = ũi+ s̃i jxx̂ j, where i, j = {1,2,3} , (3.16)

in which i, j denotes the Cartesian component indices. The vectors x̂ j represent the vector components
along the Cartesian j direction of the spatial unity vector oriented along the object position vector x.
Using these notations, we can rewrite Eqn. 3.16 and express the i-component of the velocity of object
n into a product of the vectors Fn,I and VIi,

vn,i =

4∑

I=1

Fn,I(x)VIi

in which the data 4-vector FI and the velocity field component 4-vector VIi are defined as

Fn,I = {1, xx̂1, xx̂2, xx̂3}
VIi = {ũi, s̃i1, s̃i2, s̃i3} . (3.17)

The “dipolar” bulk flow components ũi and “quadrupolar” velocity shear components s̃i j can then be
obtained by solving for the vectors VIi on the basis of a fitting analysis (to be precise, s̃i j also includes
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a minor residual “monopole” expansion/contraction term). We accomplish this by computing for each
Cartesian component i the values for the multipole elements ũi and s̃i j which minimize χ2

χ2 =

Nob js∑

n=1

(
vn,i−

∑

I

Fn,I(x)VIi

)2
, (3.18)

to be evaluated on the basis of the data sample of Nob j objects at locations xn and with inferred veloc-
ities vn. The bulk flow and velocity shear components of vn are then readily obtained from VIi:

vbulk,i = ũi ; vshear,i =

3∑

j=1

s̃′i jxx̂ j (3.19)

where s̃′ is the traceless shear tensor given by

s̃′i j = s̃i j−
1
3

Tr(s̃)δi j , (3.20)

and Tr(s) is the trace of the tensor si j.

3.8.2 The expected velocity bulk

The left panel in Figure 3.13 shows the amplitude of the cumulative bulk flow computed from the S4
catalog for the N−body mass distribution (continues line) and the mock galaxy catalog (dotted line). As
in the case of the gravity dipole, we have avoided the inner 5 h−1Mpc of the catalogs. The discrepancy
between the two bulks in the first 15 h−1Mpc is due to sampling errors (low number of galaxies picked
up at the core of the sample). Nevertheless, there is a very good agreement between the two quantities
for the following 60 h−1Mpc. Still, there is a small discrepancy between the two quantities which
increases with distance. This result is caused by selection effects and sparse sampling, in particular
by shot-noise. For these reasons, we have computed and corrected for the shot-noise contribution as
described in Section 3.6.2. The shot-noise amplitude is not so large at these scales. For this particular
catalog, at the edge of the 60 h−1Mpcits only ∼ 20 km s−1 . The dot-dashed line in the left panel
of Fig. 3.13 represents the mock estimate after being corrected by shot-noise effects. The agreement
between the 2 distributions gets better; although some discrepancies beyond 60 h−1Mpc remain. This
is ascribed to the fact that the selection function only weights galaxy masses but not their respective
velocities. But for our region of interest the distributions match each other very well.

The right panel of Fig. 3.13 shows how the bulk flow directions move around the sky when in-
creasing the volume of the sample. Apart from some disperse points which correspond to the first
15 h−1Mpc, all directions are located around a common area and converge around l = 270◦, b = 11◦.
This direction is just less than 10◦ far from its respective gravity dipole direction. The fact that the
bulk flow directions are concentrated around a given area, imply that the main structures responsible
for the bulk flow are located/aligned around the same direction in the sky.

The average results show in a general way what has been learned from the analysis of the individual
catalog. The left panel in Figure 3.14 presents the average bulk flows for the N−body mass distribution
(broken line), and the galaxy mock catalogs corrected for shot-noise (continuous line). The gray
shadow represents the ±1σ dispersion around the mean mock bulk flow. We have excluded the inner
5 h−1Mpc to avoid non-linear effects and sparse sampling. As in the individual catalog, the mean mock
bulk flow distribution follows the same behavior than the corresponding N−body flow. Both quantities
match each other almost perfectly within the volume-limited region. Differences arise in the flux-
limited region, although this mismatch is only ∼ 20 km s−1. Nevertheless, both bulk flow amplitude
estimates are consistent with each other within the 1σ dispersion error.

The large errors (spikes) around the first 15 h−1Mpc are the result of the position and strength
(influence) of the LS in the catalogs. This is also the case for the GA and PP supercluster, where the
errors are more pronounced around this region (40− 60 h−1Mpc). In the case of the directions, they
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Figure 3.13 — Amplitude and direction of the bulk flow velocity for the S4 catalog. The continuous line in the
left panel represents the bulk flow of the N−body velocity distribution, while the dotted line the one of the mock
galaxy catalog. The dot-dashed line represents the bulk flow corrected for shot-noise. The directions (same range
in distances than in the left panel) of the N−body and corrected bulk flows are shown in the right panel.

also show a very good agreement. The right panel of Fig. 3.14 illustrates that both bulk flow directions
point toward the same direction and just with a relative mismatch of ∼ 5◦. With respect to the direction
of the gravity dipole, they are off by ∼ 20◦. This misalignment implies that there is still a considerable
influence from the mass distribution beyond 60 h−1Mpc. This result is also shifted with respect to the
real bulk direction estimated from the Mark III catalog by ∼ 18◦.

Figure 3.14 — Average amplitudes and directions of the cumulative N−body & mock bulk flows. The lines
in the left panel represent the average bulk flows, while the gray shadow indicates the 1σ dispersion around the
mean. The right panel shows the average directions of the bulk flow computed at the edge of the samples.

In general, these results from both samples at a radius of 60 h−1Mpc agree with previous studies
using the WF/CR method (Hoffman et al. 2001) and with the estimates from real velocity catalogs
at these scales (e.g. MARK III, SFI catalogs, etc). Furthermore, our bulk flow directions are also
consistent with the non-zero vectors of the bulk flow (l,b) = (280,0)±30◦ (Dekel 1999, and references
therein).

3.8.3 The reconstructed velocity bulk

We have reconstructed the peculiar velocity field with the 3 methods listed in Section 3.7.1: linear
theory, Zel’dovich approximation and FAM. We extracted the velocity bulk flow from the velocity
field in the same way as for the N−body and mock bulk flow velocities.
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Figure 3.15 shows the comparison between the N−body (continuous line), mock (dotted line) and
shot-noise corrected FAM ([Vb,FAM], dot-dashed line) cumulative bulk flows for one catalog. Clearly,
FAM over-estimates the bulk flow, it has suffered a considerable shift toward higher amplitudes. This
effect is related to the FAM approach and can be corrected for. When reconstructing the velocity field
the FAM technique assumes that inhomogeneities that could influence the dynamical behavior of the
sample are contained within the sample itself. The centre of mass c.o.m of the mass distribution will
therefore coincide with the geometrical centre of the sample. If this is not the case, a spurious bulk
component is introduced due to the relative anisotropic mass distribution around the central observer.
This will exert an extra pull over the system. For this particular catalog there is a relative displacement
of ∼ 10 h−1Mpc between the c.o.m and the geometrical centers in the mock catalog. Furthermore, the
average direction of the c.o.m. points toward the direction where the GA and Shapley concentration are
located. Juszkiewicz et al. (1990) showed that the contribution due to centre displacements is given by
H0 f (Ωm,Λ)xc.o.m./3, where xc.o.m. is the position of the centre of mass with respect to the geometrical
centre. The offset in the bulk flow magnitude in our whole sample is in average 120 km s−1 and
in the direction of the GA region. The corrected Vb,FAM is the 3dot-dashed line. The agreement
between this corrected quantity and the N−body bulk distribution is remarkable. The bump in Vb,FAM

at ∼ 10 h−1Mpc coincides with the location of the LS where FAM cannot reconstruct the velocity
field properly due to the fact that this is a non-linear region and the lack of objects available for the
reconstruction. At these regions and due to the degeneracy in orbits, FAM chooses from all possible
solutions the one which is closest to the one given by linear theory, so that FAM cannot predict properly
velocities in this regime (Nusser & Branchini 2000; Branchini et al. 2002; Romano-Dı́az et al. 2004).

Figure 3.15 —
Real (continues line),
Mock (dashed line)
and FAM bulk flows
with its different
corrections (shot-
noise and c.o.m.
displacement).

In general, the average results for the four catalogs strengthen the previous results. FAM is able
to predict properly the main feature of the peculiar velocity field. The top-left panel in Figure 3.16
shows the mean results for Vb,FAM , together with the Vb,Mock for comparison. The gray-shadowed
area represents the ±1σ dispersion error around the FAM mean. The FAM bulk flow follows the same
mock bulk flow distribution. This can be better noticed from the upper frame of the bottom-right
panel. This frame shows the fractional difference between the mock bulk and the FAM one. As it
can be noticed, there is a very good agreement between the 2 quantities. The only major difference
is at short scales (10− 15 h−1Mpc, region where is located the LS), caused by the failure in FAM in
reproducing properly the movements at this non-linear scales, plus the lack of objects sampling such
region.

In the same figure, we also display the average results from linear theory and Vb,Mock (top-right
panel), together with its dispersion (gray shadows). In this case, we see that the Vb,Lin presents several
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Figure 3.16 — Different bulk flow estimates. The dashed line in all panels represent the Mock bulk flow esti-
mate. The top-left panel shows the FAM bulk flow, the top-right panel the linear bulk flow, while the bottom-left
panel the Zel’dovich bulk flow estimate. All the bulk flow estimates have been corrected for shot-noise and c.o.m.
displacements. The gray shadows represent the ±1σ dispersion error. The bottom-right panel shows the fractional
difference between the different computed bulk flows and the mock one.

spikes along the whole distribution. These spikes are the regions where linear theory is not longer valid
(cluster of galaxies). These differences are even more clearly shown in the corresponding fractional-
difference panel. The most noticeable difference is around the LS position, while other subsequent
spikes are due to considerable mass concentrations, like the GA and PP.

In the case of the Zel’dovich approximation (bottom-left panel), there is a clear mismatch between
Vb,Zel and the Mock one. The fractional difference indicates that Zel’dovich overestimates the bulk
flow by almost 30%, even after substracting the contribution from the c.o.m offset. This mismatch is
inherent to the method itself, a consequence of it being a kinematic model. The pull that is exerted
over the LG and companying structures is just ruled by the potential well of the mass distribution
without taking into account the mutual gravity interaction of the different structures of the system.
This introduces a spurious extra bulk flow component into the velocity field.

The bulk flow directions are very similar to each other. Figure 3.17 shows the directions at
60 h−1Mpc for all bulk flow estimates. In particular from the zoom-in we may notice that all di-
rections lie within an area of 20 square degrees. The Zel’dovich direction is the farthest from the rest.
In general, all directions are consistent with the Mark III bulk direction, and they point towards the
real direction of the bulk flow computed at this distance (l,b) = (280,0)±30◦ (Dekel 1999). The bulk
directions are also consistent with the gravity dipole direction from the mock catalogs (black circle),
differing by 17◦ ± 5◦. We can conclude that our estimates within the linear regime are consistent, the
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Figure 3.17 — Bulk Flow directions for all the velocity samples studied in this Chapter. The bottom panel is a
zoom of the area from the top panel where all bulks reside.

bulk flow and dipole directions do coincide with each other. The three velocity field models,
FAM, linear and Zel’dovich successfully reproduce the direction of the bulk flow. The linear and

Zel’dovich directions are within a distance of ≤ 8◦ from the mock one, FAM is only 4◦. With respect
to direction, FAM appears to be the best performing method.

3.8.3.1 Smoothing Effects

Non-linear effects can also be an important factor. They introduce noise in the different Vb estimates
(e.g. Figs. 3.15 & 3.16). Because our selection procedure follows a Monte Carlo sampling prescription,
it could be the case that several particles residing at very dense and clumpy regions with relatively high
peculiar velocities have been chosen. At these regions, errors in the velocity estimates are introduced
by all methods due to their failure to reconstruct peculiar velocities. In order to clarify this point, we
have smoothed the real and reconstructed peculiar velocity fields, convolving the fields with top-hat
filters of RT H = 2 & 5 h−1Mpc. The average cumulative results for all fields are shown in Figure
3.18. The left panel show the unsmoothed Vb estimates. The central panel displays bulk flows from
smoothed velocities with RT H = 2, while the right panel exhibits those with 5 h−1Mpc. The results
show an improvement for the inner cores of the catalogs, the LS region where all small scale structures
have been erased. The linear bulk flow estimate is the one who improves best with this smoothing
procedure, all spikes have been erased and the distribution coincides better with the real one. The only
difference is the central inner region where estimates remain too large. The Zel’dovich quantity does
not improve significantly in the sense that the amplitudes are still over-estimated by the same amount
than in the unsmoothed case. For the FAM estimate, the only improvement is with respect to the LS,
which coincides now with the mock bulk flow estimate. We also computed the relative misalignment
angle θ from the smoothed bulk flows results with respect to the unsmoothed case. No significant
changes in the bulk flow directions and convergences were noticed. The directions have only been
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shifted by ∼ 2◦ closer from their original position. These results show that our bulk flow estimates
are not influenced substantially by local non-linearities (except in the case of the Vb,Lin) in the mass
distribution.

Figure 3.18 — Smoothing effects on Vb for all methods. The left panel corresponds to the unsmoothed case,
the center panel to velocities smoothed with a top-hat filter of 2 h−1Mpc radius and the right panel to velocities
smoothed with a 5 h−1Mpc radius.

3.8.3.2 Shell contributions

We have also investigated what the contributions to the total Vb are from individual shells of thickness
(5 h−1Mpc). In this exercise, we have divided the total volume in 30 shells and isolated the velocities
of the objects enclosed in each of these shells. For each one of these subsamples we have computed the
3 Cartesian components of their shell-bulk flow. Figure 3.19 shows the average bulk shell Cartesian
contributions got from the N−body velocities (continues line), mock catalogs (dotted line) and FAM
velocities (dashed line). For comparison the gray dot-dashed line represents the N−body full average
cumulative bulk flow. The gray shadows depict the ±1σ dispersion errors computed from the FAM
Cartesian contributions.

The agreement between the N−body, mock and FAM shell Cartesian contributions is very good.
All Cartesian-group distributions follow each other very close for almost the whole range in distances.
While the y & z Cartesian components remain almost unchanged for the whole range in distances, the
behavior along the x component presents more radical changes. This component not only encloses
the largest amplitude from the 3 components, but also decreases constantly with radius. Worthy to

Figure 3.19 — Shell
Cartesian contribu-
tions to the total Vb.
The gray dot-dashed
line represents the
average N−body
cumulative bulk flow
distribution displayed
for comparison
purposes.
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notice is the fact that this Cartesian bulk shell behavior follows the one prescribed by the full N−body
bulk distribution (gray dot-dashed line). This means that must of the gravity pull exerted over the
LG comes from structures aligned along the x component. The spikes along the FAM x−bulk shell
distribution represent the location of massive structures that are acting over the LG. Perhaps the most
notorious spikes are those located at ∼ 40 h−1Mpc (GA), ∼ 50 h−1Mpc (PP). At those spikes the FAM
components slightly deviates from the mock distribution. Notice as well that there is still a significant
contribution of ∼ 300 km s−1 at the edge of the sample. These results are in good agreement with those
obtained by Hoffman et al. (2001) and Dekel (1999).

We have also looked for non-linear effects in the shell contributions. As before, we convolved the
different peculiar velocity fields with a top-hat kernel of RT H = 2 & 5 h−1Mpc. The bulk distributions
remain almost intact for the whole distance range.

3.8.4 The velocity Shear

A more demanding comparison between the different reconstructed peculiar velocity fields is the 2nd
term in the multipolar velocity decomposition, the velocity shear. The estimate of this term will tell us
how well the different techniques deal with the quasilinear regime of our local cosmic neighborhood.

We have computed the velocity shear from the peculiar velocities through the decomposition
method exposed in Chapter 2. The matrix representation of the traceless shear tensor is then diag-
onalized to obtain the eigenvectors (directions) and eigenvalues (amplitudes). We have re-ordered
these vectors in such a way that their eigenvalues will be in decreasing order and the sum of all of
them will be equal to zero. Hence, the shear eigenvalues follow the following properties:

1) s1 > s2 > s3

2) s1+ s2+ s3 = 0 (3.21)

3) s = (s2
1+ s2

2+ s2
3)1/2

The quadrupole moment of the velocity field informs us about the configuration of the mass dis-
tribution. The eigenvalues will tell us how significant the influences of the structures surrounding the
LG are. We can visualize these 3 eigenvalues like the 3 main axis of a velocity ellipsoidal, with di-
rections given by their corresponding eigenvectors. These vectors are linearly independent of each
other, defining in this way a shear reference frame. The s1 eigenvalue is known like the dilational
(stretching) mode of the shear velocity and it corresponds to the largest axis of the velocity ellip-
soidal. It points towards the direction of the maximum stretch of the ellipsoidal. The s3 eigenvalue
corresponds to the smallest axis of the ellipsoidal, and it is known like the compressional mode. Its
eigenvector corresponds to the direction where the velocity ellipsoidal is being compressed (like by
expanding structures, e.g. voids), and its perpendicular to the dilational eigenvector. The s2 eigenvalue
corresponds to the middle mode, and determines the “morphology” of the shear.

Figure 3.20 shows the average 3 eigenvalues and the shear eigenvalue amplitude s for the N−body
velocity fields (black lines), and the Mock velocity fields (gray lines). The 3 Mock velocity shear
components successfully reproduce the behavior of the shear pattern in the N−body velocity fields.
The velocity field of the mock catalogs trace fairly the N−body peculiar velocity field. The mock esti-
mates can be used as genuine representations of the real values. In this plot we present the calculations
performed until the edge of the sample radius for displaying purposes. The shear converges to zero
much faster than the corresponding bulk flow due to its stronger dependence in distance (x−3). It can
be noticed that the gross of the shear influence comes from structures located within 60 h−1Mpc, and
more specific within 40 h−1Mpc. Although there is still some influence (< 10 km s−1 Mpc−1) from
structures located between 60− 80 h−1Mpc. The influence of the LS can be clearly seen by the high
values at regions < 15 h−1Mpc.

We have computed the value of the 3 cumulative eigenvectors and eigenvalues for all our catalogs
with the 3 modeling methods (FAM, Zel’dovich & linear). The left-column panels in Figure 3.21 show
the behavior of the eigenvalues for the 3 reconstruction techniques, plus the Mock distributions for
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Figure 3.20 —
Average eigenvalues
for the 4 N-body ve-
locity fields (black
lines), and Mock
velocity fields (gray
lines) as a function
of the computation
distance.

comparison purposes. The right-column panels show the angular misalignment θ, measured between
the mock eigenvectors and those from the reconstruction algorithms at each computing radius. The
gray shadows represent the 1σ dispersion errors around the mean values. The darkest gray corre-
sponds to the FAM errors, the half-gray scale the Zel’dovich errors, while the light gray depicts the
errors from linear theory. The top panels correspond to the dilational mode, the central to the mid-
dle one, and the bottom to the compressional mode. In all panels the linear technique consistently
fails in reproducing the expected results. The linear eigenvalue’s distributions are full of spikes and
deviations from the expected ones; these spikes/deviations are due to the presence of virial motions
(linear regime not longer valid) caused by non-linear structures like clusters of galaxies present in the
catalogs. This corresponding relative eigenvector’s convergences show the same behavior. The large
discrepancies in the directions at given positions are correlated with the peaks presented along the
eigenvalue distributions, located at the same positions. In general, linear results are barely consistent
with the expected values, specially at LS scales. These results make linear theory not very suitable for
studying the dynamics of the LG and LS environment. The Zel’dovich approximation gives in general
better results than linear theory. Although it underestimates the eigenvalues for regions where the LS
and GA (20− 40 h−1Mpc) are present, they are still consistent within the errors. With respect to its
eigenvectors, they show in general an average constant deviation of 10◦ for each eigenvector from the
mock ones (but again, consistent with the errors). This is a consequence of the method itself (as stated
before) of being a kinematic approach. The method suffers from severe problems are regions where
the flow is not longer laminar (e.g. cluster of galaxies). This is also reflected in the broad error shad-
ows. The Zel’dovich approximation fails mainly in reproducing the right directions of the non-linear
movements, but its performance at middle large scales (∼ 30−40 h−1Mpc) its better than plain linear
theory. In the case of FAM, its eigenvalues cannot reproduce properly the expected behavior for the
inner regions of the catalogs (< 20 h−1Mpc). This region corresponds to the non-linear regime where
FAM (like the other methods) fails in reproducing the corresponding velocities properly. Beyond this
radius, the FAM estimates are remarkably good in comparison with the expected ones. This situation is
also reflected in the eigenvector’s convergence. The direction converges rapidly after the inner region,
remaining very close to the Mock directions (. 5◦). Furthermore, the better agreement between the
FAM and expected quantities is reflected in the error shadows, these are smaller than those given by
the other two methods and hence, overshadowed.

With respect to the velocity ellipsoid, the maximum stretch (s1 eigenvector) points to (l,b) =
(327,14)◦ ± (15,8)◦ and its antipode (very close to the one predicted by Lilje, Yahil, & Jones 1986).
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Figure 3.21 — Average shear components for all catalogs and modeling techniques. The Left-column panels
represent the 3 eigenvalue amplitudes, while the right-column panels show the convergence of the corresponding
eigenvectors with respect to the Mock ones. The gray shadows represent the 1σ dispersion error around the
averages.

This indicates a relative offset with respect to the bulk velocity of 43◦. This misalignment depends on
the configuration of the quadrupolar and dipolar mass distributions. It also indicates that we are still
missing contributions from mass concentrations beyond this radius. The contraction (s3) is pointing
towards (l,b) = (103,2)◦ ± (18,10)◦. It is interesting to notice that the expansion points towards the
direction of the Hydra-Centaurus cluster (GA).

The last point to consider for the velocity ellipsoid is smoothing effects. Figure 3.22 shows the cu-
mulative eigenvalue’s amplitudes (s) of the unsmoothed velocities (left panel), and the RT H = 5 h−1Mpc
smoothed velocities (right panel). The gray shadows indicate the ±1σ dispersion errors. The darkest
gray represents the errors from the FAM technique, the middle-gray scale to the Zel’dovich, and the
lightest gray to linear theory. Linear theory estimates improve as a result of erasing the small scale
signal in the velocities. Nevertheless, it fails in reproducing the virial motions of the LS, but the
overall smoothed results are consistent with the expected values. The Zel’dovich approximation un-
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Figure 3.22 — Average shear amplitude eigenvalues (s) for unsmoothed velocities (left panel), and for RT H =

5 h−1Mpc smoothed velocities (right panel) for all catalogs and reconstruction techniques. The gray shadows
depict the 1σ dispersion errors around the averages.

derestimates the Mock values by ∼ 20% for both cases, but still consistent within the 1σ errors. It
also fails in the LS, although with a better estimate than linear theory. The FAM technique repro-
duces very well the expected behavior (even in the case of unsmoothed velocities). At the center of
the catalogs, FAM still presents some inconsistencies from the expected ones. Nevertheless, they get
erased when smoothing velocities, reproducing in this way the inner core of the catalogs. It is worthy
to mention that all methods seem to converge at the 60 h−1Mpc edge. This is an intrinsic characteristic
from the computed quantity. Indeed, as shown in Fig. 3.20, there are almost none substantial contribu-
tions beyond this radius. The case of the eigenvectors show the same behavior, the spikes get erased
when applying smoothing, but in general the relative distance between the Mock and the reconstructed
quantities remains almost intact.

3.9 Conclusions

In the present study, we have computed the main components of the peculiar velocity field of our local
Universe, the bulk and shear moments. The peculiar velocity fields have been modeled from the galaxy
positions in mock catalogs. The mock catalogs were extracted from realistic constrained N−body
simulations of our nearby Universe. The initial density fields used to compute the present mass dis-
tributions, were produced from real data through the algorithm of the Wiener Filter and Constrained
Realizations. The final outcome of the simulations (4 in total) successfully reproduced the main struc-
tures (LS, GA, PP) that surrounds the LG (located at the center of the simulation boxes). The mock
catalogs carved out from this simulations are aimed to mimic the mass distribution around the LG, and
up to a radius of 150 h−1Mpc. These mock catalogs have been composed by two different sampled
regions. An inner region that is volume-limited aimed to mimic the NBG catalog [0−30 h−1Mpc], and
a flux-limited region following the PSCz catalog selection function [30−150 h−1Mpc].

The reliability of the final mass distributions and their corresponding mock catalogs was tested
by measuring their dipolar moment and comparing them with respect to the real observed estimates.
Results showed that our simulations and mock catalogs successfully reproduce the mass distribution
even beyond the constrained dynamical range of the catalogs.

The comparison between the computed gravity dipole for the N−body mass distributions and for
the Mock galaxy distributions, showed that it is necessary to correct the mock catalogs due to sampling
effects for shot-noise effects. These effects become stronger at large distances and can represent more
than 10% of the dipole amplitude. The amplitude and direction of the cumulative Mock dipole and
the one from the N−body mass distribution are very close to each other and follow the same average
behavior, at 60 h−1Mpc they are located at (l,b) = (277,14)◦ ± (21,11)◦ and with an amplitude of
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542± 52 km s−1, being these results in good agreement with those from the literature (e.g. Rowan-
Robinson et al. 2000). The evolution of the WF/CR has successfully reproduced the observations in
the sense that there might be still structures influencing over the LG at very large scales (e.g. Hoffman
et al. 2001).

We have compared the bulk flows from the full N−body velocity distribution and the one from the
Mock catalog velocities. The results showed that both estimates follow the same behavior for almost
the whole range in distances. We have limited our analysis up to 60 h−1Mpc for having similar regions
(constrained regions) between the 4 catalogs. Although we have corrected the object distributions for
shot-noise effects, we cannot correct for the velocities because of our ignorance of the surroundings
around the objects. This means that the objects could be located at a highly non-linear region or in a
middle of a void and there is no way to know this in order to correct for. From the selection function, we
know that we are dealing with objects that are brighter than a certain limit, but these objects could be
located anywhere. A way to overcome this problem, is by increasing the number of chosen objects by
modifying the selection function. But because our aim is to produce realistic mock catalogs following
(in this case) the real distribution of objects in the PSCz catalog, we are limited by this constraint. The
position of the computed bulk flows are located in the sky around (l,b)= (294,3)◦±(19,14)◦, having an
offset of less than 18◦ from the dipole direction and with an amplitude of 330±62 km s−1. Both results
are consistent with observations at this same radius (Dekel 1999; Zaroubi 2002). The fact that there
exists a relative misalignment with respect to the real dipole and that the dipole magnitude up to this
radius represents ∼ 55% of the total LG bulk amplitude, implies that structures beyond this radius still
play an important role in the dynamics of the LG. Between the N−body and Mock dipoles, there is an
offset of 4◦, attributed to the sampling procedure. Nevertheless, the mock catalog velocities represent
our best estimate of the real velocity field given a selection function, under the hypothetical case that
we can measure the 3D spatial object velocities. The shear components of these two velocity fields
show also some interesting features. Both estimates are very close to each other and their directions
are comparable. Furthermore, we have measured a significant influence beyond 60 h−1Mpc, evidenced
by the amplitude of the eigenvalues at these radii.

The modeling of the peculiar velocity field has been performed by using 3 different algorithms:
linear theory, Zel’dovich approximation and the FAM technique. We observed the following:

The linear bulk flow proved to be highly noise dominated, especially at the regions of the LS,
GA, and PP where prominent spikes are present in both amplitude and direction. At these regions,
linear theory is not longer valid for being non-linear. Nevertheless, these effects can be overcome by
applying a smoothing algorithm with a radius of 5 h−1Mpc. These smoothed results were shown to be
in good agreement with the expected values, although there was a large discrepancy at the LS region.
The corresponding eigenvalues and eigenvectors suffered from the same effects at non-linear regions.
Smoothed results proved to be in better agreement, both eigenvectors and eigenvalues are in general
closer to the expected values. Nevertheless, at the LS regions, the method fails completely. As in the
case of the bulk flow, the linear shear estimates are just barely consistent with the expected values.

In the case of the Zel’dovich and FAM reconstructions, an extra correction had to be done because
of the shift between the geometrical centre and c.o.m.. This effect introduce an extra-spurious bulk
flow because of the different apparent mass distributions when reconstructing the velocity field by
means of the FAM technique. Even after these corrections, the Zel’dovich bulk flow had consistently
larger amplitudes than the expected estimates. The reason for this is that the method overestimates the
velocities in regions where the flow is not longer laminar. These over-predictions have a cumulative
effect that is reflected in the bulk flow. The corresponding Zel’dovich bulk direction was much better
determined, with an offset of only 9◦ with respect to the mock one. The eigenvalues always underes-
timated the Mock values by almost 20% of their total value, but consistent within the 1σ dispersion
errors. The average estimates did not show a significant improvement when smoothing apart from
the LS region where the amplitudes decreased and converged to the expected ones. The Zel’dovich
velocity ellipsoid is slightly distorted with respect to the expected one. There is a misalignment of 8◦

between the Zel’dovich shear frame and the Mock one.
On the other hand, FAM estimates are in general much closer to the mock estimates than the other
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2 reconstruction techniques. Its bulk amplitude is very similar to the Mock one. There is a discrepancy
at small radius, the result of the LS influence. The robustness of the method is noticed by the fact that
there are no significant changes in the results even when applying a smoothing procedure, plus the fact
that errors are considerable small ≈ 60 km s−1. The direction of its bulk flow is remarkably close to
the Mock direction, with a misalignment angle of 3◦, closer than those obtained from the linear and
Zel’dovich approaches. The shear components also follow the expected behavior for regions excluding
the LS. If smoothing is applied, then the FAM LS estimates improve considerably. In the case of the
eigenvectors, they also remain very close to the Mock ones. The FAM velocity ellipsoidal has a shift
of only 4◦ with respect to the expected one.

We have proved that all methods employed in this study fail in reproducing the LG dynamics for
being within the non-linear regime. A smoothing algorithm is necessary in order to overcome this
effect, not in all cases results are completely satisfactory (linear theory and Zel’dovich approx.). In the
mildly non-linear regime, the 3 methods give acceptable results and comparable to the expected ones
within the errors. FAM performs slightly better than the other two methods. It properly reproduces
the dynamical behavior of the LS environment and presenting tighter relations with respect to the
expected values. At linear scales, the 3 reconstruction techniques give more similar results (provided
extra-processing in the peculiar velocity field, like smoothing), and very close to the expected ones.
Given these results, we can conclude that the FAM method is the most suitable technique to study
the dynamics of the LG & LS cosmic environment. Furthermore, this study showed as well, that the
success of FAM will depend on the kind of sample used.

As a last point, the fact that our results match those obtained from observations of our real Universe,
is one success of employing the WF/CR algorithm. Even though at scales that have not being strongly
constrained due to the lack of good data, the method is able to reproduce the main characteristics of
the mass distribution and its corresponding peculiar velocity field, the dipole and bulk flow.
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3.A Constrained Realizations

Bertschinger (1987) realized that a constraint realization of Gaussian random field f is given by the
sum of the analytically calculated mean fiend f̄ and the random residual field F,

f (r) = f̄ (r) + F(r) . (A3-1)

Hoffman & Ribak (1991) presented a straightforward method for the construction of constrained
realizations of Gaussian fields based on the defining work of Bertschinger (1987). They realized that,
for any constraint that is a linear functional of the field, the problem can be solved exactly and in a
simple way, without involving iterations.

van de Weygaert & Bertschinger (1996) exposed in a very detailed way the CR methodology and
explored its benefits and advantages on particular realizations. Within this implementation, a peak or
dip in the density field can be characterized by a set of 21 physical constraints, including its scale,
position and orientation, density, velocity and velocity gradient.

In this appendix we follow the CR prescription of van de Weygaert & Bertschinger and expose its
main concepts.

Consider a random homogeneous and isotropic Gaussian field F(r) with zero mean which is de-
fined by its power spectrum P(k). This field is subject to a set of M constraints,
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Γ = {Ci(r)|ri ≡Ci[ f ;ri] = ci; i = 1, . . . ,M} . (A3-2)

The constraints are consequently imposed by forcing the field Ci[ f ;ri], (i = 1, . . . ,M), a functional
of the field f (r) as well as a function of the point r, to have the specific value ci at the given position.
The constraints Ci are assumed to be linear functionals, clear examples are the values of the field itself
at the point ri, the derivative of the field f (r) or a convolution over f (r) with some function g(r),

Ci[ f ;ri] = f (ri) = ci

C j[ f ;r j] =
∂

∂r
f (r)|r j = c j (A3-3)

Ck[ f ;rk] =
∫

g(r− ri) f (r)dx = ck

Since we have limited the field f (r) to those that obey the set of M constraints Γ, the probability of
possible realizations of our f (r) is given by the conditional probability distribution function,

P[ f (r)|Γ] = P[ f (r),Γ]
P[Γ]

=
P[ f ]
P[Γ]

, (A3-4)

where P[. . .] is the multivariate Gaussian of the appropriate variables. This comes by virtue of the
central limit theorem, the distribution of a Gaussian random field will approach normality, and the
multivariate distribution P is multivariate Gaussian:

PN =

exp
[
− 1

2

N∑

i=1

N∑

j=1

fi(M
−1)i j f j

]

[(2π)N(detM)]1/2

N∏

i=1

d fi , (A3-5)

where M−1 is the inverse of the covariance matrix M, the generalization of the variance σ2 in a one-
dimensional normal distribution. M is completely determined by the autocorrelation function ξ(r) if
the field is a Gaussian random field,

Mi j ≡ 〈 f (ri) f (r j)〉 , (A3-6)

where the brackets 〈. . .〉 denotes ensemble averages. Since f is a N−dimensional vector, the covariance
matrix M can be written as:

M = 〈 f f t〉 , (A3-7)

with f t being the transpose of f .
Because the constraints Ci are linear functionals, the central limit theorem also assures them to

have a Gaussian probability distribution when applied on a Gaussian field f (r). The second equality
in Eqn. A3-4 comes from the fact that the constraints are linear functionals of f , so that the joint
probability space for f and Γ is the same as the probability space for f .

The conditional probability distribution function can be described as a shifted Gaussian around the
ensemble mean field f̄ (r) (van de Weygaert & Bertschinger 1996), defined as

f̄ (r) = 〈 f (r)|Γ〉 = ξi(r)ξ−1
i j c j , (A3-8)

where summation over repeated indexes is assumed. Hence, f̄ (r) is the “most likely” field satisfying
the constraints and it equals the ’average density profile’ obtained by BBKS. The term ξi in the previous
equation is given by

ξi(r) = 〈 f (r)Ci〉 , (A3-9)

and it represents the cross-correlation between the field and the ith constraint Ci[ f ;ri], while

ξi j = 〈CiC j〉 , (A3-10)



3.A. CONSTRAINED REALIZATIONS 111

is the ijth element of the constraints’ correlation matrix, and Ci is evaluated at ri. In the case where
the constraints Ci involve only the field itself, both the correlation matrix ξi j and ξi(r) can be written
in terms of the two-point autocorrelation function ξ(r), that is:

ξi j = 〈 f (ri) f (r j)〉 = ξ(|ri− r j|) ,
ξi(r) = 〈 f (r) f (r j)〉 = ξ(|ri− r|) , (A3-11)

The residual field F(r) is defined as the difference between the Gaussian field f (r) satisfying the
constrain set Γ and the mean field f̄ (r):

F(r) ≡ f (r)− f̄ (r) . (A3-12)

Note that the residual field F is a random Gaussian field because it is the difference between two
Gaussian fields. This residual field provides random noise which is added to the signal f̄ (r), which is
completely fixed by the imposed set of constraints Γ. In terms of the residual field F, the constraint
points are expressed as {F(r) = Ci[ f ;ri] = ci; i = 1, . . . ,M}. Any particular constrained realization can
be written then as the sum of the analytically calculated mean field Γ (via Eqn. A3-8), and the random
residual field F(r):

f (r) = f̄ (r)+F(r) = ξi(r)ξ−1
i j c j+F(r) . (A3-13)

The “crucial” point in this algorithm is that

Ci[F] =Ci[ f − f̄ ] =Ci[ f ]−Ci[ f̄ ] = ci− ci = 0 , (A3-14)

the statistical properties of the residual field are all independent of the numerical values of the con-
straints ci, and for any particular choice of the constraints a realization of the residual can be straight-
forward constructed.

The construction of a constrained realization of the field f (r) it can be done in five stages (Hoffman
& Ribak 1991; van de Weygaert & Bertschinger 1996)

1. Create a random, unconstrained realization of the field f̃ , which is a homogeneous and isotropic
Gaussian random field whose statistics is determined solely by the power spectrum P(k).

2. Calculate for this particular realization f̃ , the values c̃ of the constraints {Ci(r)|ri , i = 1, . . . ,M}.
These variables can be looked upon as defining another set of constraints, Γ̃ = {c̃}. This a poste-
riori set of constraints is evaluated at the positions of the original constraints and has the values
of this specific realization.

3. Calculate for this “random” constrained set Γ̃ the corresponding mean field expected as if the set
was chosen initially,

¯̃f = 〈 f̃ |Γ̃〉 = ξi(r)ξ−1
i j c̃ j . (A3-15)

4. Evaluate the residual field F̃ of the realization from the given particular realization and the
calculated mean field Γ̃ as

F̃(r) = f̃ (r)− ¯̃f (r) . (A3-16)

The residual field F̃ thus generated is the residual field of a particular realization restricted to
the desired constraints, Γ

5. Evaluate the desired mean field f̄ , according to Eqn. A3-8 and add it to the residual field F̃(r) to
obtain a particular realization of the desired constrained Gaussian random field

f (r) = f̃ (r)+ ξi(r)ξ−1
i j (c j− c̃ j) . (A3-17)



112 CHAPTER 3: Dipole & Quadrupole moments of the local cosmic velocity field

The constructed field f (r) obeys the imposed constraints and replaces the unconstrained field f̃ (r).
Note that there is a one-to-one correspondence between the trial field f̃ (r) and the constructed one
f (r). Furthermore, the ensemble of realizations produced by this algorithm properly samples the sub-
ensemble of all realizations constrained by Γ. The algorithm is exact and involves the creation of only
one random unconstrained realization and the calculation of the mean field under the given constraints.
There is not restriction over the number of constraints and these can be in a very large number, and
they can be imposed on the field itself or on any linear functional of it.

3.B The Wiener Filter

The common use of the Wiener Filter [WF] is for noise suppression. Several authors (e.g. Lahav et al.
1994; Fisher et al. 1995b; Zaroubi et al. 1995, 1999) implemented the WF to reconstruct the density
field from the observed radial velocities and to interpolate or extrapolate the reconstruction to regions
of poor sampling. The latter can be done in real space, to interpolate into the Zone of Avoidance or
to extrapolate into large distances, or it can be used in a reciprocal space, such as the Fourier space or
spherical harmonic space to increase the resolution of the data.

The WF multiplying the data to obtain the estimator is schematically Pk/(Pk +σ
2) (where Pk is

the power spectrum and σ the error). This means that the filter attenuates the estimator to zero in
regions where the noise dominates. The reconstructed mean field is thus statistically inhomogeneous.
In order to recover statistical homogeneity the use of Constrained Realizations is necessary. In the
CR the random realizations of the residual from the mean are generated such that they are statistically
consistent both with data and with the prior model (Hoffman & Ribak 1991). In regions (real or any
reciprocal space) dominated by “good” quality data, the CRs are dominated by the data, while in the
limit of no data the realizations are practically unconstrained.

The general application of the WF/CR method to the reconstruction of large scale structure is de-
scribed in detail in Zaroubi et al. (1995), see also Fisher et al. (1995b). Here we limit to the description
and application of the approach to radial velocity data as stated in Zaroubi et al. (1999).

The data for the WF/CR analysis are given as a set of observed radial peculiar velocities u0
i sampled

at positions ri with estimated errors εi which are assumed to be uncorrelated. The peculiar velocities
are assumed to be corrected for systematic errors. The observed velocities are related to the true
underlying velocity field v(r), or its radial component ui at ri, by the following expression:

u0
i = v(ri) · r̂i+ εi ≡ ui+ εi . (B3-18)

It is assumed that the peculiar velocity field v(r) and the density fluctuation field δ(r) are related via
the linear gravity instability theory. Under the assumption of a specific theoretical prior for the power
spectrum P(k) of the underlying density field, the WF minimum-variance estimator of the reconstructed
velocity field can be written as:

vWF(r) = 〈v(r)u0
i 〉〈u0

i u0
j 〉−1u0

j , (B3-19)

where the angle brackets denote an ensemble average. The term 〈u0
i u0

j 〉 is the two-point radial velocity

correlation function. The cross-correlation term 〈v(r)u0
i 〉 is calculated from the two-point velocity

correlation tensor (Zaroubi et al. 1999). The WF mass-density fluctuation field δWF(r) is given by an
analogous expression:

δWF(r) = 〈δ(r)u0
i 〉〈u0

i u0
j 〉−1u0

j , (B3-20)

where the first term corresponds to the cross-correlation matrix of the density and radial velocity.
Note that in linear theory the WF reconstruction of the velocity and density fields is equivalent to first
reconstructing one of those fields and then solving the Poisson equation for the other.

The formalism of constrained realizations allows one to create a typical realization of the residual
from the WF mean field Hoffman & Ribak (1991). The method is based on creating random realiza-
tions, δ̃(r) and ṽ(r), of the underlying fields that are statistically consistent with the assumed power
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spectrum and the data via linear theory, and a proper set of errors ε̃i. The velocity random realization
is then “observed” like the actual data to yield a mock velocity data set ũ0

i . Constrained realizations of
the dynamical fields are then obtained by

vCR(r) = ṽ(r)+ 〈v(r)u0
i 〉〈u0

i u0
j 〉−1(u0

j − ũ0
j ) (B3-21)

and
δCR(r) = δ̃(r)+ 〈δ(r)u0

i 〉〈u0
i u0

j 〉−1(u0
j − ũ0

j ) . (B3-22)

The average of the CRs is the WF field. Their scatter about the WF field is the uncertainty that it
is attributed to the field. The uncertainties are evaluated from the CRs for the purpose of evaluating
errors in quantities that are computed later from the WF fields. It is worthy to mention that this type
of reconstruction is designed to treat the random errors in an optimal way, thus stressing only robust
structures and avoiding fake structures.
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4
Modeling the local cosmic peculiar

velocity field II:
Constrained Simulations

E. Romano-Dı́az, E. Branchini, R. van de Weygaert & Y. Hoffman.

W have modeled the peculiar velocity field of our Local Supercluster [LS] in a volume of
30 h−1Mpc radius from the Local Group by means of the FAM method. We have made use

of mock catalogs carved out from realistic constrained N−body simulations of the nearby universe.
The LS mock catalogs were constructed according to the Nearby Galaxy Catalog [NBG] in a vol-
ume fashion way. External contributions from the mass distribution beyond 30 h−1Mpc and up to
150 h−1Mpc from the Local Group have been considered by applying FAM to volume+flux limited
catalogs. Such catalogs mimic the mass distribution according to the IRAS-PSCz selection function.
The external contributions have been quantified by a multipolar decomposition of the residual velocity
field by substracting the “inner” contributions given by the NBG catalog, from the large scale “ex-
ternal” contributions given by the PSCz-alike catalog. Results show that the dipole and quadrupole
moments represent the major share of the external matter distribution beyond the LS region. When
adding these two components to the LS velocity model, it is possible to obtain a bias-free velocity field
for the inner NBG catalog. In an earlier study Romano-Dı́az et al. (2004) addressed the same issue by
using unconstrained N−body simulations for the LS. The accuracy of their results, however, depends
on the mass distribution beyond the LG region. In this chapter we do not suffer from this problem since
our parent N−body samples are effectively constrained according to the matter distribution revealed
by the Mark III catalog of peculiar velocities.
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Figure 4.1 — Interpolated
density (contour lines)
and Peculiar Velocity field
(arrows) around the LG
and LS within a slice of
[±60 h−1Mpc] centered
at the LG, and projected
along the supergalactic x− y
plane. The main nearby
structures can be recog-
nized, the Hydra-Centaurus
supercluster at (SGX,SGY)
= (-35,20). Together with
the Pavo-Indus-Telescopium
supercluster [(SGX,SGY) =
(-40,-15)] the latter makes
the Great Attractor. The
Perseus-Pisces supercluster
at (SGX,SGY) = (45,-20)
is the second largest struc-
ture on the map. (From
Branchini et al. 1999).

4.1 Introduction

Peculiar velocities are an important cosmological tool because they directly probe the matter spectrum
rather than the galaxy spectrum. The galaxy velocity field is the result of the gravitational attraction of
matter in any form. They can characterize the mass distribution on very large scales because velocities
are more sensitive to the low frequency part of the fluctuation power spectrum. They play an important
role in the determination of the cosmological density parameter, Ωm. A comparison of the velocity
field with the matter density field allows a test of gravitational instability theory.

Our Local Group of galaxies [LG, hereafter] is located in a rather atypical cosmic region of the
Universe. Massive nearby structures such as the Great Attractor [GA] (at ≈ 40 h−1Mpc) and at the
opposite site the Perseus-Pisces supercluster [PP] (at ≈ 50 h−1Mpc) generate a very strong peculiar
gravity field. Furthermore, the LG is located just at the edge of a bridge connecting these two struc-
tures, the Local Supercluster [LS]. This location is close to a saddle point in the gravity field. The
gravitational attraction of the two structures near compensate each other, being of comparable magni-
tude and pointing in opposite directions. The GA prevails slightly, resulting in a net pull toward the
GA region. Another characteristic of this system is that all these structures are positioned in a planar
configuration, the supergalactic x− y plane (Fig. 4.1, see also the cosmography section of Chapter 2).

The velocity field of the local cosmic vicinity is a mere reflex of the intricate peculiar mass config-
uration surrounding the LG. It receives contributions from the local, intermediate and large scale mass
distribution. At small scales (∼ 20 h−1Mpc), the local vicinity is strongly influenced by the nearby
Virgo cluster (e.g. the Virgocentric infall, Davis & Peebles (1983b) and references therein) and the
filamentary Local Supercluster, which itself connects to the Great Attractor (e.g. IRAS density field,
Strauss et al. 1992). At intermediate scales (40− 60 h−1Mpc) the GA and PP dominate. At large
scales the local environment seems still to experience significant influence from structures located
even beyond 150 h−1Mpc such as the Horologium supercluster (Raychaudhury 1989; Plionis & Val-
darnini 1991) and the Shapley concentration (Plionis & Kolokotronis 1998; Basilakos & Plionis 1998;
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Rowan-Robinson et al. 2000; Hoffman et al. 2001). It is therefore necessary to consider all dynamic
scales when studying the peculiar velocity field of the LG cosmic neighborhood.

Here we are interested in modeling in an optimal fashion the full peculiar velocity field of our
local Universe up to scales of 30 h−1Mpc. This scale corresponds to the volume enclosing the LS
and leaves out major cosmic structures such as the GA and PP. In this work we want to address two
separate problems concerning to the LS peculiar velocity field. First we want to quantify the effect of
neglecting the external contributions beyond the LS volume when modeling only the enclosed mass
distribution (LS). Secondly, we want to account for these external contributions in order to obtain an
unbiased LS peculiar velocity field free from any external and tidal effects.

We will make use of an improved implementation of the Least Action Principle [LAP], the Fast
Action Minimization method (FAM Nusser & Branchini 2000) to model the peculiar velocity field.
The LAP technique has been widely used to study the LG dynamics (Peebles 1989, 1990, 1994; Gi-
avalisco et al. 1993; Dunn & Laflamme 1993; Branchini & Carlberg 1994; Shaya et al. 1995; Phelps
2000; Sharpe et al. 2001). However, these implementations suffered mainly from expensive direct
force calculations, limiting the number of objects for their analyses. With FAM this is not longer the
case, as shown by Nusser & Branchini (2000) and Romano-Dı́az et al. (2004). FAM can deal with more
than 20 000 objects. This LAP implementation allows one to explore the mildly non-linear regime,
the same regime of the Local Supercluster. All these characteristics make FAM a very suitable tool for
studying the LS volume.

4.2 The external influence over the Local Supercluster

The power of velocity fields is that they sample scales large enough that density perturbations are fully
in the linear regime. Mass conservation in the linear regime of gravitational instability tells us that

∇ ·v(x) = −H0Ω
0.6
m δ(x) , (4.1)

where v is the peculiar velocity vector and δ is the mass density contrast. If we translate this equation
into Fourier space we get,

ık · ṽ(k) = −H0Ω
0.6
m δ̃(k) , (4.2)

Thus, it is possible to define a “velocity power spectrum” Pv(k) ∼ 〈ṽ2(k)〉 in analogy to the density
power spectrum P(k). Both quantities are related via

Pv(k) = H2
0Ω

1.2
m k−2 P(k) , (4.3)

and therefore |ṽ(k)| ∝ δ̃(k)/k. This means that the long-wavelength perturbations have a larger impact
on large-scale peculiar velocities than they do on mass fluctuations.

The LAP technique has been used to compute the peculiar velocity field of the LS from galaxy
positions. But because the peculiar velocity field receives contributions from the large scale mass
distribution, even beyond 150 h−1Mpc, these have to be taken into account if one pretends to model
such velocity field free from any systematic effect.

Many attempts have been done in order to consider the large scale influence when modeling pe-
culiar velocities in the local vicinity. Shaya et al. (1995) modeled the influence of the external mass
distribution by considering the distribution of rich Abell clusters, while Sharpe et al. (2001) accounted
for the linear contributions from this mass distribution according to the PSCz catalog (Saunders et al.
2000). Schmoldt & Saha (1998) proposed a different approach, they considered a “tidal” potential
caused by the influence of objects external to the region considered. They characterized this potential
by its dipole and quadrupolar terms based on observational estimates. The linear evolution of this tidal
field was taken into account in the evolution of the action in the LAP machinery. However, such char-
acterizations of the external mass influence may not properly account for the evolution of nonlinear
systems, such as the massive superclusters Hydra-Centaurus (GA) and Perseus Pisces. Furthermore,
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this mass distribution beyond the LS volume (30 h−1Mpc) exerts a strong tidal influence over this “in-
ner” volume. Lilje, Yahil, & Jones (1986) estimated that at the location of the LG the velocity shear
had a value ∼ 200 km s−1 with respect to the Virgo cluster. They argued that the source of this shear
had to be a considerable mass concentration at a distance of ∼ 3 times the distance to the Virgo cluster,
soon after confirmed by the results of Lynden-Bell et al. (1988). Hoffman et al. (2001) reconstructed
the tidally induced component of the cosmic velocity field from the Mark III and SFI catalogs out to a
distance of 60 h−1Mpc . Their results indicate that there is still non-negligible influence from structures
beyond such sample radius.

Romano-Dı́az, Branchini, & van de Weygaert (2004, hereafter RBW, see Chapter 2) studied and
analyzed the velocity fields of cosmic regions which resemble statistically the cosmic neighborhood.
They assessed how well currently available all-sky, flux-limited redshift surveys of galaxies, such as
PSCz, can account for the major share of mass concentrations inducing the external tidal forces. They
compared the N−body velocities for two different cosmological scenarios, ΛCDM and τCDM cos-
mogonies, with respect to their reconstruction from mock catalogs up to distances of 100 h−1Mpc.
The study was centered in spherical regions around LG-alike observers in volumes of 30 h−1Mpc ra-
dius (the Local Supercluster region) according to the Nearby Galaxy Catalog of Tully (1988, hereafter
NBG). The reconstruction of the peculiar velocity field was done by means of FAM. Results showed
that in all plausible cosmological scenarios the mass distribution outside the Local Supercluster does
significantly affect the local dynamics: a typical reconstruction of the velocity field around the LS is bi-
ased in the sense that it does not account properly for the mass distribution beyond the sampled region.
The corresponding external velocity field can be reasonably represented by the two main components
(dipole and quadrupole, i.e. Bulk and Shear) of a multipolar decomposition of such field. The modeled
LS peculiar velocity fields can be corrected by adding the bulk and shear velocity components of the
external tidal velocity field. Despite of the good agreement between the corrected FAM results and
N−body velocity fields, there is a considerable large dispersion, especially in the case of the ΛCDM
scenario. The scatter around the main results implies that the goodness of these corrections depends
on the position of the observer and the mass distribution beyond 100 h−1Mpc.

Although RBW used LG-alike observers for their study, this choice only constrained the LG en-
vironment. The mass concentrations beyond 5 h−1Mpc were only statistically consistent with the LS
environment, and did not fairly represent the mass configuration as presented in the real universe.
Structures such as the GA and PP need to be taken into account if one wants to make a faithful model
of the velocity field in the LS.

Taking into consideration the large scatter of the fits from the velocity-velocity comparisons be-
tween the corrected FAM velocities and N−body ones for the ΛCDM cosmology, and taking into
account the consideration that this model seems to be the most viable cosmological scenario (WMAP,
Spergel et al. 2003), we have addressed this problem in more detail for this particular cosmological
scenario. In this chapter we have asked ourselves how important the external influences are when re-
constructing the peculiar velocity field of realistic realizations of the LS within a volume of 30 h−1Mpc.
As in RBW, we want to characterize this external influence by its bulk and shear flow components. A
main difference from the RBW analysis, is the use of constrained N−body simulations of the cosmic
neighborhood, that effectively represent the real mass distribution as inferred from the reconstructed
density field obtained from the Mark III catalog of peculiar velocities (Willick et al. 1997a). With this
approach the presence of real structures such as the GA, PP, Coma, Cetus and other structures can be
taken into account.

4.2.1 Decomposing the peculiar velocity field

Any given vectorial field can be characterized or decomposed through a multipolar decomposition
(around some origin) of the form:

F(x) = M+αD+βQ ·x+O . . . (4.4)
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where M represents the monopole term, D dipole, Q quadrupole and O the higher order terms, and
α,β, . . . are the multipole scalar coefficients.

In the same way, the peculiar velocity field can be decomposed in a multipolar summation of
terms. The decomposition can be performed in several ways. One may use a decomposition by using
spherical harmonics and Legendre polynomials (e.g. Fisher et al. 1995b). Or, one can take a more
straightforward approach like the one adopted here (Kaiser 1991, RBW), where the field is expressed
in terms of a Taylor series expansion, as function of spatial positions xi. Each term of the velocity
decomposition carries information on different scale regimes. The monopole term indicates the local
underdense of overdensity and does not affect peculiar velocities and can be ignored when considering
co-moving coordinates. The dipole term, also referred as the bulk flow, is the average streaming motion
within a volume of a characteristic length scale R. The quadrupole term, also known as the velocity
shear, is the result of the action (stretching and/or compression) over the enclosed matter distribution
of structures located beyond the edge of the sample, and its effects become more pronounced at the
edge of the sample. Higher order terms are related to non-linear structures and therefore their influence
radius is very limited, mainly around the virialized structures. Thus, they only represent a minor, very
local, contribution to the peculiar velocity field.

RBW showed that a multipolar decomposition of the type of Eqn. 4.4 for the “residual” velocity
field (the field which is the outcome of extracting the LS “inner” contributions to the “large-scale”
velocity field) is a fair characterization of the external gravitational influence over the LS volume.
They showed that it is possible to fairly model the LS peculiar velocity field by solely considering
the mass distribution within a volume of radius 30 h−1Mpc, and by considering only the dipole and
quadrupole moments of the residual velocity field. Here, we apply the present velocity decomposition
to the residual velocity field. Because we are interested in studying the large scale structure effects
over the LS, we only include up to the quadrupolar moment of the residual velocity field.

4.3 N−body simulation of the Local Universe

RBW studied the influence of the mass distribution beyond 30 h−1Mpc over the LS environment. In
their analysis they made use of N−body simulations which statistically resembled the nearby universe.
A challenging problem for this type of statistical approaches is the peculiar velocity field around the
LG. The presence of rare objects such as the GA and the specific configuration with PP imprint strong
characteristics on the local peculiar velocity field (e.g. Lilje et al. 1986; Lynden-Bell et al. 1988;
Bertschinger et al. 1990; Branchini et al. 1999). A very important characteristic of the local peculiar
velocity field is the observed low velocity dispersion of nearby galaxies. This has been perceived
as one of the challenges for structure formation models (Peebles 1993b), mainly because the typical
velocities of galaxies in cosmological simulations turn out to be too large in comparison with those
from the LG (Schlegel et al. 1994; Governato et al. 1997).

A very successful technique for making realistic simulations that reproduce the large-scale struc-
tures of the nearby real universe as revealed by the large-scale surveys (e.g. IRAS, SDSS, PSCz), and
at the same time the small-scale nearby structures is the combined use of Constrained Realizations and
the Wiener Filter [WF] technique (Bertschinger 1987; Hoffman & Ribak 1991; van de Weygaert &
Bertschinger 1996; Zaroubi et al. 1995, 1999).

4.3.1 Constrained N-body simulations

Constrained simulations [CS] are meant to match as close as possible the kinematics, dynamics, and
structure of the mass distribution in our local universe. This can be achieved by imposing certain
constraints on the initial conditions in the N-body experiments which guarantee the time-evolved dis-
tribution of particles to reproduce some specific properties of the mass distribution in the local cosmos.

Because velocities reflect the mass distribution on large scales, they can be used to map the linear
density field of the nearby universe. This can be done by applying the WF algorithm to the Mark III
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catalog of peculiar velocities (Zaroubi et al. 1995, 1999). Fluctuations on all scales are given by the
constrained random field technique (CRF Bertschinger 1987; Hoffman & Ribak 1991; van de Weygaert
& Bertschinger 1996). The WF field is used as the “mean field” in the CRF procedure to constraint
the initial Gaussian field. The field is most correlated on scales of constraints. However, since we are
using peculiar velocities to constraint the field, the constrained field will be “effectively” constrained
at scales larger than the effective radius of the input catalog used (see Eqn. 4.3). The small-scale
density fluctuations are generated via the CRF according to a specific power spectrum of fluctuations
and adopted cosmology model. This approach guarantees that whether the signal to noise from the
data is very high, the information is dominated by the input data, and where the signal is very low
the constrained random method provides with the right power according to a priory model previously
selected.

The combined use of the WF and constrained realizations provides a reconstruction or a realization
of how the present day structure would appear if linear theory is valid. This implementation can be
used as a tool to recover the initial conditions of structures that prevail nowadays in the nearby universe.
Once the small and large scale density fluctuations have been computed, they are extrapolated back in
time using linear theory to provide a reconstruction of the initial conditions.

The CSs success in reproducing the main features of our local universe has been shown in Klypin
et al. (2003); Mathis et al. (2002), see also Chapter 3. Low and high resolution CSs have been per-
formed for studying several purposes related to the LS (e.g. Kolatt et al. 1996; Bistolas & Hoffman
1998; van de Weygaert & Hoffman 1999; Kravtsov et al. 2002; Klypin et al. 2003). However, none of
these authors studied the dynamical influences of the large scale mass distribution over the LS region.

In the present study, we will make use of the N−body simulations presented in Chapter 3. They are
a set of four constrained N−body simulations of our local universe. The CSs methodology was applied
to the Mark III catalog of peculiar velocities to generate the initial density fields. The four simulations
are fully constrained within a volume of ≈ 60 h−1Mpc from the LG region surveyed by the Mark III
catalog. The regions beyond this radius will also be correlated at scales within the velocity correlation
length of the Mark III catalog. At scales larger than this length, the method weakly constraints such re-
gions obeying the a priori model. The simulations not only reproduced the spatial density distribution
of the local universe within ≈ 60 h−1Mpc, but also its dynamical behavior even beyond 100 h−1Mpc.
The simulations correspond to a ΛCDM cosmology with ΩΛ = 0.7 and Ωm = 0.3, where ΩΛ measures
the cosmological constant Λ in units of the critical density and Ωm is the cosmological density param-
eter. The Hubble constant is h = 0.7 (measured in units of 100 km s−1 Mpc−1) and the power spectrum
is normalized to σ8 = 0.9. The present model is consistent with the current observational constraints
(WMAP, Spergel et al. 2003), and also consistent with the radial velocity surveys including the Mark
III. The simulations were loaded with 1283 particles and performed in a box of 320 h−1Mpc side with
the position of the LG located at the center of the box. The evolution of the initial density fields into
the non-linear regime was followed by means of the public available code HYDRA (Couchman et al.
1995).

4.3.2 Mimicking the universe: Mock Catalogs

For our analysis we have considered two different types of mock catalogs from the parent N−body sim-
ulations. The first ones are meant to sample the mass distribution within a region of the size of the
LS in a volume-limited fashion similarly to the Nearby Galaxy Catalog [NBG] of Tully (1988). The
second ones are designed to account for the mass distribution out to distances of 150 h−1Mpc as traced
by the IRAS-PSCz galaxies in our universe (Saunders et al. 2000) (for a detailed description of the
Mock-construction procedure see Chapter 3).

The NBG catalogs were subtracted from the PSCz ones by carving out the matter distribution
within 30 h−1Mpc, in this way both types of catalogs shear the same inner region. Catalogs have been
centered at the center of the simulation box where the LG should reside. Two main aspects concerning
the mock-center election should be discussed. The first one concerns the presence of the LG in the
linear (initial) density field. This structure corresponds to the small-scale part of the power spectrum



4.4. THE VELOCITY FIELDS 121

Label Radius Number 〈Nob j〉 Characteristic
( h−1Mpc) of catalogs

CNBG 30 4 2 800 Volume limited

CPSCz 150 4 19 000 Volume + Flux limited

Table 4.1 — Characteristics of the constrained mock catalogs. The radius indicates the catalog’s size, 〈Nob j〉 the
average number of objects for the 4 catalogs.

which is hardly correlated with the constrained scale. Therefore, its presence and mass configuration
will be a more fortunate event than a real local structure. Even more, if a LG configuration has formed
in any of the simulations, this does not necessary has to be located at the center of the simulation box.
The second point is related to the resolution of LG-alike structures in the parent N−body simulations.
Due to the mass resolution within the simulations (6.4×1011 M�), it is not possible to resolve with a
high resolution (many particles) a Local Group observer (MLG ≈ 3× 1012 M�). Nevertheless, as we
will show in Section 4.5.1 our choice for the mock-centers is not far from reality since the local mock
environment within 2 h−1Mpc from the LG-observer is in good agreement with the real observational
characteristics for this region.

From the 4 constrained simulations we have constructed 4 volume-limited catalogs (CNBG) and
4 volume+flux limited catalogs (CPSCz). Table 4.1 states the main characteristics for the 4+4 sets of
Mock catalogs. The second column indicates the radius of the sample, the third column the average
number of objects (〈Nob j〉) for the 4 catalogs, and the fifth column the main characteristics of each set.

Figure 4.2 depicts 2D projections for one Mock catalog of our sample. The “C4” label at the top-
left panel indicates that the catalog has been extracted from the fourth constrained simulation of our
CSs set presented in Chapter 3. Each slice has a thickness of 20 h−1Mpc centered along its respective
supergalactic plane. The inner circles indicate the transition region between volume and flux limited
samples. Clearly visible along the x− y plane, and indicated by labels, are the LS running along the
inner circle. It connects with the PP supercluster at the right-hand and the GA at the opposite side,
both structures are located just outside of the circled region.

4.4 The velocity fields

In this section we present the different estimates of the velocity fields: the Mock velocity fields and
the FAM modeled velocity fields for the two sets of catalogs, CNBG and CPSCz. Because we are
interested in performing our analysis for the LS region (30 h−1Mpc), the plots presented here concern
only to the objects within this volume. All velocity plots presented here will refer to the unsmoothed
velocity fields unless something different is stated. A discussion about smoothing effects is presented
in Appendix 4.A at the end of this chapter.

4.4.1 The “observed” velocity field

The “observed” velocity field is defined to be that obtained from the Mock galaxy distribution. This
field represents our best estimate for the real velocity field in the hypothetical case that we could
measure the full 3D velocity field. Selection effects in the mock-making procedure, such as sparse
sampling affect the sampled mass distribution and therefore the velocity field (Chapter 3). These
effects become more pronounced at large scales (> 100 h−1Mpc) To avoid these problems, it will be
desirable to deal with a sample that covers properly the whole space under study.
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LS

PP

GA

Sculp

C

Figure 4.2 — 2D projections along the three supergalactic planes of the particle distribution for one Mock cata-
log (C4) of our sample. The slices are centered at the LG-observer’s position, and with a thickness of 20 h−1Mpc.
The circles indicate the transition region between volume-limited and flux-limited regions. The labels indicate
some of the most prominent structures presented in the catalog.

Figure 4.3 shows cuts for the mock-observed velocity field along the 3 supergalactic planes from
two mock catalogs of our set (C1 & C4). The plots show the unprocessed projected peculiar velocities
at the particle positions within a slice of ±5 h−1Mpc from its respective supergalatic plane. The size
of the arrows is proportional to the amplitude of the galaxy velocity components within the 3 slices,
with each arrow starting at the location of the galaxy. As expected, the two set of plots show clear
similarities between both, the velocity field and the mass distribution. Both catalogs show a strong
coherent bulk flow along the x− y plane towards the −x direction -the GA location which lies just
outside the considered volume and mainly responsible for this bulk flow. This significant flow is also
present along the x− z projection. Apart from the intrinsic flow contained within the sample, there is a
clear signal pointing towards the center of this slice, the x−y plane and location of the GA region. The
third projection also shows some interesting characteristics, there is (easily noticed) the presence of a
filament running from the bottom-left of the projection to the opposite side. Another striking feature is
the presence of a shear pattern along the x− y plane and also noticeable, although not so pronounced,
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Figure 4.3 — 2D projected velocity fields at the mock-galaxy positions for the 3 central slices of 10 h−1Mpc
thick centered along the supergalactic planes for two mock catalogs, C1 & C4, top and bottom panels respectively.
The local group is located at the center of slices. The top labels indicate the projected Cartesian axes (abscissa -
ordinate).

in the x− z plane. This shear pattern is mainly produced by the quadrupolar mass distribution around
the LG and LS. Characteristics of this configuration are the mass concentrations defined by the GA on
one side and the PP on the other, with the local void in the midplane (see Fig. 4.2). The maximum
stretching direction is oriented along the GA-PP direction. This particular matter distribution also
constraints the compressional mode.

The nonlinear regions (clusters of galaxies) can be easily recognized as the sites with clumps of
randomly oriented velocities. Another noticeable feature is the Local Supercluster. It is visible in the
x− y plane as the running structure from the middle right part of the panel towards the upper-left part
of the panel, and along the y− z plane at the right upper part of the panel.

4.4.2 The FAM velocity fields

We have modeled the velocity fields from the particle distributions of the two sets of Mock cata-
logs by means of the FAM approach. We will refer to the modeled velocity field coming out from
the constrained NBG volume-limited catalog (within 30 h−1Mpc) as FAMCNBG, while we will call
FAMCPS Cz to those constrained velocity fields resulted from the volume+flux limited mock catalogs
(150 h−1Mpc). All catalogs were modeled using the same FAM parameters, e.g. a tolerance parameter
of 0.0001 to search for a minimum of the action S , number of basis functions n f = 6 and a soft-
ening parameter for the force resolution matching the one from the original N−body simulation of
ε = 0.25 h−1Mpc.

The FAM technique suffers from a main problem. It fails in properly model the peculiar velocities
at high density regions, the virialized regions where velocities not longer laminar (Nusser & Branchini
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Figure 4.4 — 2D projected FAM velocity fields at the mock-galaxy positions for the C4 CNBG catalog. The
slice properties are the same than in Fig. 4.3, and velocities have been normalized with the same parameters than
the mock ones.

2000; Branchini et al. 2002, RBW). Therefore, the corresponding velocity scatter around these regions
will not correspond to the mock one. However, this is a very local effect that only affects objects’
velocities at the high-density regions and not the overall velocity flow (Branchini et al. 2002, RBW).

4.4.3 The FAMCNBG velocity field

Burstein et al. (1990) pointed out that the fact that galaxies within a volume enclosing the LS seem
to fall into Virgo is a mere coincidence. They are directed towards a rather central, wide region of
the LS which coincides with the positions of the Virgo cluster and the Ursa Major cluster (Burstein
et al. 1990). It has been measured that galaxies within the plane of the LS are falling towards this
central region with velocities that increase with distance outward. The LG, which lies near the edge of
the LS, has a velocity ≈ 300 km s−1 to its centre (Aaronson et al. 1982a; Tonry et al. 2000), but only
≈ 150 km s−1 is directed towards the central region of the LS (Davis & Peebles 1983b; Tonry et al.
2000). With the present kind of analysis it is possible to address what is the net influence of the LS
over the LG.

The FAMCNBG velocity field is solely induced by the matter distribution contained within
30 h−1Mpc without considering any type of inhomogeneities located outside the radius sample. FAM
considers a homogeneous matter distribution outside the sampling radius, which has a null effect over
the sample’s dynamic (Nusser & Branchini 2000, RBW). Figure 4.4 depicts the FAMCNBG velocity
field for the same C4 catalog presented in Fig. 4.3 (lower panel). The velocities have been normalized
with the same parameter than the mock ones.

The reproduced velocity fields show the so-called Virgocentric infall (see Pierce & Tully 1988).
This can be most clearly seen in the x− y plane, but also shows to be influenced by structures along
the y− z plane. From the y− z projection it is very visible the fact that the structure running along the
volume is pulling towards itself the galaxies around it. An important feature present in Figs. 4.3 &
4.4 is the Local Void. This “empty” zone is visible along the 3 projections. The galaxies’ movements
can be clearly pick up by the FAM reconstruction as a zone of expansion. The difference between the
observed and FAM modeled velocity fields in the void region shows that while in the observed field
the objects’ velocities are dominated by the general external bulk flow, this is not so for the FAMCNBG

catalog. Instead, the FAMCNBG void gives the impression of a spherical expanding mini-universe. This
is in line with theoretical expectations, see e.g. Icke (1984); van de Weygaert & van Kampen (1993).
Another important characteristic is the fact that the shear patterns presented in the mock catalogs are
not longer present in the corresponding FAMCNBG catalogs.
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Figure 4.5 — 2D projected FAM velocity fields at the volume-mock-galaxy positions for the corresponding
PSCz catalog of Fig. 4.4 (C4). The slice properties are the same than in Fig. 4.3.

4.4.4 The FAMCPS Cz velocity field

RBW showed that in order to account properly for the external mass influence and depending on
the power spectrum of fluctuations, one should take into consideration very large volumes of at least
100 h−1Mpc in radius (see Chap. 2). Such large volumes assure oneself for accounting for the large
modes of the power spectrum. In the particular case of the LG it is necessary to consider larger volumes
due to the contributions to the local peculiar velocities from structures located beyond 100 h−1Mpc
(e.g. Raychaudhury 1989; Plionis & Valdarnini 1991; Hudson et al. 1999).

Figure 4.5 shows the projected FAMCPS Cz velocity field corresponding to the same CNBG catalog
(C4) presented in Fig. 4.4. The slice characteristics are the same than in the previous velocity field
plots, and velocities have been normalized with the same constant parameter than in the previous plots.
It can be noticed from the 3 panels that the amplitude and direction of the vectors are very similar to
those from the observed ones. The x− y and x− z projections clearly show the presence of a dominant
bulk flow towards the GA region. The local bulk induced by the filamentary structure along the y− z
projection is also present. The shear pattern in the x− y and x− z has returned and points toward the
same directions than in the mock sample. As expected, the incoherent motions at the virialized regions
are more pronounced than in the observed maps.

With this visual inspection seems that when we consider the mass distribution of large enough
volumes (> 100 h−1Mpc), it is possible to reconstruct LS peculiar velocity fields free from large scale
influences. We will discuss this point in more detail in Section 4.5.3 where point-to-point comparisons
between mock and FAM velocities will be presented.

4.4.5 The residual velocity field

We define the residual velocity field as the residual velocities between the large scale (full) velocity
field and the FAM velocity field computed within 30 h−1Mpc :

vres = vls−vFAMCNBG , (4.5)

where vls is in principle the full large scale velocity field. This residual field contains the missing
external large scale contributions when only modeling the LS peculiar velocity field as given by its
mass distribution. RBW pointed out that the vls may also be replaced by the FAMPS Cz velocity field
due to the fact that this field adequately accounts for most of the significant influence of the external
mass distribution. For the present study, we have adopted the mock-observed vobs field as the full
velocity field.
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Figure 4.6 — 2D projected residual velocity fields at the volume-mock-galaxy positions. The top row panels
show the outcome residual field between the mock-observed and FAMCNBG velocity fields. The low row panels
refer to the residual field between the mock and FAMCPS Cz. The slice properties are the same as in Fig. 4.3.

Figure 4.6 shows two different residual fields for the same C4 catalog presented in previous plots.
The top-row panels refer to the residual field between the mock and FAMCNBG velocities, while the
lower panels depicts the residual field from the mock and FAMCPS Cz. The plot characteristics are
the same as previous plots. From this figure we can make three major observations. The first one
concerns the bulk flow. There is a clear bulk flow pattern present in the top panels along the three
plane projections. The appearance of those coherent flows is due to the influence of the external mass
distribution that was not taken into account when modeling the FAMCNBG. From the x− y plane we
can infer that the major share of the large scale bulk in the LGE and LS is due to the structures located
along the negative part of this plane, the GA region.

The second point refers to the existence of a shear pattern in the three top projections. This pattern
indicates the presence of a quadrupolar mass configuration located outside the studied region along
the x− y plane as revealed by the x− y and x− z projections. The velocities in these two projections
increase outward, implying an external tidal shear, whose stretching mode is in a direction parallel to
the LS. In the y− z plane the velocities decrease inward and they point toward the central filament.
This configuration indicates a compression mode along the z-axis, perpendicular to the filament and
the stretching mode. All these imply that the shear effects are more pronounced toward the edge of the
sample than at the center.

The third point deals with the fact that when modeling the velocity field inside large volumes it
is possible to account for nearly all significant dynamical influences exerted by large scale structures
located far away from the observer. It results in a velocity field free from any external influence.
This may be observed in the lower row panels where the residual velocity field from the mock and
FAMCPS Cz velocities is shown. It shows how the bulk flow and shear pattern have disappeared and
only small thermal-alike motions are presented.
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Sample Vbulk s
|V | ( km s−1) l (◦) b (◦) ( km s−1 Mpc−1)

Mock 390±34 285 ± 23 5 ± 23 16.5±2.9

FAMCNBG 66 ±18 248 ± 49 17 ± 18 2.6±1.2
FAMCPS Cz 389±28 287 ± 24 3 ± 27 15.8±2.9

ResCNBG 345±50 290 ± 22 1 ± 25 16.1±3.4
ResCPS Cz 56±31 173 ± 59 27 ± 41 1.54±0.8

FAMcor 390±34 285 ± 23 5 ± 23 16.5±2.9

Table 4.2 — Average bulk flow and shear amplitudes for the different velocity fields. All analyses have been
made within a 30 h−1Mpc sphere. The velocity field sample label is presented in Column 1. The bulk flow
amplitude (|Vbulk |) in Column 2, and its direction projected into the sky in galactic coordinates (l,b, Columns 3 &
4). The eigenvalue’s amplitude in Column 5.

4.5 Correcting for external effects

The residual field corresponding to FAMCNBG still contains a large amount of information indicated
by the presence of a flow and shear pattern. One option for accounting for the external influence is
to include mass concentrations in larger volumes. This is a way to compute a faithful velocity field
for the LS. RBW studied the characteristics of the missed bulk flow and tidal contributions velocity
field for the the LS region. They found that the residual field can be well characterized by its dipole
and quadrupole moments, the bulk flow and tidal shear. When adding them to the internal catalog
velocities yield to an unbiased velocity field which resembles the mock one.

We have decomposed the residual velocity field according to Eqn. 4.4. The residual field is modeled
by its first two components, a bulk flow vector, Ui, and a quadratic shear tensor contribution, si j,

vres,i = Ui+ si j xx̂ j , (4.6)

where i, j = 1,2,3 denote the Cartesian component indexes. The vectors x̂ j represent the unity vector
components along the j direction of the v vector. For a more extensive discussion on the procedure to
obtain the 3 Ui and the 6 si j coefficients we refer to RBW (Chapter 2).

Table 4.2 presents the average results for the bulk flow (Vbulk), and tidal shear magnitude (s, in units
of km s−1 Mpc−1) for all catalog samples, FAMCNBG, FAMCPS Cz, ResCNBG, ResCPS Cz and Mock.
Table 4.3 presents the average results for the 3 individual tidal shear eigenvalues : s1−dilational,
s2−middle and s3−compressional for the same samples. The quantities have been averaged over the
4 catalogs for each sample. The errors represent the ±1σ dispersion error around the mean value. In
both tables (| |) represents the amplitude of the velocity component, while (l,b) specifies their direction
in galactic coordinates (longitude and latitude).

The external contributions for the FAMCNBG case are very substantial and significant. In the LS
volume, the bulk flow is missing ∼ 300 km s−1. The amplitude and direction of the corresponding
missing bulk flow (ResCNBG) coincides with the observed Mock bulk flow. This result clearly indicates
that the external mass distribution plays a dominant role in the kinematics of the LS environment. Also
of considerable importance is the tidal shear contribution. The FAMCNBG sample lacks an important
contributions from pure tidal effects, as may be inferred from the ResCNBG shear results. In Chapter 3
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Figure 4.7 — Galactic directions for the different bulk flows (filled symbols) and 1st shear eigenvectors (stretch-
ing, empty symbols) from our set of catalogs. The asterisks mark the direction of the large structures that may
influence the bulk and shear components, Hydra-Centaurus supercluster (H-C,GA), Perseus-Pisces (Per,Pis) su-
perclusters, Shapley concentration (Sha).

we argue that there are still significant tidal contributions to the LG from structures located around
60 h−1Mpc. Therefore, this non-negligible quantity has to be included in any study concerning LG and
LS studies. In the case of the FAMCPS Cz, we can see how the external contributions are minor. The
amplitude and direction of the bulk flow and shear eigenvalues are very close to the mock values. The
FAMCPS Cz residual bulk and shear contributions are not statistically significant.

From Tables 4.2 & 4.3, we see that the ResCNBG stretching eigenvector is misaligned with respect
to the mock Vbulk by 13.82◦±15.4◦, and 20.03◦±17.2◦ with respect to the ResCNBG bulk. This can be
better understood by looking at Figure 4.7, where we have plotted the direction in galactic coordinates
of the different bulk flows (filled symbols) and first shear eigenvector estimates (empty symbols).
The small misalignments can be explained in terms of the main external large scale structures which
are responsible for the tidal influence. These estimates point toward the same direction, the Hydra-
Centaurus supercluster (GA region), which is one of the main structures responsible for the external
bulk and tidal shear. Nevertheless, these results might contrast with the larger misalignment between
the mock bulk and its corresponding dilational shear component of 33.86◦±19.5◦. This misalignment
can be explained as follows: the general bulk flow is mainly dominated by the massive structures
beyond the 30 h−1Mpc and up to a distance of ∼ 150 h−1Mpc, while the tidal shear is mainly produced
for more local (closer) structures, with some of these structures also being responsible for the bulk
flow (GA mainly). In such configuration, the tidal shear is aligned with the external bulk flow which is
dominated mainly by the GA, but not with the overall large scale structure because there might more
than a single nearby structure responsible for the tidal field (Lilje et al. 1986; Hoffman et al. 2001).
The ResCPS Cz bulk flow and tidal shear estimates are randomly oriented because they involve merely
spurious quantities.

4.5.1 The Local Group Environment

With the present analysis and samples, it is possible to investigate in more detail the situation around
the LG volume. First we have computed the reliability of the LGE with respect to observations. From
the mock catalogs we have considered all particles within a sphere of 5 h−1Mpc from the center of
each catalog. These Local Group Environments have on average a peculiar velocity of 600 km s−1,
with a fractional overdensity of 1.5 and with a shear of ≈ 200 km s−1. This is consistent with observed
physical properties of the real LG (Brown & Peebles 1987). Secondly, we have computed the average
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Sample |vlg| l b
( km s−1) (◦) (◦)

Mock 598± 117 271.1 ± 25.8 13.3 ± 12.3

LGECNBG 330±124 242.3± 46.8 25.3± 12.4
LGECPS Cz 660±136 273.2± 34.7 14.8± 26.1

LGE ResCNBG 395 ±108 291.5±14.8 -1.1±15.4
LGE ResCPS Cz 225 ±106 261.6± 87.1 2.4±44.3

FAMcor 567± 99 267.8±33.0 16.0±16.4

Table 4.4 — Average results for the LGE velocity for the different velocity fields. All analyses have been made
within a 2 h−1Mpc radius sphere. The velocity field sample label is presented in Column 1, LGCNBG stands for the
LG motion computed from the FAMCNBGwhile LGCPS Cz for the FAMCPS Cz. The LG velocity amplitude (|vlg|)
is shown in Column 2, and its direction projected on the sky in galactic coordinates (l,b) in Columns 3 & 4).

velocity amplitude and direction in galactic coordinates for the LGE for each different sample. The
analysis was performed by including all objects within a sphere of 2 h−1Mpc from the center of each
catalog. We have compared these results with those by enlarging the local volume up to a radius of
5 h−1Mpc to ensure ourselves that there are no significant discrepancies in our estimates.

Table 4.4 presents the average results for the LGE for different samples. The subindices in the
first column indicate their respective parent sample to which they belong. It can be noticed that when
considering larger volumes it is possible to better model the LGE.

The FAMCNBG sample reveals that if we only consider objects within the inner volume of
30 h−1Mpc, the corresponding LGE velocity vector points toward the direction of the Virgo super-
cluster (LS). But this structure is not the only one that generates this motion, there are other sources
located along the x− z & y− z planes that also influenced considerably the LGE motion (see Fig. 4.4).
The direction of the LGE coincides with the direction of the FAMCNBG bulk, indicating that the bulk
flow source inside the sample is also responsible for the LGE motion.

When considering larger volumes, the LGE motion matches the one from the expected mock cat-
alog. Even though the LGECPS Cz amplitude is slightly larger than the mock one, it is still consistent
with the 1σ error. This difference could be attributed to a poor sampling around the LGE. Still, the
direction of the FAM-LGE coincides very well with the expected mock direction, indicating that the
FAM-LGE has been properly modeled.

4.5.2 The corrected velocity field : FAMCNBG + B + S

RBW argued that in order to correct for the missing contributions in the peculiar CNBG velocity field,
it is enough to add the first two moments of the external velocity contribution: the missing bulk flow
[B] and tidal shear [s] components.

Figure 4.8 presents 4 different projected velocity fields for the same C4 catalog presented in previ-
ous plots. The fields correspond to the same enclosed particle distribution within a slice of ±5 h−1Mpc
thickness centred along the supergalactic planes. The 4 velocity fields have been normalized with
the same constant value for a better comparison. The first row presents the external bulk flow com-
puted from the velocity decomposition. Clearly, the bulk glow pattern points towards the GA region
as shown in the x− y and x− z planes. Along the y− z the bulk flow is mainly influenced by the inner
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Figure 4.8 — 2D projected velocity fields at the volume-mock-galaxy positions for the C4 catalog. The top
panels depict the tidal bulk while the second row presents the tidal shear components. The third row displays the
FAMcor velocity field (FAMCNBG+ B + S). The final row shows the residual field between the mock-observed
velocities and FAM corrected. The slice properties are the same than in Fig. 4.3.

mass distribution but also by the void located at the upper left part of the distribution.

The tidal shear pattern is presented in the second row of the same figure. The shear amplitude and
directions are well defined in the three panels. The maximum stretching directions reveal the presence
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of two major mass concentrations responsible for such pattern, the GA and PP, both opposite to each
other and located along the z-supergalactic plane. In the y− z plane, what appears to be a free-falling
pattern or a negative divergence, it is the action of the local void exerting pressure over the LS volume,
the compressional shear mode.

We define the corrected FAM velocities [FAMcor] like:

FAMcor = FAMCNBG +Missing Bulk+Tidal Shear , (4.7)

where we have added to the inner FAM velocities the major external contributions, the missing bulk
flow and tidal shear components. The third row in Fig. 4.8 shows the corrected velocities after adding
the two upper panels to the FAMCNBG velocities. This new velocity field is very similar to the mock-
observed one. This can be noticed from the lower row plots, where the residual field between the
FAMcor and mock velocities are shown. The FAMcor field presents now the main characteristics of
the mock-observed field, the bulk flow toward the GA, the correct inner bulk flow in the y− z plane
and the shear pattern exerted by the GA, PP and local void. In the same way, the residual field is not
anymore dominated by any large scale pattern. Only random motions are presented, and large velocity
dispersion at the high density regions where FAM cannot recover the orbits properly. These results are
quantified by the average results presented in Tables 4.2, 4.3 and 4.4. From these tables one can infer
that the amplitude and directions of the bulk flow, shear components and LG of the FAMcor samples
match very well the mock results.

4.5.3 Point-to-point comparisons

In order to quantify the reliability of our reconstructions we have performed point-to-point compar-
isons between our FAM fields (CNBG, CPSCz and corrected) versus the Mock catalogs. In order
to quantify these comparisons, we have carried out linear fits for each Cartesian velocity component
(α = x,y,z), allowing errors along both directions, of the form:

vobs,α(x) = v0,α + av,α vFAM,α , (4.8)

by minimizing the χ2 merit function:

χ2(a,b)α =
N∑

i=1

(vobs,i−v0−avvFAM,i)2
α

(σ2
e +a2

vσ
2
e)α

, (4.9)

with respect to v0 and av, where these parameters correspond to the zero-point and slope of the fit
for each α-Cartesian component. The subindexes indicate the respective sample, obs for the mock-
observed sample and FAM for any of the respective FAM fields. σe represents equal standard devia-
tions for all samples.

From the linear fits, we can asses how good our algorithm is in order to correct for the external mass
distribution. It give us information about the amount of missing data in the FAM reconstructions. The
slope of the fit tell us how good the FAM fields are with respect to the mock-observed one. The zero-
point is an indication of the presence of residual or external bulk flows in the FAM field. Together with
these two quantities, we have computed the velocity dispersion (σv) which measures the deviations
from the FAM velocities to the best linear fit.

In addition to the linear fits, we have also computed two different correlation indexes, the linear
correlation coefficient (Pearson’s r) denoted by Rlin and given by the formula (see Press et al. 1992b)

Rlin =

∑

i

(vobs,i−vobs)(vFAM,i −vFAM)

√∑

i

(vobs,i−vobs)2

√∑

i

(vFAM,i −vFAM)2

, (4.10)
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Sample av v0 σv RS pear Rlin

( km s−1) ( km s−1)

FAMCNBG 0.57±0.27 63.2±89.1 147.8±19.6 0.54±0.14 0.56±0.14
FAMCPS Cz 1.08±0.25 4.1±109.3 189.4±47.5 0.71±0.14 0.75±0.10

FAMcor 0.95±0.08 -6.5±24.2 142.6±18.4 0.79±0.10 0.80±0.09

NBG-PSCz 0.93±0.09 -62.1±87.6 142.5±20.0 0.79±0.10 0.80±0.09

Table 4.5 — Average results for the linear fits performed from the point-to-point comparisons between the 3
FAM velocity fields and the Mock one. The last row indicates the results between FAMcor vs FAMCPS Cz instead
of the mock field. The first column indicates the sample used for the comparison. The second column gives the
slope of the best fitting line. Col. 3: the zero point of the best linear fit. Col. 4: the dispersion around the fit. Col.
5: the non-parametric (Spearman) correlation coefficient and in Col. 6: the linear correlation index.

and the nonparametric or Spearman rank-order correlation coefficient RS pear given by

RS pear =

∑

i

(Ri−R)(S i−S )

√∑

i

(Ri−R)2

√∑

i

(S i−S )2

, (4.11)

where Ri correspond to the rank of vobs,i and S i to the rank of vFAM,i.
These indexes are indicators of how well the pair of velocities (vobs,vFAM)i fit the straight line

given by the linear fit. They rank from −1 to 1, indicating positive (slopes > 0) or negative (slopes < 0)
correlations. If the indexes are close to ±1, the points lie close to the given straight line. A value near
to zero indicates that the compared variables are uncorrelated and have little or no tendency to lie on a
straight line. An additional inherent feature is that their values are independent of the measured slope.
Therefore, when a correlation is known to be significant, these indexes are one way of summarizing its
strength.

Table 4.5 presents the results from the point-to-point comparison parameters and correlation in-
dexes. The numbers represent the mean values from averaging the 3 spatial directions for the 4 cat-
alogs of each set. The errors represent the 1σ dispersion around the mean value. The first column
gives the sample used for the comparison, the second column the slope of the best fitting line, the third
column the zero-point in units of km s−1, while the fourth column gives an estimate of the velocity
dispersion (also measured in km s−1) in the case that all errors were of equal magnitude. The final
two columns show the 2 correlation indexes, the linear correlation index Rlin, and the nonparametric
correlation coefficient RS pear.

As shown by RBW, when comparing the CNBG vs Mock, the missing external information is
reflected in recovering slopes considerably lower than unity. The FAMCNBG results are very similar
to those found by RBW for unconstrained NBG catalogs. The scatter around the average quantities
and velocity dispersion may be somewhat smaller. This is a result of the constrained realization pro-
cedure which effectively constrains the dynamical effects of the mass distribution around the CNBG
catalogs. The FAMCNBG slopes in Table 4.5 indicate that these velocity fields are missing more than
40% of the total contribution, which is induced by the external mass distribution. The large velocity
dispersion is mainly dominated by the contributions from the non-linear regions. These are responsible
for a large dispersion around the fit, quantified by small correlation indexes. To appreciate this situa-
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tion, Figure 4.9 shows density contours of the point-to-point comparisons between the same Cartesian
components for the FAMCNBG and Mock catalogs are presented. The gray scale indicates the density
point distribution going from black (lowest densities) to white (highest densities). The dashed lines
correspond to the best fitting line between the Cartesian velocities for the two given samples. For
guidance we have included continuous lines representing one-to-one relations. The best fitting line
is considerably lower than the one-to-one line denoting missing external information. The zero point
of the distribution is offset from the zero origin. This is a consequence of the presence of bulk flows
not accounted for. The broad contours reflect the large velocity dispersion. A possible solution for
overcoming this large dispersion is by smoothing the velocity fields with a Top-Hat filter. The lower
panels of Fig. 4.9 refer to the 2 h−1Mpc smoothed velocity fields. This mainly decreases the dispersion
around the fit while preserving the main characteristics of the fit.

A different situation prevails for the FAMCPS Cz case. Their sufficiently large volumes (>
100 h−1Mpc) properly recover all the information. The corresponding slopes of the best fits are very
close to unity. The zero-point is very close to zero, because of the absence of significant unaccounted
bulk flows. The Spearman and linear correlation indexes indicate a tight one-to-one correlation be-
tween the two fields. The middle panels of Fig. 4.9 show the corresponding FAMCPS Cz velocities.
They clearly show a better correlation with respect to the Mock velocities. The zero offset has de-
creased, although the velocity scatter around the fit is of the same order than in the FAMCNBG case,
while the smoothed case also shows a much tighter point distribution. These results are similar to
the unconstrained PSCz catalogs of RBW. We find that the zero point and the two correlation indexes
are very similar although, the slopes of the best linear fits are closer to one than in RBW. All these
reflect the effect of using N−body simulations which effectively constraint the mass distribution up
to intermediate scales (60 h−1Mpc), as a difference of the unconstrained simulations where the mass
distribution beyond the LG varied from catalog to catalog.

The FAMcor fields present characteristics similar to the FAMCPS Czcase. Table 4.5 shows that the
average slope is close to unity with a small dispersion, a negligible zero-point value, a velocity dis-
persion of the same order than in the previous two cases (FAMCNBG and FAMCPS Cz), and correlation
indexes indicating a strong correspondence between the mock and FAMcor velocities. The right-hand
panels of Fig. 4.9 illustrates these points. The FAM corrected velocities are in very good agreement
with the Mock-observed ones indicated by a slope very close to unity, the zero offset is very small.

An interesting point to note is that while the FAMCPS Czand FAMcor distributions are skewed toward
negative velocity values, this is not the case for the FAMCNBG. This reveals the dominant gravitational
effect of the GA over the whole LS volume. While in the FAMCNBG sample this effect is not present,
as it is excluded from consideration, a more symmetric distribution follows.

We have also investigated what the effects are when computing the external contributions from
the residual field between the CPSCz and CNBG catalogs and not from the Mock and CNBG. We
have characterized this residual field as before by its two main dominant components and add them
to the inner CNBG sample. Table 4.5 shows that results are very close to the FAMcor case. The
main difference is related to the zero-points which for this case are larger than before. This is a mere
reflection of the large scatter present in the FAMCPS Czsample. These results show that the Mock mass
distribution can be characterized by its Bulk Flow and tidal Shear components.

We have checked the net effect of adding separately each external component to the FAMCNBG sam-
ple and compared these new samples with respect to the expected Mock velocities. Figure 4.10
shows the density contours of the point-to-point distributions between the different residual fields
and Mock velocities for the 3 Cartesian velocities. For reference we included the one-to-one line,
zero residual line (horizontal), and the centre lines (vertical). The top-most panels present the Mock-
FAMCNBGresidual velocities versus the Mock ones. These residual velocities correspond to the exter-
nal tidal field. From Table 4.5 we infer that this field contains almost 50% of the relevant gravitational
contributions. This explains the strong correlation with respect to the Mock catalog. This correla-
tion mainly concerns the x and y components (main directions of the GA gravitational pull and bulk
motion), and is less pronounced along the z component.

Because the external missing bulk motion is a constant vector, the net effect of adding it to the
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Figure 4.9 — Density contours of the point-to-point distributions for the same Cartesian component for the 3
different FAM samples vs the corresponding Mock one. The continuous line represent the one-to-one relation,
while the broken line represents the best fitting line from the comparison. The top panels represent the unsmoothed
velocities, and the bottom panels refer to the convolved velocities with a Top-Hat kernel of 2 h−1Mpc.

FAMCNBG sample shifts the whole distribution. The corresponding central value of the distribution will
move to the zero point. The second row of Fig. 4.10 illustrates this point. The three point distributions
have been shifted and are more symmetric than before. Yet, the residual velocities still present a strong
correlation with respect to the mock velocities.

The last two rows of Fig. 4.10 represent the unsmoothed and smoothed residual velocity fields of
the Mock - (FAMCNBG+ missing bulk + tidal shear). After subtracting the shear, the central contours
of the residuals tilt toward the zero abscissa line. This is particularly visible along the x and y axes
where most of the tidal shear is coming from. This situation is clearer in the smoothed panels, where
the bulk of the distributions are aligned along the zero abscissa line. The fact that the z component
is only vaguely affected implies that the major external sources are located along the x− y and x− z
supergalactic planes.

4.6 Conclusions

In this chapter we have studied the influence of the large scale mass distribution over the peculiar
velocity field of the Local Supercluster confined within a volume of 30 h−1Mpc radius, based on
constrained realizations of the nearby universe.

We have reconstructed the peculiar velocity fields by means of the FAM technique from Mock
catalogs which resemble the mass distribution within the LS volume. Such catalogs were obtained
from constrained N−body simulations of the nearby universe according to the real mass distribution
inferred from the the Mark III catalog of peculiar velocities up to 60 h−1Mpc. The fields are effectively
constrained at larger radii since the correlation length of the velocity field extends further away than
the physical boundaries of the surveyed data. Constraints were imposed on the initial Gaussian density
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Figure 4.10 — Density contours of the point-to-point comparison for the 3 Cartesian components of the velocity
residuals between Mock and FAMCNBG , FAMCNBG+ Bulk, FAMCNBG+ Bulk + Shear. The continuous line in the
two top panels represent the one-to-one relation, while the lines in the lower two panels represent the residual-zero
line. The top 3 rows represent the unsmoothed velocities, and the bottom row refers to the convolved velocities
with a Top-Hat kernel of 2 h−1Mpc.

field by means of the Constrained Realization method. The Mock catalogs were constructed to sample
the LS region in a volume-limited way according to the Nearby Galaxy Catalog of Tully (1988), and in
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a flux-limited way from 30−150 h−1Mpc according to the IRAS-PSCz catalog (Saunders et al. 2000)
in order to account for the tidal influence of the large scale structure over the LS volume.

We have divided our velocity modeling in two steps. The first models the local contributions
within the LS by considering only the mass distribution enclosed by the volume-limited catalogs. In
the second step we modeled the LS + large scale distribution of the nearby universe (volume + flux
limited samples).

The Mock catalogs showed that the LS is dominated by a bulk flow induced mainly by the GA.
It involves a particular mass configuration around the LG and LS resembles a quadrupolar mass dis-
tribution, composed by the GA and PP. Both structures are located at opposite directions from the
Local Group and along the same z-supergalactic plane. This mass distribution induces a strong shear
pattern along all directions over the LS, but it has its strong components along the x− y and x− z
planes. It implies that most of the external tidal influence comes from structures located along the x−y
supergalactic plane.

The FAM modeling of the LS region argues that this volume only accounts for ∼ 55% of the total
gravitational influence. The rest it is induced by the external mass distribution. Comparisons between
FAMCNBG and Mock velocities indicate that the large scale components of the power spectrum are
missing when the velocity modeling only refers to the LS region. The average recovered slope from
the point-to-point comparisons is 0.57± 0.27 with a considerably large deviation from the zero point
of 63± 89 km s−1. These results indicate that the large components of the velocity field are missing.
This information should be added to the LS peculiar velocity field in order to get an unbiased field.

When modeling the LS + large scale structure, we found that the corresponding LS peculiar ve-
locity field has accounted for the missing gravitational influence properly. The modeled fields are
bias-free, and therefore trustable with respect to the expected ones. Comparisons of these fields with
respect to the mock catalogs showed a good agreement between both fields.

We have characterized the external gravitational influence over the LS by a multipolar decom-
position of the residual velocity field between the FAMCNBG and Mock fields. This residual field is
exclusively the result of the influence of the unaccounted mass distribution beyond the LS volume. Our
results indicate that for an external mass distribution of the nearby universe as measured by the PSCz
catalog up to distances of 150 h−1Mpc, can be characterized by the two most dominant components
of such field, the dipole and quadrupole (bulk flow and shear). By adding such components to the
LS volume-limited peculiar velocities, it is possible to recover an unbiased peculiar velocity field free
from any external unaccounted large scale effect.

Comparing our results with those from RBW, we found two main differences. The first one con-
cerns the scatter around the average values, in the present work the measured uncertainty is smaller
than in RBW as a result of the use of constrained N−body simulations which effectively constrain
the mass distribution within 60 h−1Mpc in the four simulations. The second one is related to the
tidal eigenvalues, our estimates are slightly larger than those reported by RBW. The reason for this is
the specific configuration of the cosmic neighborhood. The presence of the GA and PP superclusters
mould in a particular way the local peculiar velocity field.

From these results it can be infer that one can indeed construct an unbiased model for the cosmic
velocity field within our Local Supercluster by taking into account the mass distribution traced by
PSCz galaxies out to a distance of 150 h−1Mpc, provided that the mass distribution responsible for the
dynamics of the LS is indeed contained within this distance.

Finally, the FAM technique has proved to be a good tool to model the peculiar velocity field within
the LS volume from the corresponding density field, up to the mildly non-linear regime.

4.A Smoothing effects

The raw Mock velocities are severely affected at the highly clumped regions by two body relaxation
processes. These interactions have erased any memory from their initial linear state. Therefore, they
are responsible for the large differences between FAM and Mock velocities at the non-linear regions.
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Nusser & Branchini (2000) suggested that increasing the number of basis functions will not improve
the results because after 6 expansion functions, there are not considerable changes in the FAM perfor-
mance (Chap. 2 & 3). RBW showed that a simple smoothing procedure (after applying FAM) helps to
improve the results, mainly to reduce the large scatter along the average results, but also to decrease
considerably the velocity dispersion. Branchini, Eldar, & Nusser (2002) pointed out that by discarding
in the analysis galaxies located at high density regions also helps to improve the results substantially,
but this will erase small scale signal that could be of importance when performing studies concerning
to small scales, e.g., the coldness of the flow. In this chapter we have adopted the RBW approach and
applied a Top-Hat smoothing procedure to our velocity fields for all statistical analyses and point-to-
point comparisons.

We have convolved the velocity fields with 3 different top-hat kernels of sizes 1,2 and 5 h−1Mpc.
We have found that a kernel of 2 h−1Mpc is more than enough for our purposes. Although the velocity
dispersions get smaller with a kernel of 5 h−1Mpc, the slopes, zero points and correlation indexes do
not change considerable with respect to the 2 h−1Mpc case.
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FAM for real:

PSCz as probe of the Local Universe

E. Romano-Dı́az, E. Branchini & R. van de Weygaert.

W have investigated the two main components of the large scale velocity field (in real space),
inferred from the IRAS-PSCz catalogue, the bulk flow and velocity shear. Such catalogue can

be considered as a fair representation of the nearby universe. In order to minimize redshift effects,
we have used the real spatial catalogues reconstructed from Branchini et al. (1999). The modeling of
the peculiar velocity field was performed by means of the FAM technique. The corresponding bulk
flow estimates are in very good agreement with other measurements from different catalogues and
techniques. The cumulative distributions of the velocity shear indicate that most of the contributions
to it come from structures located within a volume of 20 h−1Mpc around the Local Group. Structures
located within 20 and 60 h−1Mpc still deform the velocity ellipsoid considerably, and those located
beyond 70 h−1Mpc do not contribute to the velocity shear. The radius at which the shear vanishes
has been estimated at a distance of 80 h−1Mpc from the Local Group. The shear eigenvectors suggest
that the Hydra-Centaurus supercluster is responsible for the largest stretching direction of the velocity
ellipsoid, with an anti-apex direction pointing toward the Perseus-Pisces supercluster. This eigenvector
is roughly aligned with the bulk flow direction, implying that some of the structures responsible for the
bulk flow motion, are also responsible for the velocity shear, i.e. the Hydra-Centaurus supercluster.
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5.1 Introduction

The increase of quantity and quality of the galaxy distribution mapping in our nearby universe in the
last years has given us the opportunity to study in more detail several aspects of the large scale structure
of the universe. Several different techniques have been applied to the available data in order to estimate
or characterize such data catalogues, quantifying mainly the magnitude and direction of their dipole or
bulk flow.

Within the Gravitational Instability scenario, peculiar velocities are the result of galaxy interactions
with their surrounding matter concentrations, such as galaxies, clusters and superclusters of galaxies,
voids, etc. On the other hand, peculiar velocities are more prone to the large scale modes of the power
spectrum of fluctuations than its corresponding matter distribution. Therefore they can better trace the
inhomogeneities in the density field at larger distances than the matter itself.

When characterizing the peculiar velocity field by contributions coming from different scales and
regimes within a given volume, two terms are the most dominant : the bulk flow (dipole) and shear
(quadrupole) (Chapter 3 Romano-Dı́az et al. 2004). The bulk flow represents a robust statistic of the
velocity field over a volume of a characteristic length scale R. The convergence radius of the bulk flow
is estimated to be in the order of 150− 200 h−1Mpc from the Local Group (see Zaroubi 2002, for a
review about the topic).

The velocity shear measured in a given sample is the result of the action (stretching and/or com-
pression) over the enclosed matter distribution of structures located beyond the edge of the sample.
Unless one is dealing with a large enough volume (≥ 100 h−1Mpc), such contributions are not neg-
ligible (Chap. 2 & 3), becoming more pronounced at the edge of the sample. The velocity shear
convergence radius, the distance at which the shear amplitude vanishes, is more ill-defined than the
bulk flow one. In a seminal paper, Lilje, Yahil, & Jones (1986) proved the tidal field in the Local
Supercluster (30 h−1Mpc) and predicted the existence of a dominant structure beyond 40 h−1Mpc, the
so-called “Great Attractor”. Tonry et al. (2000) determined from the SBF catalogue, on a surveyed
volume of 30 h−1Mpc, that structures beyond 40 h−1Mpc like the Perseus-Pisces supercluster or Shap-
ley concentration do not play a substantial role in perturbing the velocity field within such catalogue.
However, in a preliminary study using the Mark III and SFI catalogues Hoffman et al. (2001) found
that the dilational eigenvector of the residual shear tensor is roughly aligned with the bulk velocity,
indicating the presence of a major attractor at distances > 150 h−1Mpc, coinciding with the Shapley
concentration. In Chapter 2 (Romano-Dı́az et al. 2004), it was shown that for a ΛCDM universe the
velocity shear (in linear theory) converges at scales larger than 100 h−1Mpc. From the flux-limited
mock catalogue analysis performed in Chapter 3, we did not find substantial contributions to the shear
amplitude from scales beyond 80 h−1Mpc.

Studies concerning the velocity shear need to make use of a homogeneous sample, with a large
effective radius and depth, and mainly, full sky coverage. The PSCz catalogue (Saunders et al. 2000)
fulfills these requirements and gives us the opportunity to prove the role of structures beyond the
effective radii of the samples mentioned above.

Several studies have been performed with the PSCz catalogue concerning to the large scale struc-
ture of the Universe, e.g. Branchini et al. (1999) inferred the velocity field, Tadros et al. (1999) studied
the real-space power spectrum and redshift distortions, Sutherland et al. (1999) the redshift-space
power spectrum, Rowan-Robinson et al. (2000) studied the direction and convergence of the dipole,
Plionis et al. (2000) studied the galaxy-cluster bias using the PSCz dipole. Nevertheless, none of the
previous works have investigated the role and origin of the velocity shear and the structures responsi-
ble for deforming the peculiar velocity ellipsoid. Here we address these issues which concern to the
peculiar velocity field of galaxies.

In this chapter we apply FAM to the real PSCz catalogue mapped from redshift-space to real
Cartesian coordinates. We compute the peculiar velocity field from the discrete galaxy distribution
and characterize it by means of its main components, the bulk flow and shear. We also investigate the
changes of these components when considering different volume sizes in the FAM modeling procedure.
Furthermore, we will try to determine the shear convergence radius and explore the effects of tripled-
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valued regions on the FAM velocity models. The error estimates have been assessed from the results
of Chapter 3. We will compare our results with the expected theoretical predictions and with respect
to those obtained from other samples and techniques.

In order to have a more realistic estimate of the bulk flow and velocity shear quantities, it would
be preferable to perform the analysis from velocities inferred directly from their redshift distribution.
However, we apply FAM to the real space galaxy distribution of the PSCz catalogue because we have
fully tested it, and we have control over the possible systematic error sources of the method. In the
future, we intend to use the FAM technique in redshift space (Branchini et al. 2002) to estimate the
peculiar velocity field from the redshift distribution of the PSCz survey. This chapter represents a first
step toward a better determination and understanding of these two important quantities (bulk flow and
shear) of the large scale peculiar velocity field.

5.2 The data: The PSCz catalog

The flux-limited IRAS-PSCz all sky redshift catalogue is described in detail by Saunders et al. (2000)
and we only summarize its main features here.

This catalogue is basically an extension of the IRAS 1.2− Jy survey (Fisher et al. 1995a). The
catalog contains ∼ 15500 galaxies with 60µm flux f60 > 0.6Jy covering a large part of the sky ∼
84%. The median redshift is 8500 km s−1, with a mean galaxy separation within 10 000 km s−1 of
〈l〉 ∼ 1000 km s−1. A major improvement with respect to the IRAS 1.2− Jy catalogue which has
〈l〉 ∼ 1500 km s−1. These characteristics ensure a depth and dense sample.

Because of the flux-limited nature of the catalogue, there is a degradation of sampling as a function
of distance from the observer, causing the number density of objects to decrease with distance. This
decrease is measured by a radial selection function. In order to recover the true galaxy density from the
observed flux-limited sample, each galaxy has been weighted by the inverse of the selection function
φ(r). This function has been defined as the fraction of galaxies that can be seen out to a redshift
distance r = cz/H0 (expressed in h−1Mpc) given the survey flux limit. Various authors have used
different estimators to compute the selection function (e.g. Canavezes et al. 1998; Sutherland et al.
1999; Branchini et al. 1999). Nevertheless, Branchini et al. (1999, hereafter B99) found that different
selection functions induce variations smaller than 5% in the model density and velocity fields within
a distance of 20 000 km s−1. In the present study, we have adopted the selection function of the form
assumed by B99:

φ(r) = Ar−2α
(

1+ r2

r2
∗

)−β
for r > rs (5.1)

with α = 0.52, β = 1.92, rs = 6.0 h−1Mpc, and r∗ = 90.75 h−1Mpc. The fitting parameters were com-
puted via likelihood analysis including only objects within 100 000 km s−1 and they provide a good
description of the data. B99 showed that the value of the normalization value A, does not affect the
modeling of peculiar velocities. In their implementation, the selection function was arbitrarily set
φ(r) = 1 for r ≤ rs. This is equivalent to imposing a lower cut-off in the 60−µm luminosity in order to
avoid too much weight to faint, nearby galaxies that may not trace the galaxy distribution reliably in
the nearby volume (Rowan-Robinson et al. 1990).

5.2.1 Real space distribution

In order to take into account (1) the 16% of the missing sky de-voided of data due to high cirrus
emission areas and unobserved regions, and (2) to correct for redshift-space distortions that affect the
observed galaxy distribution and to obtain the real spatial Cartesian positions, we have made use of
the corrected galaxy catalogue of B99. In this catalogue, B99 followed a method similar to the Yahil
et al. (1991) approach to fill the galactic plane with synthetic objects that reproduce the mean density of
galaxies of the nearby regions. In the cases of masked regions at larger latitudes, these are filled in with
a random distribution of synthetic galaxies having the observed mean number density of PSCz galaxies.
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Figure 5.1 — Aitoff projection of the IRAS-PSCz galaxy distribution in galactic coordinates. The dark regions
shown unobserved or obscured regions. The horizontal strip surrounding the Galactic plane is the Zone of Avoid-
ance (from Branchini et al. 1999).

Tests performed by B99 on mock catalogues showed that the only bias introduced by this filling-in
technique is a spurious bulk motion of < 60 km s−1. In order to minimize the “Kaiser effect” and to
recover the real spatial Cartesian positions, B99 applied an iterative algorithm in order to solve for
the positions and velocities. Such method is based on three main assumptions: (a) the gravitational
instability scenario is valid (Peebles 1980), and therefore cosmic structures have grown by gravitational
amplification of small-amplitude fluctuations in the density field at early epochs. (b) The linear or
mildly non-linear theory is applicable once the density field is smoothed. (c) Galaxies are assumed to
trace the underlying mass density field according to a linear biasing model of the form: δgal = bδmat,
where δmat is the mass overdensity, δgal is the fluctuation in the number of galaxies and b the biasing
parameter. Under these assumptions, a redshift survey enables an independent reconstruction of the
density and velocity fields. However, this method is only valid in the linear regime, where a one-to-one
mapping between distance and redshift is guarantee. Therefore the force field needs to be smoothed to
eliminate non-linear effects, shot-noise, distance uncertainty, and tripled-valued zones.

Although the catalogue contains objects with recession velocities as large as 30 000 km s−1, the
sample is not very reliable at these ranges. B99 considered all PSCz galaxies out to a radius of
200 h−1Mpc in their reconstruction procedure, beyond this radius galaxies are severely affected by
shot-noise effects.

Around high-density regions, like clusters of galaxies, there may occur shell crossing. Hence there
may be tripled-valued regions in which the same redshift is observed at three different positions along
the line of sight. B99 adopted the same procedure as in Yahil et al. (1991) by collapsing the tripled-
valued regions by using two different data sets. Their results showed that the collapsing procedure only
affects the infall pattern around the clusters. Nevertheless, with the level of smoothing used here, such
effects are not considerable. In order to check if tripled-valued regions have a considerable effect, we
have used two different PSCz catalogues from B99. One without collapsing the tripled-value regions,
and another with collapsing the galaxies.

The reconstruction technique recovers the main cosmic features of the PSCz catalogue as shown
by B99, and we will address readers to this work for a detailed cosmographic tour of the local universe.
We want to stress, as it can be noticed from Figure 5.2, that structures like the Virgo cluster, Hydra-
Centaurus supercluster (Great Attractor), Coma, Perseus-Pisces and Camelopardalis superclusters, the
Pavo-Indus-Telescopium complex, the Cetus wall, the Shapley concentration and voids like the Sculp-
tor void and the voids in the foreground of Coma, in the background of Perseus-Pisces complex and
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Figure 5.2 — Real space density and velocity fields derived from the PSCz survey. The fields, smoothed with
a Gaussian filter RG = 6 h−1Mpc, are shown in a slice along the Supergalactic plane. The thick continuous line
represents the δ = 0 contour. The continuous lines represent overdensity regions, while dashed lines underdense
regions. Contours are plotted at steps of ∆δ = 0.5. The labels mark the position of the largest structures along
the Supergalactic plane. V: Virgo cluster, LS: Local Supercluster, H-C: Hydra-Centaurus, Sh: Shapley, P-P:
Perseus-Pisces superclusters, P-I-T: Pavo-Indus-Telescopium complex, Cet: Cetus wall, Sculp: Sculptor void.
(from Branchini et al. 1999).

behind the Great Attractor are clearly recognizable in the reconstructed density field maps. Figure 5.2
shows the PSCz model density and velocity fields reconstructed up to 120 h−1Mpc smoothed with a
6 h−1Mpc Gaussian filter in a slice through the Supergalactic plane. The central crux denotes de po-
sition of the Local Group. Notice how the Local Group is located between two massive structures,
the Hydra-Centaurus and Perseus-Pisces superclusters. The modeled linear velocity field is strongly
distorted by these two matter concentrations.

5.3 FAM modeling of the peculiar velocity field

We have modeled the peculiar velocity field by using our implementation of the Least Action Principle
[LAP], the Fast Action Minimization method [FAM] (Nusser & Branchini 2000, Chapters 2 & 3).

5.3.1 Redshift space considerations

It is necessary to mention that the application of FAM over the real space Cartesian galaxy distribution
represents a refinement over the linear reconstruction method to model the peculiar velocity field. FAM
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represents an improvement over the B99’s method in the sense that it extends the velocity modeling
into the mildly non-linear regime.

In order to have a more consistent non-linear peculiar velocity field from redshift catalogues, e.g.
PSCz, it could be preferable to apply a modified version of FAM, directly applicable to redshift space.
Such modification of the FAM formalism was indeed introduced by Branchini et al. (2002). Their
analysis from mock catalogues proved that this new algorithm could be applied to redshift galaxy
distributions such as the PSCz catalogue.

Here we applied FAM to the real space galaxy distribution of the PSCz catalogue because we have
fully tested it, and we have control over the possible systematic error sources of the method. In the
future, we intend to use the FAMz technique to estimate the peculiar velocity field from the redshift
distribution of the PSCz survey. refinement

5.3.2 Least Action Principle and FAM analysis

The LAP technique has been applied to predict the orbits of galaxies within the Local Group (Peebles
1989, 1994; Phelps 2000), and to predict the peculiar velocities of nearby PSCz galaxies contained
in a volume of 2 000 km s−1 from the LG (Sharpe et al. 2001). The main limitation of the previous
implementations is the small number of objects used in the calculations due to the expensive force
algorithms employed (direct summation). As discussed in Chapter 2, FAM overcomes this problem
by using the TREECODE technique (Bouchet & Hernquist 1988) to speed up the gravity calculations.
Our LAP implementation has proved to be a very suitable algorithm to be applied on large cosmologic
data sets. Furthermore, the force calculation algorithm implemented on FAM gives it the especial
advantage of handling particle distributions in spherical regions as in the case of whole-sky galaxy
catalogues (e.g. PSCz).

FAM needs 3 basic input parameters: (1) the number of basis expansion functions N f , to
parametrize the orbits. (2) A tolerance parameter to search for the minimum of the action. (3) A
softening parameter to smooth the gravitational force in the TREECODE. In Chapters 2 & 3 (see also
Nusser & Branchini 2000) we have shown that a N f = 6 basis functions and a tolerance parameter
tol = 10−4 are the optimal choices. Nevertheless, we still have to look for the best suitable softening
employed in the force calculation. The role of the softening is to impose the limiting scale on the FAM
calculations, below which the FAM cannot model accurately the structure of orbits.

5.3.3 Optimum FAM softening

In Chapters 2 & 3 we set the force resolution to match the one given by the N−body simulations.
Nevertheless, we face here the problem of finding an optimum “natural” softening for the real galaxy
distribution. An obvious choice would be to set it to the minimum inter-particle separation. Never-
theless, such softening could introduce extra noise in the modeled velocity field since it would lead
FAM to calculate interactions at small scales where the method is not completely accurate. Other
possible softening prescriptions are the mean of the minimum inter-particle separations or the mean
inter-particle separations computed at different radii. They may also be acceptable due to the fact that
the 3D-real particle distributions were computed by means of linear theory.

To choose the most suitable softening we performed 5 different runs testing 5 different softenings:
the minimum inter-galaxy separation distance (0.014 h−1Mpc); the mean minimum inter-galaxy dis-
tance (1.55 h−1Mpc); the mean inter-galaxy distance at a distance of 30 and 60 h−1Mpc (4.57 and
7.14 h−1Mpc respectively); and the N−body softening of 0.27 h−1Mpc used in Chapter 3.

Point-to-point comparisons between all test samples indicated that the minimum inter-particle sep-
aration and N−body softenings present larger scatters in the point distributions with respect to the
other 3 options. The two mean inter-particle separation samples are very similar to each other and also
with respect to the velocity field computed with linear theory. This is mainly due to the fact that the
softening is comparable in length to the smoothing kernel used to compute the Cartesian density and
velocity field. Taking into account that our intention is to preserve the mildly non-linear regime, we
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have chosen as our optimum softening the mean minimum inter-particle separation of 1.55 h−1Mpc.
This choice will keep the shot-noise level low at very high density regions while given an acceptable
performance at quasi-linear and low density regions.

After having selected the softening, we proceed to model the two velocity fields by considering
galaxies up to 150 h−1Mpc. The choice for this value as the limiting radius is based on two con-
siderations. The first one is that galaxies up to this radius are not seriously affected by shot-noise
effects (B99). The second reason is based on the analysis of B99, where they did not find substantial
contributions to the bulk flow estimate beyond this radius.

5.3.4 Error estimates from mock catalogues

In order to assess and to quantify random and systematic errors in our modeled peculiar velocity
fields, we have used the constrained mock catalogues presented in Chap. 3. These catalogues mimic
the main properties of our nearby Universe according to the same adopted PSCz selection function.
An important consideration is the fact that these catalogues do not contain large scales contributions
beyond 150 h−1Mpc.

5.3.5 Dependence on the β parameter

In our actual FAM implementation, the equations of motion expressed in terms of the time variable
D (the linear growing mode of the density perturbations), are almost independent of Ωm and the cos-
mological constant (e.g. Nusser & Colberg 1998). Our velocity field models will therefore depend
linearly on the β parameter (β = Ω0.6

m /b, with b the biasing parameter), affecting only the amplitude
of the computed velocities. However, the β value should be consistent with the one chosen from the
reconstruction procedure, i.e. β = 0.5.

5.4 Analysis

In order to determine the bulk flow and shear contributions, and the radius at which the shear van-
ishes, we have considered 5 different volumes for the FAM modeling. The bulk flow and velocity
shear were computed by using the same decomposition method presented in Chapter 3 (Kaiser 1991).
The first volume was chosen in order to obtain the contributions from the Local Supercluster region
(30 h−1Mpc). The second and third volumes were limited at the radii at which most of the existing cata-
logue samples, 60 and 80 h−1Mpc. B99 estimated that with the depth and frequency of the PSCz survey,
a reliable density field can be constructed out to a radius of 150 h−1Mpc. Beyond this radius sparsed
sampling effects become more important and could affect the field reconstruction. Nonetheless, Tadros
et al. (1999) indicated that the PSCz catalogue should not be used down to a flux limit of 0.6Jy and that
a more conservative limit in flux of 0.745Jy, should be adopted instead. This flux cut translates into
a volume of radius 120 h−1Mpc. We have taken into account these two results and decided to model
3 large scale velocity fields with radii of 100,120 and 150 h−1Mpc. The 5 FAM catalogues were con-
structed for the two PSCz reconstructions in order to check for possible effects in the reconstruction
process. Table 5.1 presents the 5+5 different volume samples for both reconstructed catalogues: those
considering tripled-valued regions (“tripcoll”), and those where this effect was not taken into account
(“untripcoll”). This table also indicates their respective depths and corresponding number of galaxies
enclosed by each subsample.

5.4.1 Bulk flow

The bulk flow is defined as the average streaming motion within a certain volume. Within the linear
gravitational instability scenario, the rms expected bulk velocity within a sphere of radius R, is given
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Label Sample Volume Sample Type Ngal

( h−1Mpc)

PSCz30 30 untripcoll 1875
tripcoll 1789

PSCz60 60 untripcoll 5421
tripcoll 5262

PSCz80 80 untripcoll 7527
tripcoll 7336

PSCz100 100 untripcoll 9300
tripcoll 9098

PSCz120 120 untripcoll 10651
tripcoll 10415

PSCz150 150 untripcoll 12166
tripcoll 11939

Table 5.1 — PSCz subsamples at different depths. Each catalogue has been constructed from the full sample
(200 h−1Mpc). Col. 1 indicates the catalogue label. Col. 2 gives the limiting depth of the sample. Col. 3 refers
to the sample used: “tripcoll” indicates the reconstruction where tripled-valued regions (collapsed) were treated
(see text), while ’untripcoll’ to the reconstruction were this effect was not taken into account. Col. 4 presents the
number of galaxies contained in the subsample.

by (Peebles 1993a),

V(R)Exp =
H0 f (Ωm)√

2π

[∫ ∞

0
P(k)W̃2(kR)dk

]1/2
, (5.2)

where f (Ωm) ' Ω0.6
m (Peebles 1980), P(k) is the mass fluctuation power spectrum, and W̃(kR) is the

Fourier transform of a top-hat window of radius R.
In order to estimate the effects of tripled-valued regions, we have compared the bulk flow estimates

at different radii from the two PSCz reconstructions using the PSCz150 volume sample. Table 5.2
gives the bulk flow direction and amplitude expressed in galactic coordinates (Columns 3, 4 and 5
respectively), together with their ±1σ dispersion computed from the mock catalogues. Column 1
indicates the volumes at which the FAM bulk estimates were performed. Column 2 gives the name
of the PSCz reconstruction used for the analysis. As in Table 5.1, the labels refer to the sample
where tripled-valued regions were considered or not. We have only indicated dispersion errors for one
reconstruction, because we have found that they are similar for both samples.

From the comparison between the two PSCz reconstructions, we can notice that both samples are
consistent with each other at any sampled volume. Bulk flow amplitudes are ∼ 10% larger for the
collapsed reconstructions than for the uncollapsed ones, but consistent within the 1σ dispersion. How-
ever, differences in the bulk flow directions are less pronounced than for the corresponding magnitudes.
The different bulk flow directions point consistently toward the same region in the sky. These results
indicate that for the case of the bulk flow, tripled-valued regions do not represent an important source
of error. It is worth mentioning that this effect has also been minimized by the smoothing procedure in
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Sample Volume Sample Type Vbulk l b
( h−1Mpc) ( km s−1) (◦) (◦)

30 tripcoll 326 253 18
untripcoll 302±55 250±31 19±30

60 tripcoll 222 249 16
untripcoll 221±59 247±16 17±19

80 tripcoll 229 250 19
untripcoll 201±73 246±14 20±19

100 tripcoll 210 249 20
untripcoll 185±78 247±13 20±17

120 tripcoll 195 250 20
untripcoll 171±82 247±12 20±16

150 tripcoll 174 251 19
untripcoll 155±78 247±12 20±14

Table 5.2 — Bulk flow estimates from the two PSCz reconstructions computed at different radii from the PSCz150

sample. Col. 1 indicates the radius at which the bulk flow estimate was performed. Col. 2 gives the label of the
PSCz sample used : ’tripcoll’ refers to the reconstruction where galaxies were collapsed, while ’untripcoll’ to the
reconstruction were it was not taken into account. Cols. 3, 4 & 5 present the bulk flow amplitude, and its direction
in galactic coordinates.

the catalogue-reconstruction.
Taking into consideration the fact that the bulk flow estimates from the two different reconstructions

are equivalent, we will refer from now on to the PSCz bulk flow as that quantity computed from the
uncollapsed reconstructed catalogue.

Figure 5.3 depicts several aspects of the computed bulk flow. The upper left-hand plot displays
the bulk flow amplitudes computed as a function of depth for the different volumes. Each different
volume is indicated by different symbols and line styles. Notice that we have changed labels from
PSCz to FAM. We have done so because the samples represent now velocity fields modeled by means
of FAM. The thick continuous line represents the expected theoretical rms bulk flow prediction (VExp)
of a sphere of radius R as given by Eqn. 5.2 for a ΛCDM universe. The lines are a measurement of the
contributions from the density fluctuations enclosed by such regions. It is clear that small volumes up to
middle size (30−100 h−1Mpc) miss the very large scale contributions exerted by the matter distribution
beyond the limits of the corresponding samples. Volumes large enough (≥ 120 h−1Mpc) seem to
enclose most of the density fluctuations that contribute to the real power spectrum and are consistent
with the theoretical expectation of a ΛCDM universe as revealed by the residual bulk flow. This is
defined as the expected bulk flow (VExp) minus the different FAM volume models (Vi). The bottom part
of the upper left-hand plot shows the residual bulk flows for the different FAM samples. Because the
bulk flow is a characteristic quantity of the enclosed matter concentration, the missing contributions are
the same for the whole surveyed region. Furthermore, one would not expect configuration-dependent
effects. This brings as a consequence, that the residual bulk flows (VExp−Vi) are almost constant along
the sampled volumes.
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Figure 5.3 — Cumulative bulk flow amplitudes (upper left-hand plot) computed for 5 different volume samples.
The top panel indicates the volume contributions to the bulk flow, while the lower panel depicts the residual bulk
flows computed between the theoretical expected bulk flow and the 5 subsamples. The upper right-hand plot
depicts the bulk flow directions shown in Table 5.2. The asterisk plotted at the center represents the CMB dipole
direction. The lower plot shows the angular misalignment between the 150 h−1Mpc volume FAM model and the
CMB direction.

The upper right-hand plot of Figure 5.3 depicts the bulk flow directions as stated in Table 5.2.
The symbols indicate the corresponding volumes at which the directions were computed from the
150 h−1Mpc volume sample. The error bars represent the 1σ uncertainties computed from the mock
catalogues. The central asterisk represents the CMB dipole direction in galactic coordinates as given
by COBE, (l,b) = (276◦,28◦)±3◦ and |V | = 627±22 km s−1 (Kogut et al. 1993). The contours indicate
equidistant regions in steps of 10◦ from the CMB direction. All computed directions are in very good
agreement with respect to each other, indicating that the flow has converged to the CMB frame. This
agreement can be better noticed in the lower plot of Fig. 5.3. This plot shows the convergence direction
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Figure 5.4 — Different bulk flow measurements. The left-hand plot shows the amplitude of the measured bulk
flows together with their respective errors. We have over-plotted our FAM estimates at different radii and the
PSCz estimates from B99. The solid line represents the expected rms bulk flow velocity for a ΛCDM universe,
while the dashed line the cumulative FAMPS Cz bulk flow. The corresponding directions are indicated at the
right-hand plot. The central asterisk indicates the CMB dipole direction.

(misalignment) of the bulk flow with respect to the CMB direction as a function of distance for the
150 h−1Mpc volume FAM model. As can be noticed, there is a clear convergence in the bulk flow

Survey Sample Volume Method Vbulk l b
( h−1Mpc) ( km s−1) (◦) (◦)

SBF 30 SBF 350 294 67
FAMPS Cz 30 LAP 300 250 19

Mark III 60 TF+FP 370 305 14
SFI 60 TF 200 295 28
SF 60 TF 70 269 27
SNIa 60 SNIa 320 282 -8
ENEAR 60 FP 220 304 25
FAMPS Cz 60 LAP 220 247 17

EFAR 100 FP 180 (≈ 0)
PSCz 120 LT 180 255 24
FAMPS Cz 120 LAP 172 252 20
SMAC 60-140 FP 630 260 -1
LP 150 BCG 700 341 49
FAMPS Cz 150 LAP 150 255 21

Table 5.3 — Different bulk flow estimates. Column 1 gives the survey name. Col. 2 the depth of the sample.
Col. 3 specifies the method used to computed the velocity field : SBF-Surface Brightness Fluctuations method;
LT-Linear Theory; LAP-Least Action Principle; TF-Tully-Fisher measurements; FP-Fundamental plane; BCG-
Brightest Cluster Galaxy method. Bulk flow amplitudes and sky directions are shown in the Cols. 4, 5 & 6
respectively.
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direction beyond distances larger than 60 h−1Mpc.
The direction, amplitude and convergence behavior of our bulk flow estimates are consistent with

those of B99. This indeed was expected from the fact that our velocity model is based on the real
spatial Cartesian reconstruction procedure performed to erase redshift distortions.

5.4.2 FAMPS Cz bulk flow vs observed bulk flows

We have compared our FAMPS Cz bulk flow estimates with others based on different survey catalogues
and techniques. We present results based on the 150 h−1Mpc volume sample because this one seems
to enclose most of the large scale fluctuations.

We have considered bulk flow estimates from the following surveys : Surface Brightness Fluctu-
ations (SBF, Tonry et al. 2000); SFI (Haynes et al. 1999a,b); Shellflow (SF, Courteau et al. 2000);
Supernova type Ia (SNIa Riess et al. 1997); ENEAR (da Costa et al. 2000a); Streaming Motions of
Abell Clusters (SMAC, Hudson et al. 1999); Mark III (M3 Dekel et al. 1999); EFAR (Colless et al.
2001), Brightest Cluster Galaxies (LP, Lauer & Postman 1994), and the linear theoretical prediction
inferred from the PSCz catalogue (Branchini et al. 1999). Although this list is not complete, our inten-
tion is to give a broad view of the different bulk flow measurements at different volumes using different
samples and techniques. The different bulk flow measurements are presented in Table 5.3. We have
indicated for each survey the sample’s depth limit and the method used to compute the velocity field.
The methods depend on the kind of sampled objects : Tully-Fisher (TF) for spiral dominated samples;
Fundamental Plane (FP) for elliptical dominated surveys; Brightest Cluster Galaxy method (BCG);
Surface Brightness Fluctuations (SBF) for early-type galaxies; Linear Theory (LT) and Least Action
Principle (LAP) for the models derived from the PSCz catalogue. According to their surveyed volumes,
there are 3 main groups of catalogues : nearby samples (30 h−1Mpc), middle scales (60 h−1Mpc) and
large scales (≥ 100 h−1Mpc). We have included 5 FAM-PSCz estimates at different radii for compari-
son purposes.

Figure 5.4 depicts in a more clear way the different amplitudes and directions from the different
surveys. In the left-hand plot, the continuous line represents the expected rms bulk velocity in a
ΛCDM universe. Almost all bulk flow magnitudes are consistent with the predicted model, except
for the well known cases of the SMAC and LP estimates (for a review about their implications see
Dekel 1999; Zaroubi 2002). The estimates at 60 h−1Mpc have been slightly shifted for sake of clarity.
These quantities are consistent, within their dispersion errors, with each other and the bulk prediction.
This is also the case for their directions displayed at the right-hand plot, which are within ≈ 25◦ of the
CMB dipole direction (located at the center of the plot). At larger volume samples both direction and
magnitude agree with each other. The FAM-PSCz estimates are in good agreement with the different
samples at different radii, both in amplitude and direction.

5.4.3 Velocity shear

The velocity shear is given by (Chapter 2 & 3):

si j =
1
2

{
∂vi

∂x j
+
∂v j

∂xi

}
− 1

3
(∇ ·v) δi j , (5.3)

where i, j = 1,2,3 and δi j is the Kronecker’s delta. With this definition, we are considering a traceless
shear tensor. Therefore, when diagonalizing its matrix representation only two eigenvalues are linearly
independent.

In order to compute the velocity shear components from the different PSCz catalogues, we have
followed the prescription given in Kaiser (1991). We have taken care of re-arranging the eigenvectors
in descending order according to the magnitude of their respective eigenvalues. The most positive
eigenvalue indicates the largest stretching direction, and it is known as the dilational component. The
central eigenvalue could be positive or negative, and determines the nature of the shear pattern, i.e. if
it is positive indicates an extra stretching component, while if it is negative indicates a compressional
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mode. The direction of this eigenmode is by construction perpendicular to the first eigenvalue. The
smallest eigenvalue (most negative) indicates the direction of the compressing mode, and it is known
as the compressional component.

In Sec. 5.4.1, we showed that tripled-valued regions do not have a considerable effect on the bulk
flow estimates. Table 5.4 shows the 3 shear components ordered by their amplitudes (dilational, central
and compressional) with their respective galactic directions (l,b). Calculations were performed by tak-
ing into account only the matter distribution enclosed in 80 h−1Mpc. We considered this limit because
it is the radius at which the shear amplitude convergences in the mock catalogues. The amplitude of
the 3 eigenvalues for the two reconstructions are very similar for all four volumes, with differences less
than 5% for each component. However, directions are more severely affected, except in the case of the
dilational component where the angular misalignment is less than 4◦. The middle and compressional
components experience larger deviations (≤ 10◦). However, in the case of the 150 h−1Mpc volume, the
difference is ∼ 18◦ for both components. Such a difference could be due to big mass concentrations
like the Shapley concentration that distort the field as shown by B99. We can therefore conclude that,
the effect of tripled-valued regions is not considerable in the case of the velocity shear.

Figure 5.5 depicts several aspects of the velocity shear eigenvalues. The upper left-hand plot shows
the cumulative shear amplitude distributions for the FAM models estimated using different sample
volumes. From this plot we can distinguish three different regions separated by two points (indicated
by arrows) where the slope changes considerably. The shear amplitude values at those points are
20 km s−1 Mpc−1 at a depth of 20 h−1Mpc and 4 km s−1 Mpc−1 at 80 km s−1 Mpc−1 respectively. The
first region is an “inner” sector enclosing the matter distribution within the first 20 h−1Mpc (first arrow)
from the Local Group, and where most of the shear contributions originate. This region is character-
ized by a very fast drop in the cumulative distribution up to the edge of this volume. The second region
is located between the 2 different slope points (20,80 h−1Mpc). The cumulative distribution presents
a more gentle descent in this region, implying that the corresponding enclosed structures still play an
important role. Considering the fact that the shear contributions decrease as r3, the responsible struc-
tures should be very massive in order to affect considerably the velocity shear (e.g. Great Attractor,
Perseus-Pisces supercluster, see Fig. 5.2). The third region (> 80 h−1Mpc) is a “convergence” region.
All samples larger than 60 h−1Mpc (80,100,120,150 h−1Mpc) show a clear convergence beyond this
radius. In fact, we could say that the PSCz-FAM60 sample indicates that no substantial contributions
are coming beyond this radius.

On the other hand, the 30 h−1Mpc sample clearly and substantially underestimates the shear from
the external mass distribution. There is ≈ 10 km s−1 Mpc−1 shear difference between this sample and
the largest samples for the whole distance range. The shear effects become more pronounced at the
edge of the sample, where the difference has increased up to ≈ 14 km s−1 Mpc−1, due to the more
localized nature of shear.

The comparison between the PSCz-FAM velocity shear and the predicted one for aΛCDM universe
is presented at the upper right-hand plot of Fig. 5.5. The gray shadow around the cumulative FAM
distribution represents the ±1σ dispersion error given from the analysis of the mock catalogues. Apart
from the bump registered at ≈ 40 h−1Mpc, both curves describe the same behavior for the whole
distance ranges. Although this bump is only significant at the 1σ level, it is interesting that it coincides
with the GA location.

The lower plot at Fig. 5.5 shows the cumulative distributions for the 3 shear eigenvalues: dilational,
central and compressional from the PSCz150 sample. The shear component distributions show that
matter concentrations beyond 80 h−1Mpc do not distort the velocity ellipsoidal.

The second eigenvalue has a magnitude around zero for the whole range of distances, with the
exception of the so-called “inner” region, where it is positive and indicates a stretching mode along the
direction given by its corresponding eigenvector.
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Figure 5.5 — Velocity shear eigenvalues. The upper left-hand plot shows the cumulative distributions of the
amplitude of the eigenvalues for the different volume samples. The upper right-hand panel compares the amplitude
of the eigenvalues with respect to the expected shear amplitude prediction for a ΛCDM universe. The lower plot
depicts the 3 eigenvalue components for the FAM150 sample. The gray shadows represent the 1σ dispersion error.

The corresponding directions of the eigenvalues (eigenvectors) are displayed in Figure 5.6. From
the cumulative distribution of the largest PSCz-FAM reconstruction (FAM150), we have plotted the
directions of 15 shells separated every 10 h−1Mpc. The gray symbols indicate their corresponding
anti-apex directions. The big black filled circle indicates the CMB dipole direction. The filled inverted
triangles represent the position of the major clusters around the Local Group : V-Virgo; C-Coma; UM-
Ursa Major; H-Hydra, C-Centaurus and H-C Hydra-Centaurus supercluster; Per-Perseus, Pis-Pisces
supercluster; Pav-Pavo, Tel-Telescopium, Ind-Indus supercluster; Scul-Sculptor cluster; Boot-Bootes
supercluster; Her-Hercules supercluster; Sha-Shapley concentration; and Hor-Horologium superclus-
ter. The empty triangles correspond to the first eigenmode direction, and they point toward the direc-
tion where the velocity ellipsoid suffers the largest stretching. According to linear theory, the bulk
flow direction and the first shear eigenvector should point toward the same region. Nevertheless, the
dynamics of the nearby universe (< 30 h−1Mpc) is far from being linear. Furthermore, the presence
of several massive structures (e.g., PP, GA) strongly gravitationally perturb the local nearby matter
concentrations (see Fig. 5.2). The bulk flow points toward the direction where there are several large
matter concentrations like the Hydra-Centaurus supercluster and the Shapley concentration. From our
analysis, the dilational component points roughly toward the same direction. To be precise, directly to
the H-C region. The corresponding dilational anti-apex points toward the Perseus-Pisces supercluster
region. This apparent alignment between the shear eigenvector and the directions of the H-C and PP
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Figure 5.6 — Sky directions of the FAM velocity bulk and the 3 velocity shear eigenvectors. The gray symbols
represent their corresponding anti-apex directions. The black circle depicts the CMB dipole direction, while the
inverted black triangles the positions of the most prominent clusters and superclusters.

superclusters is more than a simple coincidence. The Local Group resides in a region that is being
stretched along the direction of these two giants, H-C (GA region) and PP superclusters (e.g. Fig. 5.2,
also B99).

The source of the bulk flow motion is also the source (partially) of the stretching shear eigenmode.
From the shear eigenvalues cumulative distribution functions we deducted that most of the shear con-
tributions come from matter distributions within 60 h−1Mpc (i.e. H-C, PP).

The source of the second eigenmode (central) is less well determined. There are no nearby struc-
tures (clusters or voids) that could be responsible for this mode. However, any two matter concentra-
tions that stretch along the line connecting them, will compress in a perpendicular direction. Therefore,
the direction of this eigenmode is most probably also due to the H-C, PP configuration. However, the
two measurements at 10 and 20 h−1Mpc of the cumulative distribution point toward the Ursa-Major
cluster. The corresponding eigenvalues for these two eigenvectors are positive, indicating a stretch-
ing mode along this direction. This is the very local influence of the Local Supercluster (Virgo +
Ursa-Major) over the Local Group (e.g. Tonry et al. 2000).

5.4.4 FAMPS Cz shear vs other estimates

Figure 5.7 shows the distribution of other different estimates of the velocity shear eigenvectors. The
black-filled symbols correspond to our estimates from the FAM modeling (We) as indicated in Ta-
ble 5.4 for the 150 h−1Mpc volume sample, computed at a radius of 80 h−1Mpc. The gray-filled
symbols represent the estimates from the tidal field as inferred from the Mark III catalogue (Hoffman
et al. 2001), using two different techniques: POTENT (POT) and the Wiener Filter (WF) to estimate the
residual tidal field. The empty symbols represent the estimates from Lilje, Yahil, & Jones (LYJ, 1986)
who used the galaxy catalogue of Aaronson et al. (1982a) to infer the direction of the shear in a volume
equivalent to the Local Supercluster region, i.e. 30 h−1Mpc. Our FAM estimates are, within the 1σ
dispersion, in concordance with those from LYJ, and they roughly agree with the first eigenvector from
Hoffman et al. (2001). However, our estimates for the other two eigenmodes do not agree with those
from Hoffman et al. There is a misalignment of more than 100◦ for these two eigenvectors. Although
the WF and POT eigenmode estimates are for the tidal field, these should coincide with our estimates
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Figure 5.7 — Different shear eigenvector estimates. The black-filled symbols represent our FAM estimates
(We). The gray-filled symbols represent the tidal shear eigenvectors from Hoffman et al. (2001), WF refers to
those from the Wiener Filter analysis of the Mark III catalogue, while the POT labels refers to those performed
with POTENT to the same catalogue. The empty symbols indicate the estimates from Lilje, Yahil, & Jones (LYJ,
1986).

since we do not find contributions to the velocity shear beyond 80 h−1Mpc. Furthermore, the large
discrepancy measured with respect to our estimates could be due to the fact that beyond 60 h−1Mpc
the amplitude of the second eigenvalue is of the order of zero. The tidal shear is then dominated by the
largest eigenmode, making difficult to estimate the other independent direction. This can be noticed
by the large dispersion in the mock catalogues of Figure 6 from Hoffman et al. (2001).

5.5 Conclusions

We have modeled the IRAS-PSCz catalogue velocity field by means of the FAM technique from the
galaxy distribution in real space. In order to do so, we have used the reconstructed PSCz catalogues
from B99. In this sense, the use of the FAM technique was implemented as a refinement in the estima-
tion of the peculiar velocity field over the linear reconstructed velocity field of B99. However, as we
have shown, results do not yield a significant improvement to the linear theory analysis.

We have characterized the large scale velocity field by means of its most dominant moments: the
bulk flow and velocity shear components.

Our results showed that tripled-valued regions do not have a considerable effect on the bulk flow
estimates. We found a difference of less than 10% in amplitude and direction between the sample con-
sidering tripled-valued regions and the one without considering them. This effect is more substantial
for the velocity shear components. Although the magnitudes of the 3 components remain the same,
differences arise for their respective sky directions. Such differences are larger for the direction of
the middle and compressional modes (second and third eigenvectors) with an angular misalignment
of 18◦ (largest case) at distances of 150 h−1Mpc. However, directions at smaller scales show a better
agreement between the two different samples.

The bulk flow estimates as a function of depth are in good agreement with the different measure-
ments from other catalogues performed with different techniques. Since we have used as input to our
FAM the linear reconstruction method to map galaxy positions from redshift-space to real-space, our
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results are very similar to those obtained by B99.
From the analysis of the cumulative distribution of the shear amplitude, we found that this curve

identifies two radii at which the slope changes considerably. They correspond to regions providing
different contributions. The first point is located at ≈ 20 h−1Mpc, and gives the range of the largest
contributions to the velocity shear. At this region, the cumulative shear experiences a very rapid
fall off, meaning that the very nearby structures (Local Supercluster) are markedly responsible for
these contributions. The proximity of such structures provoke that their influence would be more
pronounced than those registered at larger scales. The second transition occurs at ≈ 60 h−1Mpc, and is
characterized by a more gentle slope. This region enclosed between 20− 60 h−1Mpc still contributes
considerable to the velocity shear. Such significant contributions come from structures like the Hydra-
Centaurus and Perseus-Pisces superclusters. Beyond 60 h−1Mpc matter distributions hardly affect the
velocity shear. This is indicated by the very good agreement between the models constructed at radii
80,100,120,150 h−1Mpc, showing no contributions at all to the velocity shear amplitude. On the basis
of this analysis, we roughly estimate that the radius at which the shear amplitude converges (vanishes)
is 80 h−1Mpc.

The direction of the largest eigenmode (stretching mode) is roughly aligned with the direction of
the bulk flow. This indicates that at least some of the sources which produce the gravity bulk are
also responsible for the shear contribution, i.e. the Hydra-Centaurus supercluster. Furthermore, the
anti-apex direction of this eigenvector point toward the Perseus-Pisces supercluster region, indicating
that this structure also plays a major role in molding of the velocity field of the nearby universe, in
contradiction with the results of Tonry et al. (2000).

The Local Supercluster also exerts a stretching mode. The amplitude of the second eigenmode is
positive for the first 20 h−1Mpc from the Local Group. These results are confirmed by the fact that the
corresponding second eigenvector within this region points toward the Ursa-Major cluster (the Local
Supercluster).

Our results are in agreement with those from LYJ, and only in the case of the largest eigenvector,
with those from (Hoffman et al. 2001). We did not find any alignment for the directions of the other
two eigenmodes between our estimates and those from Hoffman et al. Such misalignment could be
due to the fact that beyond 40 h−1Mpc, the amplitude of the second eigenvalue is of the order of zero,
making difficult to estimate its direction. Nevertheless, we do agree with the fact that there is more
than one source responsible for the shear pattern in our cosmic vicinity.

Some issues should be addressed in order to improve bulk flow and velocity shear estimates. The
first one concerns to the quality of the data. Although the IRAS-PSCz catalogue represents a good
estimate of the cosmic matter distribution up to scales contained within 15 000 km s−1, it would be
desirable to have larger and better sampled data bases covering the entire sky, and as uniformly ob-
served as possible. Such survey should have full-sky, uniform sampling in angle and redshift, and a
very accurate distance indicator with small intrinsic dispersion (such as the 2MASS survey, Cutri et al.
2003). The second point refers to the inclusion and better treatment of non-linear regions. The exten-
sion of FAM to redshift space (Branchini et al. 2002) could be a great advantage in order to estimate
the bulk flow and shear in a more consistent way. In the future, we plan to apply directly the FAM
implementation in redshift space to the PSCz catalogue and other samples.
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DTFE & Cosmic Flows:

Tessellation Interpolation and
Reconstruction of Cosmic Velocity

Fields

E. Romano-Dı́az, W. E. Schaap & R. van de Weygaert.

D tessellations have proven to be a powerful tool for the interpolation of a discrete number
of field values to a fully volume-covering and continuous field estimate (Bernardeau & van de

Weygaert 1996; Schaap & van de Weygaert 2000). In this chapter, we have applied the Delaunay Tes-
sellation Field Estimator method [DTFE] to a set of simulations of the cosmic structure formation to
obtain continuous, space-covering and volume-weighted peculiar velocity field from a discrete pecu-
liar velocity field sample. The procedure is based upon the determination of the values of the (constant)
velocity gradients in each Delaunay tetrahedron from the four known velocities at its vertices. Velocity
values at any given point are then computed by a linear interpolation procedure. This method is an
improvement over conventional interpolation methods in the sense that one can get fully-covering ve-
locity fields without the use of artificial smoothing procedures, and hence without loosing information
at small scales. The method is fully self-adaptive and suppresses shot-noise effects. The velocity-
gradient matrix allows to compute velocity-related quantities such as the velocity divergence, shear
and vorticity. The estimated quantities are volume-weighted and volume-covering, allowing a direct
comparison with theoretical predictions. We have found that the density-velocity divergence relation
estimated with our method reproduces the analytical perturbation results at least up to second order.
Based on an analysis of the kinematics of voids, we have been able of compute a lower limit for the
matter density parameter Ωm, which is in good agreement with the imposed value on the simulation.
Maps of the velocity-related quantities and density fields are shown to elucidate the dynamical state of
the cosmic volume. We also analyze errors introduced by the interpolation procedure and method and
suggest solutions for a general improvement of the method.
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6.1 Introduction

The peculiar velocity flow on cosmological scales provides important information on the formation and
evolution of structures in the Universe, it supplies direct information on the dynamics of the universe
on scales of more than few Megaparsecs.

In general, the peculiar velocity field is only known at a discrete set of points. In the case of
N−body simulations this set corresponds to particle positions. In the case of observational data to
galaxy positions. Within the Gravitational Instability scenario of structure formation the present large
scale structure is the result of tiny fluctuations in the primordial density field that were amplified via
gravity (Peebles 1980). This primeval density field is assumed to be Gaussian. Due to gravitational
interactions the actual density field is not longer Gaussian. Once regions surpassed a given density
threshold they collapse and virialize, attaining high-density excesses. Low-density regions expand and
empty asymptotically reaching a density deficit δ ≈ −1. Therefore, the actual matter distribution is not
distributed uniformly, but it is very skewed (at least on scales less than 200 h−1Mpc). As a consequence
the N−body or observed velocity field, which is traced by galaxies residing in the high-density regions,
is sampled very non-uniformly. Often, for a balanced view and proper statistical evaluation of a field a
uniformly sample dataset is necessary. In principle, an alternative to the use of the Lagrangian character
of N−body codes to simulate the evolution of cosmic density fields is the use of an Eulerian code, often
used for solving fluid systems. A notable example for a gravitationally evolving cosmology system
whose evolution is followed by such a code, can be found in Peebles (1987). A different approach
within the context of Lagrangian systems is to interpolate the discrete velocities into a regular grid
via any known interpolation method. With this approach one sometimes needs to make use of large
grid sizes in order to obtain a fully volume-covering velocity field and to overcome the problems of
sparsely sampled data. This implies the lost of resolution at the high-density regions. In some cases a
smoothing procedure is still needed in order to recover a volume-covering velocity field.

Because of the limited nature of the discrete samples it is often of crucial importance to use as much
of the relevant information which is present in the data as possible. Bernardeau & van de Weygaert
(1996, BW96, hereafter) have shown than in the case of the velocity field conventional reconstruc-
tions methods are unable of recovering this field accurately over its whole range of values at both low
and large values. They introduced tessellation based methods (the Voronoi and Delaunay tessellation
methods) to fully recover volume-covering and volume-weighted velocity fields. While they explic-
itly showed that the zeroth-order Voronoi estimator is the asymptotic limit for volume-weighted field
reconstructions from discretely sampled field values, they showed the better performance of the first-
order Delaunay estimator in reproducing analytical predictions. In particular they focussed on testing
the validity of the second order perturbative approximation of the velocity divergence-density relation
(Bernardeau 1992).

Based on the work by BW96, Schaap & van de Weygaert (2000, SW00, hereafter) and Schaap
(2005, S05, hereafter) developed a reconstruction scheme based on the geometrical concept of the De-
launay tessellations (Delaunay 1934), the Delaunay Tessellation Field Estimator [DTFE]. The method
enables a natural, unbias and volume-covering reconstruction of the density or intensity field from the
sampling point set. The method is self-adaptive and does not make use of any artificial smoothing
procedure. Delaunay-based reconstruction scheme would also be a natural choice for other kind of
fields, and were in fact first designed to process discretely sample velocity fields (BW96). Schaap
(2005) also showed the main differences and advantages of DTFE with respect to grid-based schemes
and SPH-like (adaptive) methods (see also Pelupessy et al. 2003).

S05 discussed to great extent why conventional density field reconstruction methods have impor-
tant shortcomings for studies of the large scale matter distribution. These methods are unable to accu-
rately describe a point distribution with a large dynamic range in terms of spatial densities and scales.
Furthermore, they also fail in describing highly anisotropic structures, which are a common element
of the large scale matter distribution. These effects are a consequence of the use of smoothing kernels
(filtering functions) from such interpolation methods. Reconstruction methods of dynamical fields
such as peculiar velocity fields are closely related to methods for reconstructing density or intensity
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fields. These methods also make use of smoothing kernels whose parameters have to be subjectively
pre-defined by the user. Therefore, similar problems, as occur in the density field reconstruction, are
expected to appear.

In the present chapter we elaborate on the defining work of BW96 and expand the DTFE method
toward a reconstruction/tessellation interpolation scheme of discretely sampled cosmic velocity fields
from cosmological N−body simulations. The method is based upon the computation of the velocity
field gradient matrix. Thus, it allows studies over the velocity divergence, shear and vorticity of the ve-
locity field. These velocity related quantities will automatically acquire the characteristics given by the
DTFE approach. We will assess the resulting spatial and statistical characteristics of the reconstructed
velocity fields, including the various aspects of velocity gradient field quantities. Subsequently, we
combine these DTFE velocity fields with the DTFE density field reconstruction method to develop a
scheme for inferring information on the dynamical evolution of the cosmic structure formation process.
In this, we explicitly concentrate/illustrate on the density-velocity divergence relation. Suggestions for
further expansion of the method will be also discussed.

Because cosmic density and peculiar velocity fields are measured at the galaxy positions, such
fields are then mass-weighted. Most analytical relations concern volume-weighted quantities. In ad-
dition, the a priori unknown bias between dark matter and baryonic matter difficult even more the
comparison between measured estimates and theoretical values. It is therefore desirable to use con-
tinuous volume-weighted velocity fields, with uniform full-coverage sampling. This characteristic is
mainly needed at those regions where the density contrast is less than zero, i.e. voids. These regions,
severely affected by Poisson noise, enclose relevant dynamical information, e.g. Dekel & Rees (1994)
used voids to constraint a lower limit of Ωm, the cosmological density parameter.

Within linear theory, the velocity (v) and mass-density fluctuation (δ) fields are related via,

∇ ·v(x) = −H0 f (Ωm,Λ) δ(x) , (6.1)

where H0 is the Hubble parameter, and the function f can be approximated by f (Ωm,Λ)≈Ω0.6
m (Peebles

1980). On the other hand, a strong correlation between the galaxy density (δg) and velocity divergence
fields has been found in observational data analysis (e.g. Hudson et al. 1995; Sigad et al. 1998; Dekel
et al. 1999). It is assumed that the galaxy density fluctuation field is related to the mass density one
via a linear bias factor b, δgal = b δmat. However, in order to obtain such correlation a smoothing
procedure with a large kernel size (RG = 1000−1200 km s−1) appeared to be necessary for obtaining
the linearizing needed, and to reduce distance estimation errors and shot-noise. In the non-linear
regime the relation between δ and v is less trivial. Nonetheless, Bernardeau et al. (1997) used the
Voronoi and Delaunay methods of BW96 to show the validity of Perturbative Theory. The moments
of the Probability Distribution Function of the local smoothed velocity divergence strongly depend on
Ωm in the quasi-linear regime. Even more, this dependence does not involve the possible bias between
the galaxy density field and the underlying mass density field. In this way, by using these tessellation
techniques it is possible to get bias-independent values of Ωm based on reliable determinations of the
velocity divergence probability distribution function.

The use of these type of tessellations has been widely exploited in other sciences like geophysics,
computing imaging, material sciences, etc. (see Okabe et al. 2000, for a review). The DTFE algo-
rithm as a linear multidimensional field interpolation scheme may be regarded as a first-order version
of the natural neighbouring algorithm for spatial interpolation (see Okabe et al. 2000). The use of
Delaunay tessellations for solving hydrodynamical equations and in general as self-adaptive grids for
solving partial differential equations has been particularly impressive (see Braun & Sambridge 1994;
Whitehurst 1995).

The chapter is structured as follows. We first discuss the differences between the mass-weighted
and volume-weighted quantities. Then we review traditional velocity interpolation methods and ana-
lyze their performance at different resolutions. The DTFE method for the peculiar velocities is intro-
duced in the following section. In section 5 we analyze the performance of the method at linear, quasi
and non-linear regions and discuss sources of errors and possible solutions. In sections 6 and 7 we
analyze the velocity divergence probability distribution function and its implications in calculating the
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matter density parameter Ωm. The density-velocity divergence relation and its time evolution is ana-
lyzed in section 8, and the reconstruction of the density field from the velocity divergence is presented
in section 9. The shear and vorticity are investigated in Section 10, and finally the conclusions are
presented in Section 11.

6.2 Reconstructing continuous fields from discrete fields

When one seeks to obtain reliable estimates of statistical parameters from a given observed or
computer-simulated field (e.g. density, velocity or intensity fields), one faces the problem of dealing
with discrete, non-uniform fields. This discreteness forms a major technical obstacle for a successful
comparison with theoretical predictions. Analytical/theoretical predictions often concern quantities
evaluated uniformly throughout a cosmic volume, while observed or simulated results are biased to-
ward the measured particle (matter) distribution.

The usual strategy to deal with such discrete data sets is to smooth them with a filter to yield a
continuous field. In the case of the peculiar velocity field several authors (e.g. Bertschinger et al.
1990; Juszkiewicz et al. 1995; Lokas et al. 1995; Branchini et al. 1999) filtered galaxy velocities with
a Gaussian kernel of a fixed length for reducing problems of noisy data, sparsely sampled underdense
regions and to obtain the velocity field on a regular grid. The POTENT method (Bertschinger & Dekel
1989; Dekel et al. 1990, 1999) applied to the Mark III catalog of peculiar velocities (Willick et al.
1997a) needs a Gaussian smoothing of 10−12 h−1Mpc in order to overcome the previously mentioned
problems. If one is interested in performing studies concerning only the large scale structure of the
universe such methods provide good estimates. Nevertheless, when one is interested in studying both
the large and small scale regimes at once, such methods are not very appropriate. The use of such
kernels erases the small scale signal. At sparsely sampled regions field estimates get tunned to obtain
unnatural values from better sampled high-density regions.

Often, without explicitly stating so, most smoothing procedures are implicitly mass-weighted. For-
mally, a mass-weighted field is defined as:

vmass(x0) ≡

∫
dxv(x)ρ(x)WM(x,x0)
∫

dxρ(x)WM(x,x0)
, (6.2)

where WM(x,x0) is the used filter function . Effectively WM determines the weight of a mass element.
Usually the filter function is not dependent on the location x0, but on the distance x−x0. The aim
of this procedure is to interpolate the velocity field values at random sampling locations to those at a
regular grid, weighing the contribution of each sampling point by the filter function value. When the
density field has been sampled discretely its effective density field is given by

ρ(x) =
∑

i

δD(x−xi) , (6.3)

where δD(x−xi) is the Dirac delta function. The resulting mass-weighted filtered field thus becomes

vmass(x0) =

∑

i

wiv(xi)

∑

i

wi

, (6.4)

where wi ≡ WM(xi,x0). it is not difficult to appreciate that straightforward and more conventional
schemes usually implicitly involve mass-weighted results (BW96). These type of interpolation meth-
ods cannot properly reproduce the large dynamic range present in the cosmic matter distribution, eras-
ing mainly small-scale features. The 1-point distribution function of velocity quantities is therefore
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shifted to higher values. Because analytical results involving two fluctuation fields, ρ(x) and f (x), are
more cumbersome to evaluate, most theoretical work relates to the simpler volume−weighted filtered
quantities. The volume-weighted velocity field ṽ is given by

ṽ(x0) ≡

∫
dx v(x)WV(x,x0)
∫

dx WV (x,x0)
, (6.5)

where WV (x,x0) is the applied weight function. Hence, for a successful comparison of the analytical
results with the observed ones, and for a full space determination of the desired quantities, it is of
crucial importance to have a reliable estimator of volume-average quantities. The problem turns now
to produce a realistic and very accurate interpolation from a sparsely sampled velocity field to the
whole sampling volume (regular grid) without loosing information at any scale and without restricting
themselves to estimates at a finite number of positions.

BW96 proposed the use of Voronoi and Delaunay tessellations as natural filters and interpolation
volumes in multi-D space. They showed that their implementations were capable of probing accurately
the velocity field statistics even at regions of low-density, and of utmost importance that these methods
provide an optimal estimator for determining the statistics of volume-weighted quantities.

6.3 Conventional interpolation schemes

Several methods have been proposed with the purpose of reconstructing from a discrete set of points a
volume-covering field. We can divide these methods into three main groups. The first group is that of
the grid-based schemes, also known as Eulerian type, in which the desired field estimates (e.g. density,
intensity, velocities, temperatures) are confined to a set of locations defined on a fixed and regular grid,
which in principle is defined independently from the point distribution itself. In cosmology these grids
are usually regular but various other options are applied depending on the system under consideration.
Their main limitation is that their spatial resolution is fixed by the cell size. This limitation is quite
severe in cosmology, since many relevant physical processes appear to happen over a range of scales,
so that once a gridsize has been defined effective smoothing over the Eulerian cell size usually erases
important information about the physical conditions at small scales.

The second group is formed by the Lagrangian scheme1, in which the locations of the interpolation
are confined to or defined by the point distribution itself. Of this type, the “SPH-type” schemes are
the best known in astronomy. The latter refers to the abundantly used Smooth Particle Hydrodynamics
technique (Lucy 1977; Gingold & Monaghan 1977) to follow the hydrodynamical evolution of astro-
physical systems. The main difference between Lagrangian and Eulerian methods is the fact that the
former is not restricted to a specific geometry because it does not make use of a mesh. Instead, it
follows the trajectories of the displacing matter aggregating into the high-density regions and ideally
with an unlimited spatial resolution. In practice, this is not possible and one has to make use of a
“softening length”. Although, this is usually much smaller than the cell size of an Eulerian scheme.
Therefore the spatial resolution of the Lagrangian technique can be significantly higher. However, the
main difficulty of this technique is that it relies on stochastic arguments which means that it yields only
approximate solutions at a given spatial position.

A third class seeks to combine the virtues of Lagrangian and Eulerian methods. These were first
introduced by Noh (1964) and referred as arbitrary Lagrangian-Eulerian [ALE] methods. This tech-
nique incorporates the high resolution of the Lagrangian scheme by letting a grid to move along with
the system, combined with the Eulerian scheme for computing the physical state of the system within
each of the resulting distorted grid cells. Although as yet reluctantly applied in cosmology, there are
some noteworthy promising efforts (e.g. Gnedin 1995; Xu 1997; Pen 1998).

1Paradoxically, the “Lagrangian” formulation is in fact also due to Euler (1759), who employed this formalism in a letter to
Lagrange. Lagrange (1762) used these ideas without crediting Euler.
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For the purpose of merely providing a comparison, we restrict ourselves to a grid-scheme as a
representative interpolation algorithm. All other Eulerian grid-based methods perform in a similar
way. For a general revision of the performance of several grid and Lagrangian methods we refer the
reader to Hockney & Eastwood (1988) and S05, and for comparisons of the methods and their use in
N−body cosmological simulations to Kang et al. (1994) and Bertschinger (1998).

6.3.1 Eulerian grid-based interpolation scheme

The most common methods are the grid-based methods, in which one calculates the desired field
quantity (e.g. density, velocities, temperature) at a set of locations defined on a regular grid. The value
of each particle is spread over the grid in accordance with a particular weighting function W, leading
to a relation of the form (Hockney & Eastwood 1988; Efstathiou et al. 1985)

f̂
( n

M

)
=

M3

N

N∑

i=1

fiW
(
xi−

n
M

)
, (6.6)

where M is the number of grid cells along one dimension, N is the total number of particles in the
volume, n = (nx,ny,nz) denotes the center of each grid cell, xi is the position vector of the ith particle
and fi its corresponding value to be interpolated. The units are such that the volume of the cube is
equal to unity. The quantity W defines the weighting scheme used to assign the value to the mesh
points (smoothing kernel). The choice of W is set by the wish of the resulting interpolated field has
the desired resolution and smoothness. A common choice for the grid size is such that on average
each grid cell contains at least one particle. There is a large variety of possible schemes, their shape
and scale defined by the weighting function. Here we will specifically employ the Triangular-Shaped
Cloud [TSC] interpolation scheme, one of the most popular and most commonly used methods.

6.3.1.1 Triangular Shaped Cloud [TSC] method:

The TSC method is described in the Appendix 6.A. Here we will only concentrate in the main char-
acteristics and results from this method. The TSC scheme produces smooth fields which could not be
affected considerably by shot noise effects depending on the size of the grid cells at the cost of low
spatial resolution. On the other hand, if one desires a high resolution reconstruction there is the risk
that the particle density will on average be less than one particle per cell. When this happens, the
resulting interpolated field will be dominated by shot-noise.

In order to assure a fully volume-covering field with a grid-based method the usual procedure is
first interpolation, and second filtering with a specific kernel of particular scale to relate to analytical
predictions. After having defined the interpolated field on the grid points, the resulting field may
be applied to a host of processing steps to obtain the required information. The rigid non-adaptive
grid characteristic leads to a loss of information. In the case of the TSC scheme implies loosing
information in the interpolated field on scales smaller than the size of the TSC kernel or smoothing
radius. The anisotropic and caustic features present in the particle’s value distribution will therefore
not be recovered if their scale is smaller than the grid-cell size.

The problems besetting this particular method are not exclusive to it, but for all grid-based inter-
polation schemes. These problems are undesirable characteristics for computing full spatial covering
velocity fields. The need of having an interpolation scheme that can cope with modeling velocity flows
properly at both low and high density regions is highly desirable in order to be able to establish more
conclusive studies of the dynamics and the structure formation process in the universe.

Typical TSC reconstructions are presented in Figure 6.1. The left panel shows a discrete
N−body velocity field at the particle distribution in a slice of 1 h−1Mpc thickness. The slice presents
several common structures of a typical large scale structure region of the universe, i.e., a void located
at the top-right of the plot and another at the bottom-left, a cluster located almost at the centre, and
a filamentary structure at the low-right part. The contiguous two panels depict TSC interpolations of
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Figure 6.1 — Interpolated TSC Velocity field. The left panel shows the N−body velocities at the particle posi-
tions. The central panel refers to the TSC interpolated velocity field onto a 643 cubic grid. The right panel depicts
the same TSC interpolated field but onto a grid of 1283 grid cells.

the same discrete field at different spatial resolution. The central panel shows a low resolution inter-
polation with 64 cells per dimension, while the right panel a higher resolution map with 128 grid cells
per dimension. For the sake of clarity in visualizing both plots we have lowered their plotted density
resolution to a 1

4 of their original map resolution.
Clear differences can be distinguished between the two maps. The low resolution interpolation

assures full volume-coverage maps at the cost of smearing high density regions. Although the main
trend of the flows can be distinguished, many of the features visible on the particle velocities are
not recovered in the low-resolution interpolated map. Even though a trace of related shearing flow
is visible at the bottom-right part of the map, it is more than marginal. We can extract four crucial
observations from this map: (1) At high-density regions the interpolation smooths away interesting
velocity information because basically all the velocities within the grid-size are averaged. (2) Highly
crucial with respect to the ability to reproduce the 1-point velocity distribution function, at low-density
regions the sampling is so poor and sparse that there is no strong and significant signal in these regions
to be recovered. (3) The field estimates are beset by shot noise effects. Note that if one has less
than two or one particles within the kernel estimates of local bulk flow and/or velocity dispersion
would even not be possible anymore. (4) Cosmic velocity fields are much more quiet than density
fields. Hence, intrinsically features are less prominent and therefore, for the required contrast a better
sampling (high-resolution) is preferred at those regions where it is needed.

The high resolution map of Fig. 6.1 (right-hand panel) illustrates the second point. This map does
recover structures that the low-resolution map did not. The high density regions can be better noticed
in this map. The general flows resemble those from the discrete velocity map. Particularly noteworthy
are the low-density regions, devoid of any objects to base velocity interpolations upon. Here the high-
resolution TSC is unable to recover any significant information. A possible solution to circumvent
this problem is to apply a smoothing procedure in order to extrapolate information to those regions
where no information is available. However, the real cost of such operation would be to loose the high
sensitivity of the map, degrading it to an equivalent low resolution field.

6.4 The DTFE method: Velocity field tessellation-interpolation

The DTFE interpolation method (SW00, see also S05) was introduced for rendering fully volume-
covering and volume-weighted physical fields from a discrete set of sampled field values. The method
is self-adaptive and does not make use of any artificial smoothing procedure. It followed the pioneering
work by BW96 for using the Delaunay tessellation of the point set as a natural and self-adaptive
interpolation frame for recovering the continuous velocity field sampled by the velocities at those
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Figure 6.2 — DTFE reconstructed
density and velocity fields (contour im-
age and vector field respectively) from
the same discrete velocity field pre-
sented in Fig. 6.1.

points. SW00 and S05 extended this to the recovery of the density or intensity field when one assumes
it to be fairly sampled by the spatial point distribution. The later work by Schaap & van de Weygaert
(2003) showed the first results on the successful reproduction by DTFE of the physical and spatial
correlation between cosmic density and velocity fields in a large N−body simulation (see also S05).

The DTFE algorithm as a linear multidimensional field interpolation scheme is the linear first-order
version of the natural neighbouring algorithm for spatial interpolation (see Sibson 1981; Okabe et al.
2000). Related procedures have been implemented in a variety of other applied sciences. Success-
ful examples may be found in geophysics (see e.g. Braun & Sambridge 1994; Sambridge 1999) and
engineering mechanics (Sukumar 1998).

Following the work of BW96 and Schaap & van de Weygaert (2003), we apply the DTFE method
to reconstruct the full peculiar velocity field from a discrete set of velocities. The DTFE scheme is
based upon the minimal triangulation properties of Delaunay tessellations. For a first impression of the
method’s potential and capabilities see Figure 6.2. It illustrates a typical outcome of the reconstructed
DTFE density and velocity fields (contour image and vector field respectively) from the discretely
velocity field presented in Fig. 6.1.

In order to obtain full space-covering volume weighted peculiar velocities with the DTFE scheme
the following steps have to be carried out:

1. Construction of the Delaunay tessellation from the point distribution.

2. Calculation of the velocity gradient ∇̂ f | j in each Delaunay tetrahedron j by inversion on the
basis of the field values and positions of the tetrahedron vertices.

3. Processing. This may involve various operations. The most important ones are image recon-
struction and, subsequently, filtering. Image reconstruction consists of two steps:

(a) For a set of image points (usually grid points) determine in which Delaunay tetrahedra they
are located.

(b) By (linear) interpolation compute field values at each of these points, on the basis of one
vertex field value and computed gradient.
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This formalism ensures that the reconstructed velocity field will have the same properties as a
DTFE reconstructed density field (SW00, S05): it is volume-covering and continuous over the whole
sampled space. An important characteristic of the DTFE velocity method is that while a DTFE density
reconstruction requires a fair sampling of the underlying density field, a succesfull DTFE velocity field
interpolation does not demand it to be uniformly sampled.

The sequence of steps mentioned above is illustrated in Figure 6.4. In the following we will
describe each of these steps in some detail.

6.4.1 The Delaunay triangulation

The first step of the procedure involves the construction of the Delaunay tessellation of the point set,
defined by the set of measurement locations, galaxy position in an observational sample or simulation
particles. The Delaunay tessellation D(P) of a set point P is defined to be the tessellation consisting
of all the tetrahedra (in 3-Dimensional space) defined by four nuclei which circumscribing sphere is
empty in the sense that no nucleus of the generating set of nuclei should be inside the circumsphere
(Delaunay 1934). In 2-Dimensional space this concerns Delaunay triangles of three nuclei. Figure 6.3
illustrates a 2-Dimensional Delaunay triangulation (right panel) for a set of discrete random points (left
panel), where we have implemented continuous boundary conditions in the tessellation construction.
For further information see van de Weygaert (1991, 1994); Stoyan et al. (1995) and Okabe et al. (2000).

Figure 6.3 — 2-Dimensional
Delaunay triangulation (right
panel) of a discrete random
distribution of 70 points (left
panel).

The complete set of Delaunay tetrahedra forms a unique and volume covering framework of mutu-
ally disjoint cells as shown by Fig. 6.3 (see also S05). Note that the Delaunay tessellation is the dual of
the Voronoi tessellation. This intimate relationship indicated by the fact that the circumcentre of each
Delaunay tetrahedron is a vertex in the Voronoi tessellation. The Voronoi tessellation of a point set is
the division of space into mutually disjunct polyhedra, each polyhedron consisting of the part of space
closer to the defining point than any of the other points (Voronoi 1908). The minimal coverage charac-
teristics of the Delaunay tessellation imply it to be optimal for defining a network of multidimensional
interpolation intervals (BW96).

6.4.2 DTFE Reconstruction of the peculiar velocity field

Mathematically the Delaunay Tessellation Field Estimator [DTFE] interpolation procedure for pecu-
liar velocities can be formulated as follows: Let the value of a field f be known at a set of N irregularly
distributed discrete locations xi. Let the corresponding Delaunay tessellation consist of NT Delaunay
hypertriangles. The field value f (x) at location x may then be found by first identifying the Delaunay
hypertriangle j inside which x lies. Let this tetrahedron consist of the (D+ 1) vertices x0,x1, . . . ,xD,
in which D is the dimension of the space. Then the value of the function f at location x is defined as
follows:

f̂ (x) = f (x0)+ ∇̂ f | j · (x−x0) , (6.7)
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in which ∇̂ f is the estimated constant field gradient within the tetrahedron. Given the (D+ 1) field
values, f (x0), f (x1), . . . , f (xD), the value of the D components of ∇̂ f can be computed straightforwardly
by evaluating Eqn. 6.7 for each of the D points x1, . . . ,xD

f (xi) = f (x0)+ ∇̂ f | j · (xi−x0), i = 1, . . . ,D . (6.8)

In the interior of each tetrahedra each of the velocity gradients ∂vi/∂xi has one particular constant
value, which is determined by the value of the function f at the locations xi of its four vertices (three
in 2D) (BW96).

Therefore the problem reduces to calculate the nine components of the velocity gradient ∂vi/∂xi

in each tetrahedron. They are determined from the location of each of the four vectors, x0,x1,x2,x3,
and the value of the velocity field at each of these locations, v0,v1,v2,v3. Defining the intervals
4xn,4yn,4zn and velocity differences 4vxn,4vyn,4vzn, for n = 1,2,3 as:

4xn ≡ xn− x0 , 4vxn ≡ vxn−vx0 ,

4yn ≡ yn− y0 , 4vyn ≡ vyn−vy0 , (6.9)

4zn ≡ zn− z0 , 4vzn ≡ vzn−vz0 ,

we obtain the following linear relations:

4vxn =
∂vx

∂x
4xn+

∂vx

∂y
4yn+

∂vx

∂z
4zn ,

4vyn =
∂vy

∂x
4xn+

∂vy

∂y
4yn+

∂vy

∂z
4zn , (6.10)

4vzn =
∂vz

∂x
4xn+

∂vz

∂y
4yn+

∂vz

∂z
4zn .

From these equations it can be inferred that the ∂vi/∂xi components can be calculated from:


∂xvx ∂yvx ∂zvx

∂xvy ∂yvy ∂zvy

∂xvz ∂yvz ∂zvz

 = A−1


4vx1 4vx2 4vx3

4vy1 4vy2 4vy3

4vz1 4vz2 4vz3

 , (6.11)

where we have used the convention ∂i = ∂/∂i, and i = x,y,z. A−1 is the inverse of the matrix:

A =


4x1 4y1 4z1

4x2 4y2 4z2

4x3 4y3 4z3

 . (6.12)

Note that the four points of the interpolation tetrahedron are both necessary and sufficient to fix the
value of each of the nine velocity gradient components.

6.4.3 The velocity-gradient matrix: divergence, shear and vorticity

When computing the full spatial peculiar velocity field we need to compute the nine elements of the
velocity gradient (see Sec. 6.4.2). By doing so, we retrieve the complete information derived from
the gradient matrix. Because this gradient matrix is composed by the partial spatial derivatives of the
velocity field, it is straightforward to compute any related derivative-velocity quantity. In particular,
as the velocity divergence ∇ ·v is the trace of the velocity-gradient matrix, shear σi j (with i, j = x,y,z)
its symmetric and traceless part and vorticity ωi j its antisymmetric part we may immediately infer the
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DTFE estimates for these quantities in each Delaunay tetrahedron in the following way:

∇ ·v =
(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
, (6.13)

σi j =
1
2

{
∂vi

∂x j
+
∂v j

∂xi

}
− 1

3
(∇ ·v)δi j , (6.14)

ωi j =
1
2

{
∂vi

∂x j
−
∂v j

∂xi

}
, (6.15)

where δi j represents the Kronecker delta pseudo-tensor, and the vorticity ωi j follows the usual defini-
tion (∇×v)k = εi jkωi j, with εi jk the Levi-Civita tensor.

This results in fully volume-covering reconstruction of the divergence, shear and vorticity fields.
However, notice that while the velocity field itself is continuous, its linear nature results in a discon-
tinuous velocity gradient because they are constant in each Delaunay tetrahedron.

6.4.4 DTFE velocity field procedure illustrated

The four steps enumerated in Section 6.4 to perform the DTFE reconstruction of the peculiar velocity
field are illustrated in Figure 6.4. The top-left panel presents a discrete velocity field. The length of
the arrows is proportional to the velocity amplitude of each object, and the arrows’ head indicate the
direction of the motions. It can be noticed that there is and emerging velocity flow from the right-left
corner of the box, which spans over the whole box. The field splits at almost the center of the box
and grows in amplitude towards the upper-right and bottom-left parts of the box, but it also continues
toward the upper-left corner. This velocity field gives the impression of a velocity shear pattern with the
largest stretching direction crossing the box from top-right to bottom-left corners. As a consequence of
this velocity pattern, the central part of the box presents a “transition” region between the two dominant
flows. We will proceed to describe and analyze the interpolation scheme in such figure.

From the locations of the sample points we construct its Delaunay tessellation (top-right panel).
The computed velocity gradient for each triangle is indicated in the middle panels. The gray scale in
both panels is proportional to the amplitude of the determinant of the velocity gradient matrix, and it
runs from black (maximum gradient amplitude) to white (minimum gradient amplitude). In the central-
left panel, a clear dark strip can be recognized running along the transition region. This belt-like zone
represents one of the areas where the gradient experiences maximum changes because of the domi-
nance of the two opposite maxima flow regions. The central-right panel represents the corresponding
Delaunay-surface of the gradient plot. The height of each point is given by its corresponding velocity
amplitude. The hyperboloid-like shape of the surface is determined by the velocity distribution, the
two maxima located at the two extremes of the cube and the minima points at the opposite extremes.
The middle part corresponds to the so-called transition region.

After the gradient matrix calculation, we proceed to do the image reconstruction. In this case on a
rectangular grid of 8 grid-cells per dimension as illustrated at the bottom-left panel (gray broken-line
grid). First, we identify where each of the grid points are located within the Delaunay tessellation, this
is illustrated by the hatched triangles in the panel. The interpolation of the velocity field follows the
linear prescription of Section 6.4.2. The bottom-right panel shows the outcome of the procedure. This
interpolated velocity field clearly displays the same characteristics as the input field: it recovers the
two maxima regions located at the opposite extremes and the low velocity region at the bottom-right
part of the box. Also note that due to the linear interpolation scheme, velocity information has been
recovered at the top-left part of the box where no data was available.

Although the method performs very well where the velocity flow presents a laminar behavior, the
interpolation scheme will not be valid at regions dominated by incoherent (virialized) motions. We
will address this point in more detail in Section 6.5.
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Figure 6.4 — DTFE velocity interpolation procedure. The top-right panel presents the Delaunay triangulation
of the discrete particle positions of the velocity field presented at the top-left panel. The central panels show the
velocity gradient computed for each triangle. The gray scale corresponds to the amplitude of the determinant of
the gradient matrix. The right-hand panel depicts the 3D representation of the gradient surface. The height of each
point corresponds to its velocity amplitude. The DTFE velocity field is estimated at the grid points indicated by
the gray-colored grid of the bottom-left panel by assuming a linear variation of the velocity field. The bottom-right
panel presents the outcome of the DTFE velocity interpolation procedure.
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6.4.5 Boundary conditions

An important practical issue for DTFE is that of the boundary conditions. The problem resides in
calculating velocity estimates at the border of the data point sample. If we confine the Delaunay
triangulation only within “natural” edges imposed by the data set, the reconstructed velocity field at
the edges will not be completely correct. In addition, its continuity’s characteristic at the edge might
also not be conserved. This is because the method will only consider the points within the tessellation.
In principle, points at the edge might not be dynamically related to each other leading to incorrect
velocity estimates at the edges. This situation is very common in surveys of galaxies whose edges are
defined by the selection criteria of the survey itself, mapping objects at the edges that might not be
dynamically bounded with the inner mapped matter distribution.

Possible solutions to overcome this edge problem are: cloning techniques, constrained realizations
and periodic boundary conditions. The first solution refers to draw random points at the edges of the
sample to assure the continuity condition within the field. These points should satisfy two conditions.
The first one is that the random distribution of “synthetic” objects should preserve the mean number
object density of the data. This technique is similar to the random cloning technique to fill the zone of
avoidance and unobserved regions when performing full sky-coverage surveys (Yahil et al. 1991). The
second condition is related to the velocities of these synthetic objects. The velocities assigned to these
points should follow the velocity distribution function imposed by the data. Although this solution will
preserve the continuity condition, velocity field estimates at the edges will not be totally reliable.

An even more advanced and consistent solution would try to make use of the existing correlations
in the field. Constrained Field Realizations [CR] (Bertschinger 1987; Hoffman & Ribak 1991; van de
Weygaert & Bertschinger 1996) offer a natural solution for this strategy. The use of the CR algorithm
is specifically of effectiveness in the immediate neighborhood. This is determined by the correlation
length of the field, and therefore be dependent upon the spatial scale. This procedure will assure that
the added field will be statistically consistent with the data field at the cost of making an implicit
assumption of a priori cosmological model used to describe the data. This procedure will certainly
improve the field estimates at the edges besides of giving the condition of periodicity. However, this
method has only been worked out on linear scales and under the assumption of the chosen cosmological
model (see Chapter 3). For processing observational data along these lines, the WF/CR procedure has
proved to be very successful (Zaroubi et al. 1995, 1999; Hoffman 2000, Chapter 3).

The periodic boundary conditions solution refers to consider the given point distribution sur-
rounded everywhere by the point distribution itself, just as in the case of cosmological N−body simu-
lations. In the present approach we have taken advantage of the periodic boundary conditions imposed
by the N−body experiment, and implemented this conditional into the procedure. However, this solu-
tion is not always feasible because if we want to apply this method to real data this conditional is not
longer valid.

6.5 Delaunay Velocity Fields: Performance

The main characteristics of the DTFE velocity scheme over the conventional methods are its self-
adaptiveness, completeness of volume coverage and dynamic range, together with the linear interpo-
lation scheme for velocities. These characteristics allow one to apply the method to a velocity field
composed by small and large scale features and to recover information at those regions devoid of
data. Also, the velocity method shares the property of DTFE of supressing shot-noise and yielding
volume-weighted estimates.

However, the interpolation scheme also present problems at given regions, in particular at high-
density regions where shell-crossing has occurred. At these regions the linear velocity interpolation
scheme is not completely valid anymore.

To get an idea of the method’s characteristics and the resulting velocity field reconstruction, we
analyze in this section how the DTFE velocity method performs at different density scenarios and
cosmic scales drawn from cosmic peculiar velocity fields of N−body simulations.
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6.5.1 N−body simulations

The N−body simulations needed to test the DTFE velocity scheme should be able to deal with a ve-
locity field composed by the “typical” structural elements present in the large scale structure of the
universe. These range from huge empty voids to mildly non-linear regions like filaments and non-
linear structures such as dense galaxy clusters. For the purpose of testing and illustrating this we have
performed a cosmological N−body simulation of structure formation. The simulation involves the
currently popular flat low-density cosmological model ΛCDM with ΩΛ = 0.7, Ωm = 0.3, h = 0.7 (mea-
sured in units of 100 km s−1 Mpc−1). The power spectrum normalized to the current value of σ8 = 1.
The simulation was performed in a cubic box of L = 100 h−1Mpc, with 643 particles. The linear Gaus-
sian initial conditions were computed on a cubic grid of 64 grid-cells per dimension. Particles were
displaced from their original grid position and initial velocities assigned according to the Zel’dovich
approximation (Zel’dovich 1970) at redshift z = 49. The evolution of the linear initial density and
velocity fields into the non-linear regime was carried out by means of the publicly available HYDRA
code (Couchman et al. 1995), with a force resolution of 128 grid-cells per dimension.

6.5.2 The virtues of DTFE velocity field

The virtues of the DTFE velocity method can be most clearly appreciated from a study of those regions
where the sampled density is relatively moderate or even low. These involve the low density void
regions as well as the mildly non-linear. But also at small scales where the method can trace the
infalling motions into high-density regions.

The top-right panel in Figure 6.5 presents a full DTFE velocity reconstruction from the discrete
velocity field at the top-left panel (same velocity field presented in Fig. 6.1). The field has been
interpolated onto a cubic grid of 128 grid-cells per dimension as in the TSC high-resolution plot. As
previously, we have decreased the plotted density resolution of the map to 1

4 of its original resolution.
The reconstructed DTFE velocity field retains the main characteristics of the input field. The high
density regions can be clearly recognized. In general the outline of the Megaparsec structures can be
easily recognized. Particularly outstanding is the performance of DTFE in regions where the sampling
is very poor. The contrast offered by grid-based methods could hardly be more stark.

The self-adaptiveness of the code improves substantially its spatial resolution, allowing it to re-
solve small scale features within the large scale ones. This method’s characteristics allows one to
produce high-resolution images without loosing spatial information as in the case of grid-based meth-
ods. Hence, if we zoom in on a denser region, we will be able to follow the related velocity flows, while
retaining the flow’s characteristics at underdense regions. The resolution of the method is determined
by the point distribution itself and not by the grid-size as in the case of grid-based methods.

In the zoomed panels of Fig. 6.5 (middle and lower rows) we have created a 5122 image of the areas
on which we zoomed in. These regions are indicated by dashed sub-boxes in the discrete velocity field.
For visualization purposes we again took a lower plotting density. The regions were chosen on behalf
of their density contrast and dynamical state, such that the four frames represent a reasonable variety
of cosmological structures. Each region has been framed and labeled according to these criteria: (a) a
void-like region located at the top-right of the box; (b) a filamentary structure at the bottom-left; (c) a
mildly non-linear region; (d) a collapsed and virialized clump. Each one of the corresponding zooms
are indicated by their respective letters.

In addition, we recover a 1-Dimensional profile along a particular line-of-sight through the sim-
ulation box. The velocity profiles and zoomed regions will be discussed together in the following
subsections in order to point out the benefits and problems of the DTFE method.

Figure 6.6 shows the reconstructed DTFE density and velocity fields for a slice covering a region
of 80× 5 h−1Mpc. We may recognize along the cut a variety of structures, a void, a filament and a
cluster. The central-top frame shows the discrete particle distribution along the cut. In the top frame,
the 2-Dimensional slice through the 3D DTFE density field is presented. The central frame presents the
corresponding discrete velocity field. The central-bottom frame shows the corresponding interpolated
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DTFE velocity field, and the lower frame the 2D amplitudes of the velocities. It is important to realize
that the DTFE slices cannot be compared directly with the discrete data points depicted because the
latter shows the projected particle distribution in a slice of a given thickness, while the DTFE fields
represent infinitesimal thin slices. Nevertheless all the structure patterns present in the discrete field
have a corresponding counterpart in its DTFE density and velocity fields. Clearly visible are the big
cluster, a filament, and two voids. One void is located between the cluster and filament, and the other
one to the most-left part of the plot. Each of these structures have an imprint in the velocity field. The
bold solid lines plotted along the discrete particle and velocity distribution and DTFE velocity field
indicate the line direction along which we have computed the DTFE density and velocity profiles. The
resulting density and velocity profiles are plotted in the bottom frame of the same figure, where only
the velocity component parallel to the direction of the cut is shown. The density scale is plotted on the
left ordinate, while the velocity scale on the right ordinate of the plot.

6.5.3 Reconstructed Delaunay velocity Fields: Problems

While the DTFE has many virtues, the method has its own limitations, specially at the core of high-
density regions. The linear interpolation scheme implies that the velocity field behaves as a laminar
flow, i.e., the field does not present turbulence. In other words, small-scale (virial) motions are domi-
nated by the large scale characteristics of the velocity field.

Once an object has decoupled from the Hubble flow and has started to collapse, the laminar flow
assumption is not valid anymore. Under such circumstances, the DTFE velocity scheme cannot re-
construct a continuous velocity field at those regions. However, the notion of a continuous velocity
field within a virialized region is also not physically defined precisely because of virialization, i.e.,
dominated by random (thermal) motions.

6.5.4 Velocity reconstruction in voids

By their nature, void regions contain a minimum amount of points. This makes notoriously difficult
to reconstruct them by conventional methods. When their resolution is too high, shot-noise peaks are
induced at the particles’ positions. When the resolution is decreased their masses are smeared out over
a large volume (see S05). For velocities this tends to be worse (see Fig. 6.1).

The first enclosed region (a) in Fig. 6.5 depicts an expanding void whose center almost coincides
with the geometrical center of its respective box. The corresponding DTFE zoom (middle-left panel)
shows the reconstructed velocity field. Theoretical models of voids (Icke 1984; van Haarlem & van
de Weygaert 1993; Sheth & van de Weygaert 2004) predict that such empty regions are characterized
by an inverse tophat density profile. Their dynamics correspond to a low-Ωm universe, represented as
“super-Hubble” expanding bubbles with an almost constant velocity divergence.

DTFE manages to succeed in deriving a natural and continuous void velocity field profile without
the application of artificial smoothing procedures, leading to a higher and better resolution maps. In
the DTFE algorithm the void is rendered as a slowly varying region of low density (see top-most frame
in Fig. 6.6, density image) (S05). Despite the center of the void is “devoid” of particles, the DTFE
manages to recover information at that region. Once we reach the boundaries of the voids in the form
of clumps or bridges, we see this reflected in the distorted flow. Near those regions the gravitational
force is dominated by the overdense features.

The general characteristics of the void’s DTFE velocity profiles can be seen in Fig. 6.6. The
velocity cut presents two voids, in which their velocities rise almost linearly along the cut. This implies
that they are characterized by an almost constant velocity divergence, as predicted by the theoretical
void models. The left-side void presents only expanding velocities because we have made the cut from
its center, the other side will present an inverted mirror-like behavior with negative velocities.
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Figure 6.5 — DTFE velocity maps. The top-left panel shows the same discrete velocity field presented in
Fig. 6.1. The top-right panel presents the corresponding DTFE velocity map using the same resolution as its TSC
counterpart (right panel of Fig. 6.1), notice that the whole field is sampled now. The central and bottom rows are
2D zooms of the corresponding enclosed regions in the discrete map and can be identified by their labels. The
selected regions have been chosen according to their density and dynamics characteristics, void, filaments and a
cluster. See text for details.

6.5.5 Velocity reconstruction in filaments

Panel (b) of Fig. 6.5 shows a filamentary structure running along the lower part of the box and a
seemingly coherent velocity flow pointing toward the left side of the box. Both are clearly reproduced
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Void Filament Void Cluster

Figure 6.6 — DTFE velocity and density profiles (bottom panel) computed along a cut through the N−body sim-
ulation box. The discrete point distribution and its corresponding density field are shown in the two top-most
panels. The analogous discrete velocity field, continuous (DTFE) vectorial and image velocity fields are shown in
the three intermediate panels. The bold lines crossing the particle and velocity fields indicate the direction along
the profiles were computed.

in the zoom-in frame. A clear shearing flow can be identified along the filament’s ridge. Toward the
massive clump this flow is distorted by the action of the clump itself. Besides the filament within this
frame we can recognize two “singularities”. One is related to the clump at the left-hand tip of the
filament. Its high densities imply mildly virial motions, leading to a breakdown of the interpolation
scheme. The second one is an artifact of our use of periodic boundary conditions. Because we find a
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cluster at the other side of the full box, some of those clustered points (the most external ones to the
cluster) have been used when performing the triangulation procedure. The result is a “saddle” point in
the velocity flow toward which the velocities from each direction seem to converge. We will discuss
in more detail the boundary condition effects in Section 6.4.5.

The panel (c) presents similar characteristics to the panel (b). It contains a filamentary structure
and a mild-dense cluster. The shape of the filament can be well traced in the DTFE velocity field. The
shearing infall flow towards and along the filament is clearly recovered. Here and there the disconti-
nuities imprinted by clumps can be clearly recognized.

The respective filament velocity profiles (see Fig. 6.6) also illustrate such discontinuities. After the
interpolated velocities raised as a combination of the void’s expansion and infalling motions toward
the filament, the profile presents a dramatic drop when it crosses the edges of the filament. This is
because there are virial motions perpendicular to the filaments. We can notice that the velocity profile
presents still irregularities beyond the density filament edge as a result of back infall motions toward
the filament.

6.5.6 Velocity reconstruction in clusters

Panel (d) of Fig. 6.5 shows a zoom enclosing a highly non-linear structure. It is clear that the velocity
field is not continuous at the core of the cluster and that the DTFE velocities cannot reproduce the real
velocities. This plot clearly shows the problems of DTFE at such high-density regions. However, some
remarks about the performance of the method around the cluster are worthy to mention.

In any collapsing/collapsed structure, a vorticity velocity mode appears as a natural consequence
of such collapse. Apart from this mode, the velocity field around the cluster is also sheared. This
distortion is clearly noticeable at both top and bottom ends of the cluster. At regions closer to the
cluster’s core the flow describes circular trajectories before converging at the cluster itself. Further out
from the cluster while virial motions give way to systematic infall motions it can be noticed how the
velocity field gets smoother and better behaved. We will treat these vortical modes in more detail in
Section 6.11.

The velocity profile also illustrates the problems of DTFE at high-density regions. The density
profile peaks at the cluster’s location. The sudden and pronounced variations (discontinuities) in the
corresponding velocity profile indicate the presence of a very evolved non-linear structure, unveiling
the characteristic virial motions in the cluster.

This profile uncovers the “deficiencies” of the method at such dense regions. Because vorticity
should be non-existing in regions where shell-crossing did not yet take place. There, vorticity can
function as an indicator of the related error. Once collapsed occurred, vorticity can be generated,
making hard to judge whether the “measured” vorticity is real or not. We will address this issue in
more detail in Section 6.11.4.

6.6 Errors and Sampling effects

So far we have reconstructed the velocity field from the full discrete velocity field. However, in many
cases, mainly observationally, one does not deal with the full discrete velocity field but with a sparse
sample. Surveys of galaxies are usually magnitude-limited samples. Therefore, they are severely af-
fected by sampling effects. In general, surveys have better sampling at dense regions (clusters and
filaments) and a very poor coverage at low density regions (voids), with the number of objects de-
creasing with distance from the observer.

Another problem related to peculiar velocity surveys is the large measured distance error via the
Tully-Fisher or Faber-Jackson relations for spiral and elliptical galaxies. Estimated distances have
uncertainties in the order of ∼ 20% accuracy. This translates into large velocity errors proportional to
the object’s distance. This limits the range of peculiar velocity surveys to distances below which the
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errors are substantially smaller. A lot of effort has been devoted to coping with these errors, particularly
the systematic ones (see Strauss & Willick 1995, for a review about different correcting methods).

As the statistics of DTFE reconstructions is not trivial, and involves cumbersome Poisson statistics,
we resort to a Monte Carlo approach for estimating the influence of a variety of sampling effects.
Schaap (2005) studied how the Delaunay triangulation changes when varying the point distribution
and its implications for density field reconstructions and we refer the reader to this work.

6.6.1 Sparse sampling effects

Sparse sampling has a direct repercussion when reconstructing the velocity field. Because DTFE
relies on the point distribution itself, dilution of samples imply less “observed” (measured) objects to
perform the Delaunay triangulation. This affects the density field reconstruction because it is inversely
proportional to the contiguous Voronoi cell surrounding such point. A “contiguous Voronoi cell” is
composed by the immediate hypertriangles surrounding a given point (see SW00 for further details).
S05 argued that one may deal with such effects if one knows the “selection function”, which describes
the sampling density of the particle distribution.

Despite the density field can be corrected for sparse sampling effects, this is not the case for pecu-
liar velocity fields. In general, peculiar velocity fields are more quiet than density fields. This implies
that no sudden variations are present on the velocity field, at least in the linear and mildly non-linear
regime where velocities are considered laminar. Provided that the sampled point distribution is still a
fair representation of the underlying density field, the linear characteristic of the DTFE velocity method
helps to mitigate such sampling effects and to recover a reliable velocity field. At high-density regions
and immediate surroundings sampling effects have a more pronounced effect. At these regions ob-
jects’ velocities may be uncorrelated since such objects have decoupled from the Hubble flow and the
velocity field is incoherent. The method cannot properly recover velocities at these regions because of
this incoherence in the velocities. Thus, sampling effects will enhance the errors in the reconstruction
leading to understimate the velocity field.

In order to measure sparse sampling effects on the DTFE velocity reconstruction, we have di-
luted the full discrete velocity field by assuming an homogeneous dilution procedure via Monte Carlo
sampling. For each one of these sparsed fields we have reconstructed their DTFE velocity fields. In
Figure 6.7 we present a comparison between both DTFE diluted and full velocity fields. A direct com-
parison is possible because diluted fields have been reconstructed with the same resolution than the
full velocity field. The top row presents residual DTFE velocity fields computed from substracting the
DTFE diluted field from the full DTFE field. Each panel corresponds to a different fraction of objects
indicated by the enclosed labels. In the left-hand panel we have only considered 30% of the total
number of objects, in the middle panel 60% and in the right-hand panel 80%. The velocity projection
and characteristics are the same than in Figs. 6.5 and 6.1. Velocities in the three panels have been nor-
malized by the same factor for a fair comparison. Clearly the larger velocity residuals trace the matter
distribution, implying that the velocity reconstruction is more affected at these regions. As expected,
errors increase toward more diluted samples. The very low density regions are the least affected ones,
also in the most diluted sample. This implies that voids can be reconstructed with very few points by
the DTFE method. Typical reconstruction procedures will be seriously affected by shot-noise effects
which will become worse at more diluted samples.

Quantitative evidence for the similarity between the diluted and full fields is presented in the bottom
row of Fig. 6.7. The panels show density contours from the point-to-point distribution. For reference,
one-to-one lines have been drawn. The density contours have been weighted by the real spatial DTFE
density field estimates. Therefore, particles located at high-density regions (clusters) can be recognized
in the contoured point-distribution like those light-gray spots distributed all over the cloud of points.
These “high-density” points are precisely those which are located farther away from the best fitting
line, in agreement with the visual inspection of the residual velocity maps.

The top labels in each frame refer to linear fits performed between both fields: av is the best slope
that fits the data, v0 is the zero-point offset, and σ the dispersion around the linear fit. The fact that
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Figure 6.7 — Comparison between diluted DTFE velocity fields and the full DTFE field. The top row panels
present residual maps between the full field and diluted fields. The enclosed labels indicate the fraction of objects
used to reconstruct each velocity map. The bottom-row panels are qualitative comparisons between diluted and
full DTFE velocities for one Cartesian component. See text for further details.

the slopes for the three cases are almost unity implies that there are no systematic differences between
the two fields, underlined by the almost zero offsets. Remarkable is that the velocity dispersion does
not seem to increase with dilution level. A remarkably point is that the velocity dispersion does not
increase considerable when increasing the dilution. The difference between the two extreme diluted
samples is only of 23 km s−1. These results justify the validity of our interpolation method.

6.6.2 Perturbing velocities

A second test concerns an evaluation of the influence of uncertainties in velocities for the DTFE ve-
locity field reconstructions. Intrinsically, this error is much more difficult to correct for than the one
introduced by sparse sampling. One way to deal with this noise is by assuming that is Gaussian
distributed. Then, one could reduce this noise and obtain the most probable field by weighting the
contribution of each object inversely by the variance of its velocity measurement error (e.g. Dekel
et al. 1999). However, this method is only effective when considering large smoothed fields. Another
possible way could be by drawing multiple realizations of the field and measuring the signal-to-noise
to find the statistical significance of the method.

Here we only check how Gaussian noise affects our DTFE velocity reconstructions. We have
not added errors proportional to their distances since this will only imply that the reconstruction will
get worst towards large distances from a particular observer. Since our interest is to check whether
this error introduces systematic effects in the DTFE reconstruction, we proceed as follows. To each
Cartesian velocity component of the discrete velocity set, we add a random velocity drawn from a
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Figure 6.8 — Comparison between reconstructed DTFE perturbed velocity fields and the original field. The
top row panels present residual maps between the original and perturbed fields. Perturbed velocities have
been computed from adding random error-velocities drawn from a Gaussian velocity distribution of width
σ = 100,200,300 km s−1. The bottom-row panels are qualitative comparisons between perturbed and original
DTFE velocities for one Cartesian component. See text for further details.

Gaussian distribution function with a given fixed standard deviation σ, and randomly orientated. The
top-row panels of Figure 6.8 show the residual velocity fields between the DTFE perturbed velocities
and the original DTFE field for three cases, σ = 100,200,300 km s−1 (left, middle and right panels
respectively). No systematic effects seem to be introduced since the residual velocity fields only show
random motions which get larger for larger σs.

The point-to-point comparison between the perturbed and original velocity fields (Fig. 6.8, lower
panel) immediately shows two effects: the dispersion increases as σ becomes larger, and the point
cloud appears to change its inclination with respect to the one-to-one line. The former is indicated
by the fact that the point-density contours are Gaussian distributed with measured velocity dispersions
very close to the ones imposed by the errors. The latter is a consequence that velocities have increased
their amplitude. This trend is clearly observed along the whole point distribution in the right-hand
panel. The fact that the zero-points are consistent with zero and that the point-contours have Gaussian
distributions, imply that no systematic effects are introduced by the method itself.

Notice that in this case the points located at high-density regions are not longer dominating the
outskirts of the distributions, but they are more equally distributed.
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Figure 6.9 — Velocity divergence maps. The plotted slices correspond to the one presented in Fig. 6.5. The
left-hand plot depicts regions where inflows are presented, i.e., in and around clusters and filaments. The right-
hand plot shows regions with outflows, expanding regions like voids. The contour lines represent the density
maps. Broken lines represent low density regions, continuous lines overdensity regions, while the bold line the
zero density contrast line.

6.7 The density-velocity relation

An important characteristics of the DTFE method is that the quantities it produces are volume-
weighted, allowing a direct comparison with theoretical predictions. BW96 used Delaunay and
Voronoi tessellation based-velocity fields to test the validity of the analytical perturbation calculations.
Their results showed that their reconstructed fields are in good agreement with the theoretical predic-
tions. Although their results involved quite heavy smoothing, by a top-hat filter of RT H = 15 h−1Mpc.

The velocity divergence and the density contrast are related via the continuity equation (Peebles
1980). In the linear regime this is a strict linear relation (Eqn. 6.1). In the quasi-linear and mildly
non-linear regime the one-to-one correspondance between the two fields remains intact, be it that it
involves higher order terms (see Bernardeau et al. 2002, for an extensive review).

Since the DTFE method has the ability to resolve both small and large scale features of the density
and velocity fields, it gives us the opportunity to test the capacity of DTFE to probe the dynamics in
structure formation scenarios. From the density-velocity divergence relation we seek to obtain an idea
of the performance of DTFE. By following the evolution of the described density-velocity divergence
relation we hope to get an idea of DTFE’s performance in different dynamical regimes. Once the
reliability of the method has been tested, we could reconstruct the density field from the velocity
divergence field.

Figure 6.9 presents a first impression of the intimate relation between the density and velocity
divergence fields reconstructed with the DTFE method. The velocity divergence has been computed
according to Eqn. 6.13. The figure shows velocity divergence maps for the same projection presented
in Fig. 6.5. For a visual impression of the correspondences between high and low density regions, we
have splitted the divergence field into two parts, positive and negative divergence regions. On top of the
divergence maps we have plotted the density contrast contours. Continuous lines indicate high density
regions, the bold continuous line represents the δ = 0, and the dashed lines underdense regions. Both
fields, velocity divergence and density have been Gaussian smoothed with a kernel of RG = 1 h−1Mpc.
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The left-hand panel presents those regions where the divergence is negative, i.e., those regions where
infall motions are present as in those where matter is being accreted into clusters and filaments. Notice
the good correspondence between the high-density regions and the features in the velocity divergence.
The most pronounced spots correspond to the two clusters located at the center of the field as expected.
The right-hand panel shows regions where the velocity divergence is positive. The expanding regions
are, of course, to be identified with the low-density voids in the density field. The gray scale indicates
that at the voids’ centers, the expansion is slower (lightest gray regions) in comparison with the void
edges where tones are darker (higher velocities). As in the previous case, there is a good correlation
between the positive velocity divergence areas and the low density regions.

6.7.1 Density-Velocity divergence evolution

A lot of theoretical effort has been devoted to obtain more accurate density-velocity divergence rela-
tions than in Eqn. 6.1. On the basis of perturbation theory and assuming Gaussian initial fluctuations,
Bernardeau (1992) derived a 2nd order relationship between the velocity divergence and density fields
valid for the quasi-linear regime of the form:

1
H
∇ ·v(x) =

3
2

f (Ωm) [1− (1+δ(x))2/3] . (6.16)

Other higher order perturbative corrections have been also implemented (e.g. Nusser et al. 1991;
Nusser & Dekel 1993; Bernardeau et al. 1999; Kudlicki et al. 2000; Bernardeau et al. 2002, and ref-
erences therein). Here we have computed the density-velocity divergence relation from the recon-
structed DTFE velocity and density fields and compared with the 2nd order approximation relation
of Bernardeau (1992, Eqn. 6.16) and the empirical quasi-linear approximation of Nusser et al. (1991)
based on the Zel’dovich approximation given by:

1
H
∇ ·v(x) = − f (Ωm)

δ(x)
1+0.18δ(x)

. (6.17)

Figure 6.10 shows the evolution of the density-velocity divergence relation as a function of the
expansion factor, a, reconstructed from our N−body simulation. Here, we have plotted the normalized
divergence θ of the velocity field given in units of the Hubble parameter,

θ =
∇ ·v
H

, (6.18)

Density and velocity divergence fields have been smoothed with a Gaussian filter of radius RG =

5 h−1Mpc in order to obtain a tighter correlation. Fields convolved with smaller kernels (e.g.
2&3 h−1Mpc) do show the density-velocity divergence relation but they present a large scatter mainly
at regions where δ > 0. We have plotted ten output times linearly scaled in a, from a = 0.02 until a = 1.
In each panel, the continuous line represent the linear theory prediction (Eqn. 6.1), the short-dashed
line the 2nd order perturbative approximation (Eqn. 6.16), and the long-dashed line the empirical
Zel’dovich-based approximation (Eqn. 6.17).

At early times, the DTFE method cannot recover the relation. This is a consequence of the “arti-
ficial” grid-like distortion of the initial point distribution. At early times, the matter distribution still
preserves the grid-like configuration, an almost perfect cubic grid. Under these circumstances, the
DTFE approach performs poorly since the regular point distribution is clearly not a faithfull reflection
of the underlying density field. A possible solution to avoid this effect could be the use of glass-like ini-
tial conditions. In this approach, particles sample subrandomly the initial density field with no regular
structures on scales greater than the interparticle separation (Baugh et al. 1995).

The dynamical evolution of the system into a more natural configuration, superseding the clear
imprint of the grid geometry, helps the triangulation procedure to remove the degenerate cells. For
a ≥ 0.2, the point distribution indeed appears to follow the quasi-linear predictions. At later times,
the agreement between the distributions and the theoretical predictions becomes extremely good. The
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Figure 6.10 — Time evolution of the density-velocity divergence relation. The cloud of points are given by the
densities and velocities computed through the DTFE algorithm. The continuous lines indicate the linear theory
relation, the broken lines the 2nd order approximation relation, and the long-dashed lines an empirical quasi-linear
relation. The velocity divergence (θ) is expressed in terms of the Hubble parameter at the given epochs.

dispersion around the point distributions increases at later expansion times due to the appeareances of
virialized motions in and around the highest density regions.

At the tip of the point distributions, which correspond to the low-density regions (voids), the DTFE
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Figure 6.11 — Zooms of three DTFE density-velocity divergence relation snapshots from Fig. 6.10. The con-
tinuous lines indicate the linear theory relation between the two fields, the short-dashed lines the 2nd order ap-
proximation relation, while the long-dashed the empirical approximation.

estimates are very close to the theoretical predictions. These results justify and confirm also the validity
of the linear interpolation DTFE procedure.

However, a peculiar effect can be noticed at the very tip of the distributions as a function of the
expansion factor. The point distribution at a = 0.3 presents an almost perfect alignment with the the-
oretical predictions. As the system evolves in time, the tips of the distributions shift toward lower
velocity divergence values until a = 0.6, where it bounces back to the behavior predicted by the the-
oretical predictions. All these can be better noticed on Figure 6.11 where we have zoomed in onto
the range of underdensities for three expansion factors (a = 0.3,0.6,1.0). The departures from the per-
turbed theoretical predictions are clear enough. A possible explanation for such effect could be the
fact that these are also non-linear regions and therefore, such perturbative approximations are not valid
at this regime. Since voids evolve as homogeneous ellipsoidal underdense regions with a tendency to
evolve into a top-hat density profile, the spherical model could offer a better fit at these underdense
regions.

In conclusion, we have seen that the performance of the combined DTFE density and velocity
method is in general very good. The method is able to follow the dynamical evolution of cosmological
structures at both large and small scale regimes. The reliability of the bouncing effect at the tip of the
density-velocity divergence point distributions can be tested by means of the Zel’dovich approxima-
tion. Within this approximation velocities and densities evolve kinematically from their initial state.
Therefore, non-linear effects will not be present.

6.7.2 The Zel’dovich density-divergence relation

Since the Nusser et al. (1991) relation is a higher order Zel’dovich approximation, we have applied
the DTFE velocity method to a series of density and velocity fields evolved in time according to the
Zel’dovich approximation from the initial Gaussian fields used for the N−body simulation. If the effect
at low density regions found in Section 6.7.1 is also present with the Zel’dovich approximation evolved
fields, this will imply that such effect is not genuine but a systematic error introduced by the DTFE
method. If such effect is not found, this will imply that it is truly caused by the non-linear evolution of
such structures.

Figure 6.12 shows three snapshots at different expansion factors for the density-velocity divergence
relation evolved according to the Zel’dovich formalism. The earliest snapshot (left-hand panel) follows
almost the same predicted behavior as the empirical relation, but with larger velocity divergence mea-
surements at the underdense regions than expected. This is mainly due to the grid effects mentioned in
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Figure 6.12 — Time evolution of the Zel’dovich density-velocity divergence relation. The cloud of points are
given by the densities and velocities computed through the DTFE algorithm. The continuous lines indicate the
linear theory prediction between the two fields, the short-dashed lines the 2nd order approximation relation, while
the long-dashed the empirical relation.

Sec. 6.7.1. At later times (central panel) the relation still follow the expected behavior but with a larger
dispersion toward high density regions. At underdense regions, the point distribution follows much
better the empirical relation. The break at regions beyond δ < −0.8 is expected since as was pointed
out by Nusser & Dekel (1993) the empirical relation is not accurate in the range −0.8 ≤ δ ≤ 4.5 because
of non-linearity effects. The effect seen in Fig. 6.11 appears to have disappeared. The last frame shows
the relation for a = 1 with a good agreement in general with the expected behavior. The scatter around
the theoretical lines is larger than earlier times as a result of having used a pure kinematic model. At
underdense regions smaller than δ < −0.8, the measured relation bends more toward higher values of
the velocity divergence. Apart from the problems of the relation at this regime, this effect has been
amplified by the use of the kinematic model.

In conclusion, the presence of the bouncing effect at low-density regions seen in the reproduction
of the non-linear density-velocity divergence relation has not been found when using the kinematic
Zel’dovich approximation. This implies that such effect is genuine and not an spurious or artificial
effect introduced by the DTFE velocity method.

6.8 The velocity divergence probability distribution function

BW96 explicitly applied Delaunay tessellations to the velocity divergence field to test the validity of
the second order perturbation theory results (Bernardeau 1992). This was in particularly interesting as
a mildy non-Gaussian velocity divergence distribution would enable the breaking of the degeneracy
between the cosmic matter density Ωm and the bias b between the matter and galaxy distribution
(Bernardeau 1994; Bernardeau et al. 1995). Bernardeau et al. (1997) used the probability distribution
function [PDF] of the velocity divergence to constrain the value of Ωm (see also Bernardeau 1994;
Bernardeau et al. 1995). Juszkiewicz et al. (1995) studied the PDF of the mass density contrast and
the peculiar velocity divergence from evolved Gaussian initial density fluctuations in the weakly non-
linear regime using perturbation theory. Their aim was to derive constraints on the nature of primordial
fluctuations, the value of the cosmological density parameter, and the physical processes that govern
galaxy formation. Here we present the probability distribution function for the normalized velocity
divergence θ, computed from the reconstructed DTFE velocity fields smoothed with a Gaussian filter
of RG = 5 h−1Mpc, and its evolution as a function of the cosmological expansion factor a.

Figure 6.13 shows the PDF of the reconstructed DTFE velocity divergence computed at a= 1. Note
that DTFE reproduces the expected sharp cutoff at the positives values of θ (see also BW96), which
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Figure 6.13 — Probability dis-
tribution function [PDF] of the
normalized DTFE velocity diver-
gence θ at actual time. The veloc-
ity divergence has been Gaussian
smoothed with a kernel of RG =

5 h−1Mpc.

corresponds to voids. This sharp cut in the PDF allowed Bernardeau et al. (1997) to reconstruct the
value of Ωm from N−body simulations following the work of Dekel & Rees (1994). At the opposite
side, the high-density regions, the method manages to trace the PDF down to probabilities of 10−3.

Figure 6.14 presents the evolution of the DTFE PDF velocity divergence as a function of the
cosmological expansion factor. Although, the first top panel indicates an a = 0., this is in reality the
PDF of the initial Gaussian field used for the simulations set at a = 0.02. Since the velocity divergence
is an indicator of the amount of structure present on the field, the growth of structure can be traced
along the time evolution of the PDF. Notice how the PDF evolve from an almost perfect Gaussian
distribution (very early times) into a non-Gaussian shape with negative skewness. This is because in
the non-linear regime the inflows to high-density regions are faster than the outflows from low-density
regions. Therefore, negative values of the velocity divergence correspond to overdense regions, while
the positive values to underdense ones. The appearance of weakly non Gaussian features is shown in
the PDF at z ≈ 4 (a = 0.2), where the PDF starts to deviate from a symmetric (Gaussian) distribution.
This can be better noticed in Figure 6.15. The distributions in the top panels and bottom-left one
represent the first four stages of the evolution of the PDF plotted in a linear scale. The gray lines are
the best Gaussian fits to the PDFs. Note that as the structure formation process evolves with time the
PDF deviates more from its respective Gaussian distribution. This departure has been quantified in
the bottom-right panel of Fig. 6.15. The plot shows the residual excesses between the density-velocity
divergence PDF and the best Gaussian fit for the four stages of the PDF. At a = 0 and a = 0.1 the
residuals are less than 5%, at a = 0.2 ≈ 10%, and at a = 0.3 ≈ 15%. These discrepancies continue
raising up to almost 30% at present time. The larger and most notorious differences are located at the
positive values of θ. The negative residuals at the most positive values of θ imply that voids evolve into
the non-linear regime much faster than high-density regions. The presence of “noise” in Figs. 6.14 and
6.15 and its growth as a function of time at the negative tail of the PDF is an indication of the evolution
of clustering of matter into high-density regions, such as cluster of galaxies.

The positive side of the PDF in Fig. 6.14 evolves much more quietly. This is indicated by the
almost unchanged shape of the PDF at the positive values of θ. Notice that the shape of the PDF
around its maximum becomes sharper as structure grows and it shifts from 0 toward positive values of
θ. The shift of the maximum produces the largest discrepancy from the Gaussian fits as can be noticed
from the bottom-right panel. Particularly noteworthy is the sharp cut at high-values of the PDF at later
times.

The fact that the PDF preserves almost the same shape from a = 0.6 (z = 0.66) until present time,
apart from the increase of noise at the negative tail, is an indication of the quietness of the velocity field
and that the growth of structure formation has stopped. Indeed, structures which become non-linear
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Figure 6.14 — Evolution of the probability distribution function [PDF] of the DTFE velocity divergence as a
function of the cosmological expansion factor aexp. Each of the velocity divergence fields has been smoothed
with a Gaussian filter of RG = 5 h−1Mpc.

(voids and clusters of galaxies) stop growing at the redshift,

1+ z ≈ 1
Ωm
−1 , (6.19)

at which they decouple from the Hubble expansion. At this redshift, structures experience first con-
traction and collapse, followed by virialization to turn finally into genuine cosmic objects. For our
particular N−body realization (Ωm = 0.3), this happens at z ≈ 1.3 (a = 0.43). The same epoch at which
the DTFE velocity divergence PDF deviates from a Gaussian distribution.

6.9 Void expansion: constraints on Ωm

Dekel & Rees (1994) proposed the idea to use the outflow from voids to constrain Ωm. The idea is
based on the observation that large outflows are not expected in a low-Ωm universe. From the fact
that δ ≈ −Ω−0.6

m ∇ · v (Eqn. 6.1), the inferred density from a given velocity divergence field becomes
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Figure 6.15 — Evolution of the probability distribution function [PDF] of the DTFE velocity divergence for the
first four cosmological expansion factors (aexp = 0.,0.1,0.2,0.3, top row panels and bottom-left). The PDFs are
plotted in a linear scale. The gray distributions in each panel correspond to their best Gaussian fits. The bottom-
right panel shows the residual excess from the PDFs and their corresponding Gaussian fits. Each of the velocity
divergence fields has been smoothed with a Gaussian filter of RG = 5 h−1Mpc.

more negative if one assumes lower Ωm values. Under such assumption, one can obtain δ < −1 in void
regions. Evidently, this is an impossible value since one cannot get “emptier than empty”, providing
in this way a lower bound on Ωm.

Dekel & Rees used this idea and applied a quasi-linear Zel’dovich-based approximation of the
continuity equation (Nusser et al. 1991) to the Mark III catalog of peculiar velocities (Willick et al.
1997a) smoothed at 12 h−1Mpc, more in concrete to the Sculptor void, finding that values of Ωm ≈ 1
were perfectly consistent with the data, and that low density universes (Ωm = 0.2,0.3) were ruled out at
≈ 2σ level. Their “high” Ωm determination is related to the interpolation scheme used in the POTENT
algorithm, a fixed grid-based algorithm (see Section 6.3.1). Such methods cannot reproduce the sharp
cut-off at the positive side of the velocity divergence PDF. Instead, they suffer from spurious tails at
both ends of the distribution (BW96).

By using the results of perturbative theory, Bernardeau et al. (1997) showed that the cutoff location
of the velocity divergence PDF θmax, strongly depends on Ωm, as indicated by Dekel & Rees (1994),
and it can be used to constrain such parameter by the following relation:

θmax = 1.5 Ω0.6
m . (6.20)

The value of 1.5 in the later equation is the difference in value in the Hubble parameter between an
empty universe (Ωm = 0) and an Einstein-de Sitter universe (Ωm = 1).

Here we have used Eqn. 6.20 in order to recover Ωm from our N−body simulations. Our inten-
tion is not to give a full statistical proof of the measurements but rather to show the possibilities and
capabilities of the DTFE velocity method.

We have used the velocity dispersion PDF shown in Fig. 6.14 to estimate the density parame-
ter. Following Eqn. 6.20 we find that the measured DTFE density parameter from the 5 h−1Mpc
smoothed velocity divergence is Ωm,DT FE = 0.21 at present time. This is not very different from the
input N−body simulation value of Ωm = 0.3. This measured value should be interpreted as a lower
bound as mentioned earlier since Eqn. 6.20 follows the assumption that in void regions δ is strictly
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Figure 6.16 — Evolution of the
cutoff of the DTFE velocity diver-
gence PDF as a function of the ex-
pansion factor a.

equal to −1, which is not necessarily true.
Some comments about the sharp cutoff of the PDF and its time evolution as shown in Fig. 6.14

are noteworthy. The evolution of underdense regions should follow a linear expansion as predicted by
the spherical model, until shell crossing occurs. At this point, voids will not expand as fast anymore.
Depending on the environment in which voids are embedded, some of them will start to collapse.
Figure 6.16 shows the evolution of the PDF cutoff as a function of the cosmological expansion factor.

The curve of the measured maximum of the velocity divergence PDF, θmax, suggests that the under-
dense regions start to get empty very fast. After a= 2 the growth of such regions decreases considerably
up to a ≈ 4, where the curve has an inflection point. This transition region coincides with the appear-
ances of non-linear features in the PDFs (see Fig. 6.15). The inflection point at a ≈ 4 agress with the
theoretical prediction that structure growth stops at a = 0.43 (see Eqn. 6.19). However, we should be
cautious with this result since the physical box size of our simulation is not large enough (100 h−1Mpc).
This could imply that the underdense regions are gravitationally interacting with themselves because
the long waves of the power spectrum have exceeded the box size.

6.10 From velocity divergence to density field

Dekel et al. (1999) using the POTENT algorithm and second and third-order corrections to the
Zel’dovich approximation derived satisfactory density fields from the smoothed velocity field with
kernel sizes of RG = 10,12 h−1Mpc based on the Mark III catalog.

While POTENT is based upon linear theory and mildly non-linear approximations, the perfor-
mance of DTFE with respect to non-linear structures and its reproduction of the non-linear density-
velocity divergence relation give us strong confidence to reconstruct the density field from the velocity
divergence field.

The intimate relationship between the density and the velocity divergence can be noticed in Fig-
ure 6.17. The top-left panel shows the reconstructed density field from the DTFE velocity divergence
field smoothed at 2 h−1Mpc, using only the linear prediction. The top-right panel shows the density
reconstruction using the 2nd order approximation of Bernardeau (1992) convolved with the same filter.
The bottom-left panel presents the DTFE density field as computed from the discrete particle distri-
bution. The similarities between the three maps are indeed remarkably good. The better agreement
betwen the 2nd order reconstruction and the density field can be noticed at the bottom-right panel.
This plot shows the residual density estimates resulted from substracting the linear and 2nd order re-
constructed densities to the real density (δ− δrec), black and gray point distributions respectively. As
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Figure 6.17 — DTFE density field reconstructions from the velocity divergence. The top-left panel shows the
denisty reconstructed from the linear density-velocity divergence relation. The top-right panel the reconstruction
using the 2nd order perturbative approximation. The bottom-left panel shows the real density field. The bottom-
right panel present residual point-to-point comparison between the recontructed density fields and the reald density
one. All fields have benn convolved with a Gaussian kernel of 2 h−1Mpc.

can be noticed, high-density regions present a large scatter since both relations are not completely
valid at these regimes. At low-density regions the 2nd order reconstruction gives better estimates as
expected.

6.11 Shear and Vorticity

The shear and vorticity terms (Eqn. 6.14 & 6.15) are the other two components which are recovered
when computing the velocity gradient matrix (see Section 6.4.3). Shear and vorticity patterns are
expected to be particularly prominent near high-density regions, where distortions in the velocity flows
are particularly strong. In general, vorticity measures the speed of rotation of a fluid element, while
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Figure 6.18 — DTFE recovered velocity shear and vorticity amplitudes (top left and right panels respectively)
and density field (bottom panel) for the same slice of the velocity field presented in Fig. 6.5. We have inverted the
color scales of the shear and vorticity to enhance the contrast between the different structures.

shear measures the anisotropy in its expansion rate. The shear is a dominant factor in shaping the large
scale structure (e.g. Hoffman 1986; van de Weygaert & Babul 1994; Bond et al. 1996).

Figure 6.18 shows for the same slice projection presented in Figs. 6.9 & 6.17 the shear and vorticity
amplitudes, σ = (Σσi jσi j)1/2, ω = (Σωi jωi j)1/2 (left and right top panels respectively) and the density
contrast reconstructed with the DTFE method. Each fields has been convolved with a Gaussian kernel
of RG = 1 h−1Mpc. We have inverted the color scales of the shear and vorticity with respect to the
density one in order to get a better enhancement of the shear and vorticity patterns present in the
maps. As can be noticed, both top panels trace very well the matter distribution (bottom panel).
The velocity shear unveils more the large scale structure pattern of the matter distribution than the
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vorticity mode since the shear is more prone to the linear and weakly non-linear matter distribution
than vorticity. Because the velocity field is expected to be irrotational, at least in linear theory, vorticity
can only appear around non-linear structures like cluster of galaxies where strong infall motions are
presented (Peebles 1980). The vorticity plot clearly shows that this term is mainly present at the high
density regions. Most of the field is curl-free in accordance with the linear prediction. However, some
vorticity is present at not very dense regions, indicating a possible failure of the method in properly
reconstructing the velocity field at these regions. We will discuss this in more detail in Section 6.11.4.

6.11.1 The density-shear relation

The shear in the velocity field can be due to the intrinsic asphericity (anisotropic collapse) of evolving
structures and/or can be due to tidal forces acting around the local matter distribution exerted by the
large scale matter distribution. Therefore, it is expected to be present at linear, quasi and non-linear
regions as a result of interaction and the collapse of matter. In fact, the rate of growth of the density field
gets amplified in the presence of shear because this increases the rate of growth of fluid convergence
−∇ · v following a given fluid element (Hoffman 1986; Bertschinger & Jain 1994). This convergence
is precisely located around collapsing structures, filaments and clusters (see Section 6.7). Hoffman
(1986) and Bond, Kofman, & Pogosyan (1996) pointed out that the filamentary web is a consequence
of the distribution and spatial coherence of the shear field in the medium (see also van de Weygaert
2002). Therefore, it is expected that the density and velocity shear should be correlated as a function of
time. Although, there is no clear relation between the density and velocity shear like via the continuity
equation. In the linear regime, the velocity shear is related to the density excess growth factor D(t) via
(van de Weygaert & Bertschinger 1996),

σi j ∝ D(t)H(t) f (Ωm) , (6.21)

and therefore, to the density field since δ(t)∝D(t). In general, the evolution of the velocity shear tensor
σi j is strictly related to the tidal tensor Ti j,

Ti j ≡
1

a2

{
∂2φ

∂xi∂x j
− 1

3
(∇2φ)δi j

}
, (6.22)

where φ is the gravitational potential, and δi j the Kronecker delta. This evolution can only be calculated
by solving the (non-local) Possion equation.

Figure 6.19 shows the evolution of the density-velocity shear amplitude distribution as a function
of the expansion factor. The velocity shear is expressed in units of H(t), the Hubble parameter at the
given cosmological expansion factor. Since the velocity shear is the result of tides, then it is expected
that at early times this term would not be necessary zero, but rather small. The first top panels show
that indeed, the amplitude of the velocity shear is very small. Although, as discussed in Section 6.7.1,
at these times the density field reconstruction is not very reliable since density is badly sampled by the
early particle distribution. However, the reconstruction of the velocities, and thus of shear, does not
depend upon sampling process (see Sec. 6.7.1). At early times, the shear growth scales according to
the linear prediction of Eqn. 6.21. The sudden rise of the velocity shear amplitude at z ≈ 4 (a = 0.2)
coincides with the appearances of weakly non-linear features in the velocity divergence PDF (see
Fig. 6.14 & 6.15).

It can be noticed that while the structure formation process grows with time, the density-shear
cloud distributions increase in amplitude and bend along the whole range of values. Also, the spread
around the distributions increases considerably. At high-density regions this is an indication of the
collapse of structures. Around linear and mildly non-linear structures such as filaments, the shear
is large enough (> 70 km s−1 Mpc−1) indicating that this term is a key element in the formation of
filaments (Bond et al. 1996; van de Weygaert 2002). On the other hand, the shear is very small at
underdense regions. This is because voids tend to become more spherical as they evolve. This implies
that shear is minimized at the voids, while their dynamics is dominated by the expansion mode of the
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Figure 6.19 — Time evolution of the density-velocity shear amplitude relation computed by means of DTFE.
We have expressed the shear in terms of the Hubble parameter.
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velocity, positive divergence. If this would not have been the case, underdense regions could have
collapsed if the shear is large enough (Bertschinger & Jain 1994). The visual impression from the left
panel of Fig. 6.18 helps to clarify all these points.

As in the case of the density-velocity divergence relation, the shape of the density-velocity shear
relation does not change considerably from a ≥ 0.4, apart from the scatter at high-densities. This
behavior is an indication that the growth of structures ceases and, that at least, in the linear and quasi-
linear regimes, velocity fields are very coherent.

6.11.2 Shear matrix and eigenvalues

The velocity shear is a traceless symmetric tensor. The shear describes how the matter distribution is
dynamically affected by its surroundings, i.e., if the matter distribution is being stretched or squeezed
along a given direction. This information is contained within the eigenvalues and eigenvectors of the
diagonalized matrix representation of the velocity shear tensor. The eigenvalues indicate the strength of
the stretching or compression, while their directions are given by the corresponding eigenvectors. Here,
we order the eigenvalues (and corresponding eigenvectors) according to their amplitudes, λ1 > λ2 > λ3.
Because the shear tensor is traceless, only two of its three eigenmodes will be linearly independent,
i.e.,

∑
λi = 0. By construction, the eigenvectors form a unitary and orthogonal system. The amplitude

of this shear reference frame will be given by the eigenvalues, and since these are different from each
other, this is also know as the velocity ellipsoid. The first eigenmode (λ1) is positively defined and
indicates the direction and intensity of the maximum stretching exerted over a given region. The third
eigenvalue (λ3) is always negative, and corresponds to a compression along a direction perpendicular
to the stretching one. The second eigenmode (λ2) could be either positive or negative. The configura-
tion of the tidal field is decided by this eigenmode, with an extra stretching or compression direction
perpendicular to the first eigenmode. If λ1 > λ2 > 0 the velocity ellipsoidal describes a planar structure,
if λ3 < λ2 < 0 then it describes a filamentary configuration.

In our approach, one could compute these eigenmodes for each Delaunay tetrahedron. However,
for reasons of efficiency we did so from the grid interpolated velocity gradient field. By diagonalizing
the shear matrix at each pixel’s image, we find its eigenvectors and eigenvalues. Note that since the
velocity-gradient matrix is not continuous, the computed eigenvalues and eigenvectors will no so too.

Figure 6.20 shows maps of the amplitude of the two linear independent eigenvalues (λ1 and λ2) for
the same slice shown in previous map figures. The stretching mode (λ1) traces the filamentary structure
present in the map (see bottom panel of Fig. 6.18). This is larger at the core of the high-density regions
than along filaments. As expected, no stretching is found at the void regions. In the case of the second
eigenvalue, the brightest regions correspond to a positive mode (λ2 > 0) and therefore, where stretching
also occurs. Light regions can also be distinguished following the filamentary distribution. Most of
the map corresponds to λ2 ≈ 0 (gray areas), mainly around the voids where almost no shear is present
(see Fig. 6.19).

The amplitude of the eigenvectors are very illustrative in displaying the characteristics of the mat-
ter distribution. However, they are only part of the total information contained within the shear. In
Figure 6.21 we present a more qualitative analysis. For the same slice shown in Figs. 6.18 and 6.20,
we have computed a 2D cut of the velocity shear, and its projected eigenvalues and eigenvectors. This
is equivalent to consider the intersection of the velocity ellipsoidal with the 2D plane. This has as
result an ellipse whose major axis is the stretching mode and the minor axis the compression along
such bisecting plane. Both modes are presented in Fig. 6.21 as “shear bars”. The left panel repre-
sents the stretching mode, while the right panel the compressional mode. The bars are proportional
to the amplitude of each eigenvalue and oriented according to their corresponding eigenvectors. The
point distribution corresponds to the matter distribution in a slice of 5 h−1Mpc thick centered along the
eigenmodes cut. A seemingly correlation between the compressional bars and the filamentary struc-
ture of the point distribution can be noticed. This correlation is stronger in the case of the gravitational
tidal field (see van de Weygaert 2002). The compressional bars are strong (large) and almost perpen-
dicular to the filamentary structure. The dilational bars tend to be more aligned with the filament. The
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Figure 6.20 — Velocity shear eigenvalue maps of the same slice presented in Fig. 6.18. The left panel corre-
sponds to amplitude of the largest eigenvalue (stretching mode) along the slice. The right panel shows the second
eigenvalue which could be either positive (stretching, light regions) or negative (compression, gray-dark regions).

Figure 6.21 — Decomposition of the velocity shear components along the same slice of Fig. 6.20. The dilational
(stretching) component is shown at the left panel, while the compressional component at the right panel. The bars
are proportional to the intensity of the components and they are aligned along the corresponding eigenvectors’
direction. The point distribution along a thicker slice is also present.

presence of more massive structures like clusters are delineated by the compressional bars as a result
of infall motions around the cluster. With this representation, clusters are the “nodes” of the filamen-
tary structure. On the other hand, underdense regions are very quiet in both representations. They are
clearly recognized as those regions where bars are not perturbed, but rather aligned coherently.



6.11. SHEAR AND VORTICITY 193

Figure 6.22 — Velocity shear eigenvalues vs density contrast. The three panels show the eigenvalue’s de-
pendence with density. The top-left panels shows the first eigenvalue, dilation. The top-right panel the second
eigenvalue, middle. The bottom panel the third eigenvalue, compressional.

With the shear-bar analysis, we have shown the strong interplay between shear and the filamentary
structure of the universe. This confirms the theoretical basis of the Zel’dovich formalism. Hoffman
(1986) using such approximation noticed that objects with large initial shear collapse sooner than one
would predict. This result can be derived from first principles from the Raychaudhuri equation which
connects the velocity divergence evolution, shear and vorticity with the density field. According to the
Zel’dovich formalism (Zel’dovich 1970), objects collapse first along the largest eigenvalue forming
the Zel’dovich pancake, then along the next eigenmode to form filaments, and finally along the last
eigenmode to collapse into clusters. If the primordial Gaussian velocity field was shear-less and irro-
tational, the velocity-gradient matrix will be isotropic, allowing spherical collapse as predicted by the
spherical model.

In Figure 6.22 we plot the eigenvalues-density dependence for a = 1. The top-left panel indicates
that stretching becomes stronger at higher density regions. The compressional component (bottom
plot) also grows as a function of density, with the dense cores of clusters experiencing the largest com-
pression. The middle eigenvalue does not present a clear correlation with density, but a rather symmet-
ric distribution between the two possible modes as shown also in its respective PDF (see Fig. 6.23).

6.11.3 Time evolution of the shear eigenvalues

For the case of a Gaussian random density fluctuation field, Doroshkevich (1970) studied the distribu-
tion function of the eigenvalues of the shear tensor. The distribution of the two independent eigenvalues



194 Chapter 6: Tessellation Interpolation and Reconstruction of Cosmic Velocity Fields

(λ1&λ2) is given by,

P(λ1,λ2) =
27

4
√

2π
exp

[
− 15

2
(λ2

1+λ1λ2+λ
2
2)
]
× (λ1−λ2)(2λ1+λ2)(λ1+2λ2) ,

−∞ < λ2 < −(λ1+λ2) < λ1 <∞ .
(6.23)

This yields a probability of 8% that all eigenvalues are negative, while 92% of the matter has one or
more positive eigenvalues.

We have traced the evolution of the shear eigenvalues as a function of the expansion factor, which
in principle are linked to the matter structure evolution. It is therefore expected that the eigenvalues will
be smaller at early times and grow according to the collapse of density fluctuations at different times.
This can be better understood in Figure 6.23 which shows the time evolution of the PDF from the three
eigenvalues for three expansion factors. The eigenvalues have been computed from the smoothed ve-
locity shear at 2 h−1Mpc. For comparison purposes we have also plotted the eigenvalues distributions
computed according to the Zel’dovich formalism at the given times (gray lines), normalized with re-
spect to the maximum of the N−body PDFs. It it clear that the eigenvalue’s distributions extend toward
higher values at later times as a result of the evolution of the structure formation process. Since it has
been proved that the Zel’dovich approximation performs very well even beyond the linear regime, it is
not surprising that the two type of distributions for the three eigenvalues are very similar. These simi-
larities are stronger at earlier times where the approximation is still valid (top row). Both distributions
peak at the same value for the three eigenvalues, although the N−body dilation is somewhat larger than
the Zel’dovich. This is expected since the later is just a kinematic approximation which at first order is
correct. At later times, differences in the distributions become more pronounced as structures get into
the non-linear regime. The N−body eigenvalues indicate that there is more stretching than with the
Zel’dovich formalism as the result of the non-linear evolution of structures. On the other hand, both
N−body and Zel’dovich compressional modes are very similar to each other. Although, the compres-
sional contribution from the middle eigenvalue is relatively larger in comparison with the Zel’dovich
one.

6.11.4 The density-vorticity relation

According to the linear theory of gravitational instability (Peebles 1980), the large scale velocity field
is expected to be irrotational, ∇× v = 0. Any vorticity mode would have decayed away during the
linear growth of density fluctuations, and the only growing modes are curl-free. Based on Kelvin’s
circulation theorem, the flow remains vorticity free as long as it is laminar, i.e., with no orbit crossing
(Bertschinger & Dekel 1989; Dekel et al. 1990). This condition is expected to hold even in the weakly
non-linear regime (Bertschinger & Dekel 1989). Therefore, it is expected that vorticity is only present
around the non-linear features of the density field.

Figure 6.24 shows a zoom over the density and velocity field (image and vector field respectively)
of a galaxy cluster from the simulation. The gravitational pull onto the surrounding matter distribution
of such massive cluster can be recognized in its respective velocity field. At the top and bottom ends
of the cluster perturbations to the velocity field (infall motions) are presented as shear and vorticity.
Notice how the latter becomes stronger toward the cluster centre indicated by the circulation pattern.
The presence of vorticity in the velocity maps has to be ascribed to two effects. The first one is physical
and induced by the cluster. The second effect is that the vorticity is partly introduced by the method
itself since it cannot recover motions properly at high-density regions where the linear interpolation
breaks down. At this stage we cannot disentangle how much vorticity is physical and how much is due
to the method’s failure. From the “linearized” field (smoothed with RG = 5 h−1Mpc, right-hand panel)
we can notice that the vorticity around the cluster outskirts is real since it is still present. The vorticity
mode has diminished considerably, mainly at the center, but it is still present around the cluster, being
this a real effect.

As the collapse of structures is responsible for generating vorticity in the velocity field (orbit cross-
ing), it is expected then that vorticity grows as linear structures evolve toward the non-linear regime.
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Figure 6.23 — Velocity shear eigenvalues PDF computed at three different expansion factors. The bold lines
correspond to the eigenvalues computed from the N−body simulation (nl). The gray lines represent the eigen-
values computed from the Zel’dovich approximation (Zeld) at the given expansion factor. The left-hand column
shows the dilation (λ1), the central column the middle (λ2), and the right-hand column the compressional mode
(λ3).

Figure 6.25 shows the evolution of the density-vorticity relation as a function of the expansion time
a, where the vorticity (ω = (Σωi jωi j)1/2) has been expressed in terms of the Hubble parameter H(t) at
the given time. Both quantities have been smoothed with a Gaussian filter of 5 h−1Mpc to erase any
distortion introduced by DTFE. As expected, at very early times the vorticity is of the order of zero, but
almost similar to the shear. It starts to become noticeable when non-Gaussian features are present on
the field (z ≈ 4,a = 0.2), which reflects the behavior of the shear. In general, the vorticity is very small
at low density regions and grows almost linearly toward mild density regions (situation present at all
panels). At high-density regions, the point distribution spreads over a large range of vorticity values.
This becomes more noticeable at latter times. Comparing the shear and vorticity amplitudes (Figs. 6.19
and 6.25), it can be noticed than in general, the vorticity is much smaller than the shear along the whole
range of densities as expected. Figure 6.26 shows a contour plot of a point-to-point comparison be-
tween the velocity shear and vorticity computed at actual time (both quantities expressed in terms of
H0). In general, the vorticity is ≈ 3 times smaller than the velocity shear. Notice that both terms are
related almost linearly. This is not surprising since shear and vorticity are the symmetric-traceless and
antisymetric part of the velocity-gradient matrix respectively.

6.12 Conclusions

We have presented a method based on the Delaunay Tessellation Field Estimator algorithm [DTFE]
to reconstruct continuous volume-weighted and fully volume-covering peculiar velocity fields from
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Figure 6.24 — Zoom over a galaxy cluster’s density and velocity field (image and vector field respectively)
smoothed with a Gaussian filter of RG = 1 h−1Mpc (left panel) and RG = 5 h−1Mpc (right panel). Notice how
the velocity field is highly distorted by the mass distribution (left panel) introducing vorticity modes around the
density field. Such distortions are less pronounced at the linearized (right) panel, still some vorticity can be
noticed.

a discrete set of N−body peculiar velocities. The method does not make use of any pre-specified
smoothing kernel, which allows it to adapt to the geometry of the point distribution sampling the
velocity field, and therefore, to resolve velocity fields at both low and high density regions at once. The
method involves a scheme based on the Delaunay tessellation defined by the sampling point process,
and linear interpolation with Delaunay tetrahedra intervals.

Field value estimates from conventional grid-based methods are usually mass-weighted instead
of volume-weighted. Therefore, comparisons with theoretical predictions which refer to volume-
weighted quantities are difficult. These methods cannot resolve velocity fields at high-density regions
while keeping an acceptable velocity reconstruction at low density regions. The computation of high-
resolution reconstructed velocity fields with grid-based methods introduce spurious effects at regions
devoid of objects and in high-density ones that one cannot obtain reliable estimates. On the other hand,
if one wants to recover information at low density regions, low-resolution interpolations are needed at
the cost of smearing high-density regions.

The DTFE velocity reconstruction procedure does not suffer from these problems. The DTFE
method offers a higher spatial resolution than conventional methods at high density regions, while pre-
serving the velocity features of low density regions devoid of objects without suffering from shot-noise
effects. The velocity field at underdense regions are rendered as realistically slowly varying motions
due to the linear interpolation scheme of the method. This interpolation has proven to give correct
results in the sense that the void’s velocity profile resembles a super Hubble-like linear expansion as
predicted by analytical models. At high-density regions, the method traces with high resolution the
infalling velocity patterns towards and around these regions. At regions where shell crossing has oc-
curred, i.e., high-density regions such as cluster of galaxies, the interpolation is not completely valid.
Virial motions can not be properly recovered and the reconstructed velocity field is discontinuous.
However, a simple smoothing procedure helps to improve the field estimates.

We have shown that the DTFE velocity method is in general a very robust method. It does not
suffer from sparse sampling effects, provided that the sampled velocity field traces the underlying full
field. The reconstructed diluted samples are in good agreement with respect to the full sample.

In the case of Gaussian like velocity uncertainties, the comparison with respect to the true velocities
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Figure 6.25 — Time evolution of the density-vorticity relation. The cloud of points are given by densities and
vorticities computed with DTFE. We have expressed the vorticity in terms of the Hubble parameter H(t).
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Figure 6.26 — Contours of the
point-to-point comparison of the
DTFE velocity shear and vorticity
computed at present time (a = 1).
Both quantities have been expressed
in terms of the Hubble paramter H0

and convolved with a Gaussian kernel
of 5 h−1Mpc.

indicate that the reconstructed field does not contain any artificial bias introduced by coupling of the
method and the Gaussian errors.

Because the method makes use of the velocity-gradient matrix in order to compute the interpolated
velocity field, it is therefore straightforward to compute other velocity-related quantities such as the
velocity divergence, shear and vorticity.

Because DTFE reproduces the PDF of the velocity divergence, it is possible to probe the velocity
flows around voids, which define a sharply defined maximum in the PDF. Such sharp cutoff allowed
us to constraint a lower value for Ωm ≈ 0.21, which is in good agreement with the imposed value
in the N−body simulations of 0.3. The large dynamic range of the method allowed us to test our
estimates for the velocity divergence and density contrast with respect to the 2nd order perturbation
theory result of the density-velocity divergence relation. Once the grid imprint of the initial conditions
has disappeared the method recovers the density-velocity divergence relation rather well. A particular
promising application exploits DTFE’s ability to probe the density-velocity divergence relation into
advanced clustering situations. This would allow a reconstruction of the density field from peculiar
velocity measurements (e.g. POTENT like analisys).

We have found that the recovered shear and vorticity modes are also strongly dependent on the
density field. The velocity shear eigenvalues trace very well the density field. In particular, the com-
pressional mode is strongly related to the filamentary structure. Clusters of galaxies are identified as
regions with high shear measurements. By contrast, the large void regions present a lack of shear as ex-
pected. The vorticity mode is an indication of the method failure at high density regions. The method
also recovers physical vorticity since these regions are collapsing and therefore circular motions ap-
pear. At this moment, we are unable to disentangle both contributions (real vorticity and method’s
vorticity). However, the recovered vorticity at the cluster outskirts is for real, as revealed by smoothed
fields.

In conclusion, we have shown that the DTFE reconstruction scheme of the peculiar velocities
corresponding to a simulation of cosmic structure formation seems to provide a good qualitative and
quantitative description of the data under consideration. In particular, we have shown that the use of
DTFE enables a meticulously study of the dynamics of the cosmic foam, in which one has to deal
with structures of diverse densities and geometries at both small and large scales. Applying the DTFE
reconstruction procedure to the analysis of a data set of peculiar velocities will help us understand the
formation and evolution of the characteristic elements of the large scale structure of the universe.
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6.A Triangular Shaped Cloud [TSC]: description

The TSC is a quadratic scheme in which the particle value is distributed over all grid points within
a distance of at most one and a half grid cells. In this scheme, the value assignment function can be
expressed as the product of three functions of the one dimensional displacement of a particle from the
cell center

δx = x−n/M , (A6-1)

therefore,

W(x) =
3∏

i=1

w(xi) , (A6-2)

and where the one-dimensional weighting function is defined as follows (see Hockney & Eastwood
1988)

w(xi) =
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(A6-3)

With this definition the method produces smooth fields which could not be affected considerably
by shot noise effects depending on the size of the grid cells at the cost of low spatial resolution.
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7
The coldness of the Local Cosmic

Environment

E. Romano-Dı́az, R. van de Weygaert & W. E. Schaap.

W have characterized the thermal state of the Local Group and Local Supercluster environments
by computing the cosmic Mach number statistics in a volume-weighted fashion. In order to

compute volume-weighted quantities from discrete positions of objects, we have made use of the De-
launay Tessellation Field Estimator for peculiar velocity fields. We have addressed the differences
for the Mach number estimates when these are computed from N−body velocity data, mock-observed
velocities and modeled velocities using the FAM method. The parent N−body simulations have been
constrained in order to give a reasonable mimic representation of the matter distribution in our cos-
mic vicinity. Results indicates that our local neighborhood is rather chilly, even more so than if this
number were computed in mass-weighted way. Here we argue that the coldness of the local flow is a
characteristic given by the mass configuration around the Local Group environment. The surrounding
velocity field is dominated by the massive structures beyond the Local Supercluster.
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Figure 7.1 — Radial peculiar velocities plotted as a function of distance computed from a discretely (and un-
evenly) sampled velocity field (left panel). The corresponding radial velocities for the resulting interpolated
volume-weighted velocity field is shown at the right panel. The objects are suitable sampled particles from an
N−body simulation aimed to mimic the mass distribution and dynamical behavior around the Local Superclus-
ter. The continuous lines indicate a pure Hubble flow expansion. Notice how the velocity dispersion around the
Hubble flow increases with distance.

7.1 Introduction

Peculiar velocities of galaxies are the velocity deviations from a pure Hubble expansion. They are
the result of gravitational interactions that each galaxy has with all surrounding matter concentrations.
This makes them a direct probe of the underlying dark matter in the universe and a test for the grav-
itational instability paradigm. They provide constraints on cosmological models, in particular on the
cosmological density parameter, Ωm. They can characterize the mass distribution on very large scales
because with respect to density fluctuations, velocity fluctuations are more sensitive to large scale
perturbations and thus, to structures at a larger distance.

The dynamics of the Local Group [LG] and its environment provides a unique challenge to cos-
mological models. The velocity field within 5 h−1Mpc of the LG is extremely “cold”. The deviation
from a pure Hubble flow, characterized by the observed radial peculiar velocity dispersion, is mea-
sured to be ∼ 60 km s−1 (Sandage 1986, 1999; Peebles 1988; Schlegel et al. 1994; Ekholm et al. 2001;
Karachentsev et al. 2003). Averaged over larger volumes of the Universe this dispersion increases to a
few hundred km s−1. While within a volume of 3 h−1Mpc around the LG Karachentsev et al. (2002)
reported a velocity dispersion value of 25− 30 km s−1, in a volume of radius 14 h−1Mpc the velocity
dispersion raises to 200 km s−1 (Groth et al. 1989), and at the scale of 30 h−1Mpc up to 310 km s−1

(Groth et al. 1989; Tonry et al. 2000). While the “small-scale” component of the velocity dispersion
has a remarkably low value, it is superimposed on a truely impressive “large-scale” bulk flow compo-
nent. The LG participates in a bulk flow of approximately 600 km s−1, mainly influenced by the Great
Attractor [GA] region. The particular location of the Local Group and Local Supercluster in the cos-
mic vicinity undoubtedly plays a major role in shaping their velocity fields. Figure 7.1 shows the radial
peculiar velocities of objects computed from the discrete velocity field (left-hand panel) and from its
volume-weighted velocity field (right-hand panel) from a constrained N−body simulation that mimics
the dynamics of the Local Supercluster and its environment. Notice how the velocity dispersion around
a pure Hubble flow (continuous line) increases as a function of distance. The right-hand panel presents
smaller dispersions especially at the high density regions because volume-weighted velocities are less
affected by virialization effects.
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Ostriker & Suto (1990, hereafter OS) suggested combining the large-scale and small-scale char-
acteristics of the peculiar velocity field into a single statistics, the Cosmic Mach NumberM. It was
introduced in order to characterize the coldness of the observed velocity field data of Aaronson et al.
(1982a). The Mach number in physics is the ratio of the flow velocity in some medium to the sound
velocity in that medium. In a cosmological context, the equivalent of the sound velocity is the small-
scale velocity dispersion of galaxies. The characteristic bulk velocities in a given cosmological model
measure the large-scale component of the power spectrum, while the small-scale velocity dispersion
depends on the power on small scales. Their ratio is therefore independent of the amplitude of the
power spectrum, at least in Linear theory (OS). By comparing small and large scale contributions it is
a diagnostic of its shape. Suto & Fujita (1990) extended the results of OS to nonlinear regimes and
studied the probability distribution ofM using N-body simulations.

van de Weygaert & Hoffman (1999, 2000) used low resolution constrained N−body simulations
of the Local Universe to study the coldness of the flow of the LG-alike regions, finding that the local
cosmic vicinity is rather cold. Their preliminary results suggested that the local cold flow may be
influenced by the mass distribution on much larger scales and be induced by coupling of the small and
large scales via the velocity shear.

In a more general study, Nagamine, Ostriker, & Cen (2001) investigated how typical such a cold
region, similar to that of the local group, would be in the entire distribution of the cosmic velocity field.
Their results suggested either that the LG is in a relatively low density region or that the true value of
Ωm is ∼ 0.2, and that the Mach number is a weakly decreasing function of overdensity. They recovered
the velocity dispersion using different sphere radius in a box of 20 h−1Mpc. In their approach they
corrected the peculiar velocity field from the missing bulk flow due to large scale contributions by
using an empirical method. They computed the ratio in Fourier space between the power spectrum of
their simulations with respect to the full power spectrum. Although this ad-hoc approach corrects for
the missing long waves in the simulation box, it does not take into consideration the distortions in the
velocity field produced by structures residing just outside the box that could play an important role in
the moulding of the inner velocity field (Chapters 2 & 4).

OS estimated the M number for different volume sizes. They found that for spiral galax-
ies M(R = 4 h−1Mpc) = 4.2 ± 1.2, M(R = 14 h−1Mpc) = 2.2 ± 0.5, while for elliptical galaxies
M(R = 30 h−1Mpc) = 1.3± 0.4. Strauss et al. (1993) used spiral galaxies to determine that M(R =
14 h−1Mpc) = 1.03, and that for elliptical galaxies M(R = 25 h−1Mpc) = 0.57. Nagamine, Ostriker,
& Cen (2001) suggested that the relative high observedM is an indication that the LG is located in a
relatively low cosmic density region.

Suto & Fujita (1990), using N−body simulations found that the distribution of M is close to
Maxwellian in linear and mildly nonlinear regimes. Nagamine, Ostriker, & Cen (2001) using higher
resolution N−body simulations found that the bulk flows are well fitted by a maxwellian distribution,
the velocity dispersion is not well fitted by a Maxwellian and that the Mach number is relatively well
fitted by a such distribution.

An extra consideration from these studies is the fact that all these measurements are biased toward
estimates at high density regions, and therefore, they are mass-weighted. A more “fair” estimate could
be the use of volume-weighted quantities. This kind of analysis would allow one to estimate the
velocity dispersion independently of the objects positions, avoiding biasing any estimate toward high
density regions.

A common problem from previous theoretical studies is that none of them managed to reproduce a
realistic mass distribution around the Local group as revealed by the large-scale surveys of the universe,
neither Local Group environments with velocity dispersions close to the observed ones (Schlegel et al.
1994; Governato et al. 1997). This point is of utmost importance since the Local Group resides in a
rather atypical location of the universe. The presence of the Local Supercluster, the Great Attractor
and Perseus Pisces superclusters shape in a very specific way the local peculiar velocity field.

In the present study we investigate how cold the Local Group environment and Local Supercluster
[LS] region are when computing the bulk flow, the local velocity dispersion and the cosmic Mach num-
ber in a volume-weighted fashion. We will argue that the coldness of the local flow is a characteristic
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Figure 7.2 — Density field (top row) and velocity dispersion (bottom row) maps for the Local Supercluster
region from one catalog of our sample (C4) along the three supergalactic planes. The points represent the galaxy
distribution in a 5 h−1Mpc thick slice centered along the respective supergalactic planes (top labels). Notice the
good correspondence between the two fields.

of the atypical mass configuration of the cosmic vicinity rather than interpret it as a global property of
the Universe. We will make use of realistic velocity fields extracted from constrained N−body simu-
lations aimed to mimic as close as possible the mass distribution around the LS. We will assess how
the Mach estimates change when considering LS observation-mimicking mock catalogs, such as the
Nearby Galaxy Catalog of Tully (1988, hereafter NBG), as well as considering modeled velocity fields
as given by the FAM method (Nusser & Branchini 2000). We will also compare our estimates with the
“conventional” mass-weighted estimates and address the main differences between the two methods.
In order to compute volume-weighted quantities we will make use of the Delaunay Tessellation Field
Estimator for peculiar velocities [hereafter DTFE] presented in Chapter 6. This technique is a linear
interpolation method that assures full spatial and continuous volume-covering velocity field from a
discrete velocity field sample without loosing spatial resolution.

The chapter is organized as follows. The cosmic Mach number statistics is reviewed in Section 2. A
description of the different Local Supercluster velocity fields, full, observed and modeled, is presented
in Section 3. The construction of continuous velocity fields and side effects in their reconstructions
are presented in Section 4. In Section 5 the volume-weighted measurements of the Mach statistics for
the three sample sets will be exposed, while in Section 6 a similar analysis but mass-weighted will be
presented. Finally, discussions and conclusions will be stated in Section 7.
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Figure 7.3 — Density fields (contour lines) along the three supergalactic planes, and peculiar velocities for the
LS within a slice of 5 h−1Mpc centered along the supergalactic planes from one mock catalog of our set (C4).
The top-most labels indicate the plane projections. The top row represents the full velocity and density fields as
given by the N−body simulation, the middle row for the diluted volume-limited mock-observed catalogs, while
the bottom row for the FAM modeled velocity field. The contours in the three rows are scaled in such a way that
they represent the same density values.

7.2 The Cosmic Mach number

Under the formalism of Linear theory of gravitational instability, OS defined the expressions for the
mean square bulk flow and the mean square velocity dispersion in a window of size R as follows:

〈V2(R)〉 = Ω
1.2
m H2

2π2

∫ ∞

0
P(k)W̃2(kR)dk , (7.1)

〈σ2(R)〉 = Ω
1.2
m H2

2π2

∫ ∞

0
P(k) [1− W̃2(kR)]dk . (7.2)
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In other words, in the framework of gravitational instability where peculiar velocities are due to the
gravitational attraction of density inhomogeneities (Peebles 1980), the large-scale flows are related to
the amount of power in the density field at the largest scales, while the small-scale velocity dispersion
is governed more by the small-scale components of the power spectrum and therefore, it will be corre-
lated with the density field (see Figure 7.2). In Eqns. 7.1 & 7.2,Ωm and H are the cosmological density
parameter and the Hubble constant, P(k) is the power spectrum of density fluctuations and W̃(kR) is
the Fourier transform of the window function of size R.

The cosmic Mach numberM is given by the ratio of the rms bulk flow velocity V on some scale
R of some sets of objects to the rms velocity dispersion σ(R) of the objects in the frame of the bulk
flow. In this way, the M is independent of the amplitude, and therefore the normalization of the
power spectrum and is insensitive to the bias between galaxies and dark matter (OS). This quantity
characterizes the warmth or coldness of the velocity field by measuring the relative strength of the
velocities, and implicitly the gravitational field, at scales larger and smaller than the patch size R.

The rms cosmic Mach number can be defined in two ways, depending in how one does the averag-
ing (OS):

〈M2(R)〉1/2 =
〈

V2(R)

σ2(R)

〉1/2

or
( 〈V2(R)〉
〈σ2(R)〉

)1/2
. (7.3)

SinceM is defined as V/σ on a certain scale R, a largerM implies a smaller σ if the variation of V
is weaker than that of σ. Suto et al. (1992) and Nagamine et al. (2001) showed that these ratios present
differences between each other and they follow the order-relation:

( 〈V2〉
〈σ2〉

)1/2

<
〈∣∣∣∣∣

V
σ

∣∣∣∣∣
〉
<

〈
V2

σ2

〉1/2

. (7.4)

This order-relation works out into considerable differences when computing the Mach number. Al-
though the intention of the three quantities in Eqn. 7.4 is the same, we adopt in the present study the
intermediate relation because we find it is the closest to the physical essence of the Mach number.

7.3 Mimicking the Local Supercluster environment

The fact that the LG resides in a mildly overdense region of the Universe connecting to the nearby
Virgo cluster, and its location in between the Local Supercluster [LS], which itself connects to the GA
(Strauss et al. 1992) and the Perseus-Pisces supercluster [PP], create a complex gravitational tidal field
(see Figure 7.3). This situation has turn out to be very difficult to reproduce via N−body simulations.
Such experiments cannot naturally reproduce the “coldness” of the local velocity field (Schlegel et al.
1994; Governato et al. 1997). The study of Governato et al. (1997) confirmed that the standard CDM
model cannot reproduce the observed low value of the velocity dispersion. In the case of the open
CDM model (Ωm = 0.3) the velocity dispersion was in the order of ∼ 150− 300 km s−1, while for
the SCDM model ∼ 300− 700 km s−1. In both cases the measured velocity dispersions were at least
twice the observed value. However, the conclusions of these studies should be taken with caution since
none of the tested models concerned the actually assumed ΛCDM model and the LG candidates were
chosen from a small-size simulation volume.

Therefore, if one wants to address issues concerning the LS it is necessary to reproduce its main
characteristics as close as possible. This concerns both its mass distribution and its peculiar velocity
field. One particularly promising strategy is the use of Constrained Simulations (Kolatt et al. 1996;
Bistolas & Hoffman 1998; Klypin et al. 2003; Kravtsov et al. 2002; Mathis et al. 2002, see also Chap-
ters 2 & 4). With this approach one invokes the observational information yielded by surveys of the
large scale structure of the universe. Kolatt et al. (1996); Bistolas & Hoffman (1998) used the IRAS
1.2Jy catalog (Fisher et al. 1995a). van de Weygaert & Hoffman (1999); Klypin et al. (2003); Mathis
et al. (2002) used the Mark III catalog of peculiar velocities (Willick et al. 1997a) as a source of the
mass distribution within the cosmic neighborhood.
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The Mark III catalog has proved to be one of the best available catalog surveys for this study. On
large scales peculiar velocities directly reflect the mass distribution, so that they can be used to directly
reconstruct the linear density field of the local universe. The application of the Wiener filter algorithm
enables one to infer the significant density field features, taking into account the measurement uncer-
tainties (see Zaroubi et al. 1995, 1999). This reconstruction is only valid within the linear regime, so
that the input data has to be linearized prior processing. The small scale structures are imposed by
applying the technique of constrained random fields (Bertschinger 1987; Hoffman & Ribak 1991; van
de Weygaert & Bertschinger 1996). This allows one to add realizations of the small scale density and
velocity fluctuations according to a priori cosmological model adopted.

The combined use of the Wiener filter and the constrained random field technique guarantees that
where the signal to noise from the data is very high, the information is dominated by the input data, and
where the signal is very low the constrained random method provides with the right power according
to the chosen cosmological model. This combination of methods provides a reconstruction of how the
present day structure would appear if linear theory is valid. By extrapolating back in time such fields,
this implementation can be used as a tool to recover the initial conditions of structures that prevail
nowadays in the nearby universe.

7.3.1 N−body, Mock-observed and FAM modeled peculiar velocity fields

In the present study we make use of the four LS constrained simulations presented in Chapter 3. These
simulations correspond to a flat ΛCDM cosmological model with ΩΛ = 0.7 and Ωm = 0.3, h = 0.7
(measured in units of 100 km s−1 Mpc−1). The power spectrum is normalized to σ8 = 0.9. The present
model is consistent with the current observational constraints (WMAP, Spergel et al. 2003), and also
consistent with the radial velocity surveys including the Mark III. The simulations were performed in
a box of 320 h−1Mpc side, loaded with 1283 particles and with the LG located at the center of the
box. The evolution of the initial density fields into the non-linear regime was followed by means of
the HYDRA code (Couchman et al. 1995).

Because we are only interested in studying the LS volume, we will only consider the mass distri-
bution within a volume of radius 30 h−1Mpc centered on an observer at the midpoint of the simulation
box. Such observer possesses observational characteristics of the Local Group Environment [LGE].
i.e. a velocity amplitude of 600 km s−1 in the direction of the GA region, a velocity shear within
5 h−1Mpc of ∼ 200 km s−1 and a fractional overdensity in the same region between 0.5 and 1.5 (see
Chapter 4). For the case of the observation-mimicking mock catalogs and FAM modeled velocity fields
we will make use of the constrained NBG and FAMcor catalogs presented in Chapter 4. The former
is a volume-limited diluted sample of the total mass distribution within 30 h−1Mpc in order to mimic
the NBG catalog (Tully 1988), which represents a fair sample of the LS volume. The FAMcor catalogs
contain the same mass distribution as their NBG counterparts, but their velocity fields have been com-
puted with the FAM method and properly corrected for large scale influences (see Chapter 4). Table 7.1
presents the three different sets of catalogs and their main characteristics. The first column gives the
name of the set of catalogs: LSNbody refers to the full Local Supercluster velocity and density fields
as given by the simulations, LSMock to the diluted “observation mimicking” mock catalogs extracted
from the parent simulations, and LSFAM to the modeled FAM velocity fields but with the same diluted
density field as the mock sample. The second column indicates the radius of the spherical sampling
volume, and the third column the number of catalogs in each set. The fourth column gives the average
number of objects 〈Nob j〉 within the set and the last column indicates the main characteristics for each
set of catalogs.

Figure 7.3 illustrates the main differences between the three set of catalogs for one particular re-
alization, the C4 catalog. This label indicates that all samples have been drawn from the fourth con-
strained N−body simulation. In all panels the contours represent the density contrast along the respec-
tive supergalactic planes indicated by the top-most labels (abscissa-ordinate). The bold line represents
the average density within the volume, the continuous lines overdensity regions, while the dashed lines
underdense regions. The density contours are equivalent between realizations, i.e., they represent the
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Label Radius Number 〈Nob j〉 Main
( h−1Mpc) of catalogs Characteristic

LSNbody 30 4 31 000 Full v and ρ fields

LSMock 30 4 2 800 Mimic-observed: diluted v, ρ

LSFAM 30 4 2 800 Diluted ρ, modeled v

Table 7.1 — Characteristics of the constrained mock catalogs. The first column indicates the label of the set.
The second column gives the catalog’s size. The third column the number of catalogs that compose the set. In the
fourth column the average number of objects for each set is presented, and the main characteristics that distinguish
each set of catalogs are stated in column 5.

same density values for the three samples. On top of the density maps we have plotted the velocity
vectors at the particle positions in slices of 5 h−1Mpc thick centered along the supergalactic planes.
Differences and similarities between the three samples can be recognized from this plot. The density
fields for the mock and FAM samples are identical, and both bear a close resemblance to the original
N−body one.

In all catalogs the presence of the LS is clearly recognized as the filament crossing the x− y pro-
jection. The coherent velocity flow pointing toward the left-hand side of this projection denotes the
presence of a massive structure located outside the LS volume, the Great Attractor [GA] region. At
the opposite side, the emergence of a velocity flow is also noticeable, which is induced by the Perseus-
Pisces [PP] supercluster. The prominence of the local void can also be noticed along the 3 projections.

The N−body and mock velocity fields are basically the same, both have the same characteristics but
the latter contains less objects. The FAM fields contain the same number of objects as the mock ones.
Both velocity fields display the same large scale characteristics, but they differ at the high density
regions where the FAM velocities do not represent the real velocities. This is because the inability
of FAM in properly modeling virialized motions (Nusser & Branchini 2000; Branchini et al. 2002;
Romano-Dı́az et al. 2004). We have only shown one catalog, the other 3 set of catalogs present a
very similar situation. For the complete set of catalogs for the Mock-observed realizations along one
particular projection, the z−supergalactic plane, see Appendix 7.B.

7.4 Continuous Velocity Fields

When one desires to obtain reliable estimates of statistical parameters from a given observed or
computer-simulated field (e.g. density & velocity fields), one faces the problem of dealing with dis-
crete, non-uniform fields. This discreteness forms a major technical obstacle for a successful compari-
son with theoretical predictions. A major issue concerns the fact that analytical/theoretical predictions
involve quantities evaluated uniformly throughout a cosmic volume, while observed or simulated re-
sults are biased toward the measured particle (matter) distribution. This issue of volume-weighted
versus mass-weighted physical quantities is treated somewhat more detail in Appendix 7.A.

The usual strategy to deal with such discrete data sets is to smooth them with a filter to yield a
continuous field. In the case of the peculiar velocity field several authors (e.g. Bertschinger et al.
1990; Juszkiewicz et al. 1995; Lokas et al. 1995) filtered galaxy velocities with a Gaussian kernel of a
fixed length for reducing problems of noisy data, sparsely sampled underdense regions and to obtain
the velocity field on a regular grid. If one is interested in performing studies concerning the large
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Figure 7.4 — Discrete and continuous velocity fields for one catalog of our set (C4). The top panels present
the peculiar velocities at the particle positions on a slice of 5 h−1Mpc thick centered along their respective super-
galactic planes. The bottom panels show the corresponding continuous DTFE velocity fields for the same catalog
along the supergalactic planes.

scale structure of the universe such methods give good estimates. However, when one is interested in
studying the more local (small-scale) qualities of the velocity field, such methods are not very suitable
since the use of such kernels erases the small-scale signal, the regime in which one is interested.

Bernardeau & van de Weygaert (1996) proposed the use of Voronoi and Delaunay tessellations
as natural filters and interpolation volumes in multi-D space. They first explicitly proved that the
zero-order Voronoi estimator is the asymptotic limit for volume-weighted field reconstructions from
discreet sampled field values. Subsequently, they extended this to a first-order Delaunay estimator.
This showed a superior performance in reproducing analytical predictions.

Schaap & van de Weygaert (2000); Schaap (2005) worked along the same line of Bernardeau
& van de Weygaert and extended the Delaunay method into a general map-making and field recon-
struction tool, including density fields, the Delaunay Tessellation Field Estimator [DTFE] interpola-
tion method. In Chapter 6 we have expanded the DTFE method to obtain volume-weighted velocity
related-quantities.

The main characteristics of this interpolation scheme are:

1. It provides a volume-covering velocity field by a multi-dimensional interpolation routine in
adaptive intervals.

2. The resulting velocity field is explicitly volume-weighted and therefore, more closely related to
most analytical inferred quantities.

3. It automatically suppresses shot-noise effects.
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Ngrid Resolution scale
(1D) ( h−1Mpc)

32 2.5
64 1.25
128 0.625
256 0.3125

Table 7.2 — Grid resolutions for the DTFE velocity interpolation scheme. The left-column indicates the number
of grid-cells per dimension, Ngrid . The right-column gives their corresponding physical size in units of h−1Mpc.

4. It uses a linear interpolation of the velocity field for the Delaunay triangulation to sample the
whole space.

5. Processing. This may involve various operations. The most important ones are image recon-
struction and, subsequently, filtering. Image reconstruction consists of two steps:

(a) For a set of image points (usually grid points) determine in which Delaunay tetrahedra they
are located.

(b) By (linear) interpolation compute field values at each of these points, on the basis of one
vertex field value and computed gradient.

Figure 7.4 presents the outcome of the DTFE velocity interpolation scheme for one catalog of our
sample (C4). The top panels refer to the peculiar velocities at the discrete particle distribution. These
are depicted in the three mutually perpendicular central slices of 5 h−1Mpc thick. The lower panels
correspond to the DTFE interpolated velocities along the supergalactic planes. Although a direct
comparison between the discrete and DTFE velocity fields cannot be done because they represent
different slice thicknesses, one can notice that both fields are very similar to each other. As a result of
the linear interpolation scheme of the method, the regions devoid of objects have been filled in with
coherent flows. For the sake of clarity we have lowered the resolution in the DTFE velocity maps. The
advantages of the DTFE velocity method can be clearly appreciated from this figure.

However, this implementation also presents some features that have to be taken into account in
our analysis. These can be divided into two categories, those concerned with the method itself, and
those related to the parent sample. The latter concerns in particularly the consequences of using ill-
defined samples. It involves the effects of dealing with a sparse sample of how this influence the
interpolated velocity field with respect to the full one. The former are related to the grid-resolution and
the interpolation scheme of the method which could affect the measurements mainly at high density
regions where the flows are not longer laminar.

7.4.1 Resolution effects on the DTFE velocity fields

One of the main characteristics of the DTFE velocity interpolation method is that is self-adaptive.
The linear interpolation scheme allows to map velocities at any desired resolution without loosing
information. This is an advantage over conventional interpolation schemes where one is restricted to
the size of the kernel employed (see Chapter 6, see also Schaap 2005).

In order to check for any resolution effect that could affect our Mach statistics, we have computed
the volume-weighted velocity dispersion (see Eqn. 7.6, Sec 7.2) using different grid resolutions in
the DTFE interpolation scheme. We have used four different number of grid-cells per dimension,
Ngrid = 32,64,128,256. Table 7.2 states the four different grid-sizes and their corresponding physical
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Figure 7.5 — Volume-
weighted velocity
dispersion maps com-
puted at different grid
resolutions with the
DTFE velocity inter-
polation scheme. All
panels refer to the same
x − y projection of
the C4 mock catalog.
The top-left panel
refers to the velocity
dispersion computed
on a cubic grid with
Ng = 32 grid-cells per
dimension, the top-right
panel to Ng = 64, the
bottom-left to Ng = 128
and the bottom-right
to Ng = 256 grid-cells.
The contours in all pan-
els represent exactly the
same velocity dispersion
values.

spatial resolutions used in this experiment. Figure 7.5 shows the effects of the grid resolution for the
four grid-resolutions, for the same catalog and projection. It concerns the velocities along the x− y
plane. The contours represent exactly the same velocity dispersion values for the four panels. The
bold contour references the “average” velocity dispersion used to divide regions with high velocity
dispersion from those with low dispersions, with a value of 142 km s−1.

The lowest resolution panel (Ngrid = 32) is clearly affected by the grid resolution. Although the
map presents the same general features than the other three at the low velocity dispersion regions,
this is not the case for the high dispersions zones where there are less areas than in the other cases.
The Ngrid = 64 map resembles well enough the high resolution velocity dispersion maps, the main
differences are at the very high or very low velocity dispersions regions. Another difference is in the
smoothness of the maps as result of the grid resolution.

The differences at high density regions are related to the interpolation scheme of the DTFE pro-
cedure. In these regions the velocity field is not longer laminar, so that an interpolation of velocities
is no longer possible and DTFE cannot be applied (neither other methods, see Chapter 6). As a con-
sequence of this, the method reduces the velocities by mitigating the virialization processes that take
place at these high density regions. This results into reducing the velocity dispersion at these regions,
see Fig. 7.1.

Taking into consideration these effects and the fact that we do not find systematic differences
between the Ngrid = 64,128,256 maps, we chose Ngrid = 64 as a standard grid resolution for reasons
of efficiency.

7.4.2 Sampling effects on the DTFE velocity fields

The linear interpolation algorithm of the DTFE velocity scheme overcomes the problem of shot-noise
effects. However, sampling effects remain affecting the interpolation procedure. They enter through
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the computation of the velocity gradient (see Chapter 6). A denser sampling will assure a more reliable
interpolated field.

The sampling effects will be most noticeable at the mildly non-linear regions since is at this regime
where the laminar flow could change to virial motions in a small spatial region. If so, the corresponding
interpolated DTFE velocities will slightly differ from the real velocity field. Figure 7.6 illustrates
the sampling effects. We have computed the residual velocity fields for the C4 catalog along the
z−supergalactic plane between the N−body, Mock and FAM DTFE velocity fields. The N−body–
Mock residual velocity field traces the high density regions, which are marked by large arrows. The
LS filament can be recognized as the region where the largest velocity differences are. Also, the
dense region located at the top-left of the plot, which is part of the GA region, presents large velocity
residuals. This is the effect of having a diluted sample. On the other hand, the interpolation is much
better at the low density regions. The local void does not present any significant residual flow. This
can be appreciated from the almost negligible velocity vectors. These results make clear that when
computing any velocity related quantity from these two velocity fields, they will only differ in the
mildly non-linear regime where the sampling affect the interpolation scheme notably.

Figure 7.6 — Volume-weighted DTFE velocity residual maps computed between the three samples for the same
C4 catalog along the z−supergalactic plane. The top labels indicated the DTFE velocity samples used to compute
the residual velocities. In all maps velocities have been normalized by the same scale factor.

In the case of N−body– FAM and Mock – FAM residual fields two factors affect the interpolation
procedure, both affecting in particular the high-density regions. The first one is the intrinsic error of the
diluted parent mock sample as mentioned above. The second one is the inability of FAM in modeling
virial motions correctly. These two factors enhance the velocity errors mainly at dense regions. This
can be noticed along the LS filament where residuals are larger than in the N−body– Mock case. The
emergence of coherence patterns can be seen at the upper and bottom right sides of the plot. This is an
intrinsic error in the FAM modeling because of the presence of two clusters located at the edge of the
sample (see Chapter 4, Figure 4.8).

7.5 The “thermal” state of the Local cosmic neighborhood

The “temperature” or “thermal” state of the LS volume are not strictly related to the typical dynamical
definition of the temperature of a system since not all structures within the LS volume are virialized.
Here we use these terms to characterize the velocity dispersion within a region as a consequence of the
small-scale cosmic velocity perturbations.

In order to define the “temperature” of the LS region, we assess the velocity dispersion in spheres
of 5 h−1Mpc radius. This smoothing length has been chosen to minimize virial motions at the cores
of galaxy clusters. Most virialized groups are small compared to the 5 h−1Mpc radius, and effectively
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these groups are replaced by their respective center-of-mass velocities. The spheres were drawn ran-
domly in the volume, for a total of 1000 spheres for each sample. For each sphere we extracted all
circled particles or grid values for the analysis corresponding to a top-hat window of size R= 5 h−1Mpc.
While the velocity dispersion computed at the particle distribution will lead to a mass-weighted esti-
mate, the latter will yield to a volume-weighted estimate of the same quantity. If Ni(R) is the number
of particles or grid-cells inside the sphere of radius R centered at x = xi, the center-of-mass (c.o.m)
velocity V(xi,R) and the residual velocity dispersion σ(xi;R) are computed as follows:

V(xi;R) =
1

Ni(R)

∑

|x j |<R

v(xi+x j) , (7.5)

σ2(xi;R) =
1

Ni(R)

∑

|x j |<R

[v(xi+x j)−V(xi;R)]2 , (7.6)

M(xi;R) =
| V(xi;R) |√
σ2(xi;R)

. (7.7)

Notice that the bulk flow computed with this procedure (Eqn. 7.5) is a “bulk flow” on another
scale than e.g. the ones discussed in Chapters 2, 4 and 5. In all analyses we will only consider the
unsmoothed velocities of each sample set. The application of applying any smoothing algorithm with a
kernel of size R will mainly affect the velocity dispersion on scales smaller than R, and will increasing
the values of M. In the following we will present images of the bulk flow, velocity dispersion and
Mach estimates for one particular catalog for its three representations (N−body, Mock and FAM). The
situation is very similar for all other catalogs. For a complete overview of all catalogs we refer to
Appendix 7.B.

7.5.1 The bulk flow

We have computed the local volume-weighted bulk flow according to Eqn. 7.5 for all catalogs from the
three different sets (LSNbody, LSMock and LSFAM). Because the bulk flow is a linear large-scale feature
which characterizes the average matter displacement within the surveyed volume, its spatial distribu-
tion should reflect a dipolar pattern. Since this quantity is the first order moment of the velocity field,
it should be the same for all sets. Figure 7.7 shows the volume-weighted bulk flow maps for the same
C4 catalog for the three different velocity field samples: the left-panel represents the LSNbody (full)
sample, the middle one the LSMock (observed), and the right one for the LSFAM (modeled) field. The
plots show 2D cuts along the x− y supergalactic plane. The contours represent equal bulk flow ve-
locity regions for the three maps. We have divided the three maps in regions with bulk flows above
(continuous lines) and below (dashed lines) the LG bulk flow amplitude of 600 km s−1. In all maps,
the LGE, indicated by the central diamond, is clearly dominated by a bulk flow of ≈ 600 km s−1. The
differences between the N−body and Mock bulk flows are only due to sampling effects since in these
two samples the object velocities are the same. The FAM modeled bulk flows are in general in good
agreement with the expected Mock ones.

The three maps are very similar to each other and they clearly show a dipolar motion along the
whole projection. The bulk flow amplitude grows continuously along the negative x-direction, with
the largest bulk flow motions (∼ 1000 km s−1, see Fig. 7.8) along the top-left side of the panels, near
the GA region. This is a clear indication that the structures located around this region are the main
contributors for this bulk flow motion. The shape of the large bulk flow regions indicate that this
GA region gravitationally dominates the LS volume. The region opposite to the GA has a “lower”
measured bulk flow as a result of the influence of the PP superclusters. At this region the gravitational
interactions between the GA and PP even each other out, resulting in small net flows.

The good concordance between the different bulk flow maps is confirmed by their correspond-
ing distribution functions [DF] and cumulative distribution functions [CDF] displayed in Figure 7.8,
top and bottom left-most panels respectively. These distributions were constructed by placing 1000
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Figure 7.7 — Volume-weighted local bulk flow maps for the C4 catalog of the 3 sets. The thick contour line
indicates the average bulk velocity of 600 km s−1. The contours represent equal bulk flow values for the three
samples. Notice how the LGE is immerse in the overall motion toward the GA region.

Figure 7.8 — Volume-weighted distributions for the bulk flow, velocity dispersion and M number for the 3
representations of the C4 catalog. The calculations have been performed at completely random locations within
the LS volume, independently of the particle distribution.

spheres at the same locations in the three different representations of the C4 catalog. In both panels
the continuous line represent the full LSNbody sample, the dotted line the LSMock observed one and
the gray-dashed line the LSFAM modeled sample. The three bulk flow DFs are very similar to each
other. The only slightly difference is at the mode of the DFs. While the N−body and Mock DFs are
almost identical, the FAM one indicates that it has relative less regions of low bulk flow, and more high
value regions. The spikes presented in the FAM bulk flow distribution at the range of 400−700 km s−1

correspond to contributions from high density regions where FAM fails in reproducing the right veloc-
ities. The general agreement between the three distributions is more apparent from their CDFs. These
do not show basic differences between the three samples. The CDFs show that most of the LS volume
comprises bulk flows between 400 and 800 km s−1. The average bulk flow within the LS region is
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535±47 km s−1 for the three sets (see Table 7.3, column 4), this is based on the four catalogs of each
set.

In order to better understand these distribution functions we have analyzed how the bulk flow
is distributed as a function of density. The top row of Figure 7.9 shows point-to-point comparisons
between the density contrast and bulk flows for the three different representations of the C4 catalog,
LSNbody (left), LSMock (middle) and LSFAM (right). These point-to-point distributions are presented in
terms of scatter diagram point density contours.

It is clear that there is not a significant correlation between bulk flow and density quantities. Low
density regions (δρ < 0) are located throughout the whole velocity range. This is because deep under-
dense regions expand with a constant (positive) velocity divergence. This implies that objects located
within these regions are accelerated at high speeds toward the edge of the voids. From the bulk flow
maps we can infer that objects located near the GA region experience the largest gravitational attrac-
tion and therefore have the largest measured bulk flows. Also at density contrast between [0,3] the
same bulk flow range is found. This indicates that even at these densities the large scale velocities are
influenced by the large scale structure, e.g., the GA in the case of the LS volume. At very high density
regions (δρ > 3), there are some isolated point clouds which are separated from the mainstay of the
point distribution. These highly non-linear regions have decoupled from the large scale influence, and
their internal motions have become more important, i.e., eventually dominated by virial motions. This
behavior is most pronounced in the LSNbody sample. In the other two samples it is slightly weaker
because they are diluted samples. In comparison to the Mock distribution, we observe that FAM has a
more “continuous” distribution. This is particularly true for the high-density regions (δρ > 2) as a result
of the intrinsic FAM problems at these regions. This explains the broader FAM bulk flow distribution
at [400,700] km s−1 range. The virialized cloudy regions can also be recognized in this sample, but
they spread over a wider range of bulk flows. Nevertheless, the FAM bulk-density point distribution
resembles its parent distribution.

7.5.2 The velocity dispersion

In terms of revealing most clearly the very local characteristics of the peculiar velocity field, the
volume-weighted velocity dispersion (σv) is the most interesting quantity from theM statistics. The
velocity dispersion is defined as the local velocity deviations from the local measured bulk flow
(Eqn. 7.6). Within the gravitational instability paradigm migration flows of matter are the result of
the primeval tiny perturbations in the density field. These flows are enhanced as the result of the grav-
itational collapse of the mass distribution in certain regions. Therefore, these velocity deviations are
potential tracers of the local gravitational potential. With this, it is expected to measure high veloc-
ity dispersions at high-density regions, while small velocity dispersions at low-density regions whose
kinematics could be dominated by the large scale structure.

Figure 7.10 shows the σv maps for the same C4 catalog along the z−supergalactic plane as in
Fig. 7.7. In all panels contour lines represent exactly the same σv values. The bold contour represents
a “reference” velocity dispersion of σv = 140 km s−1. Regions with values above this σv are indicated
by solid contours, those with smaller values by dashed contours. Although our criterion to divide
high velocity dispersions from the low ones is rather arbitrary, we have chosen this value since it
is very close to the mean velocity dispersion for the three sets (see Table 7.4 column 4). This is
also the velocity dispersion around the LS filamentary structure. In this way, the LS is clearly well
defined by “higher” velocity dispersion contours in the three samples. Note that the LSMock map is
not severely affected by the sampling procedure. This map delineates the same high and low velocity
dispersion values than the LSNbody map and therfore, it is a good representation of the “real” velocity
dispersion map. The LSFAM modeled sample presents the same overall characteristics than the “real”
and “observed” maps. However, the FAM sample contains higher velocity dispersions along the LS-
filament than the other two samples as a result of the FAM failure at these regions (see Section 7.4.2).

Low-density regions can be clearly recognized through their low velocity dispersions. The lowest
measured σv value for the three samples coincides with the center of the Local void ([SGX,SGY] u
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Figure 7.9 — Contour plots of the point-to-point distributions between the density contrast vs the bulk flow
(upper row), velocity dispersion (middle row) and Mach number (bottom row) for the same catalog of the 3
sample sets (N−body, Mock and FAM). Contours represent equal density points in each panel.

[-10,-5]). The quietness of these regions can be interpreted as the result of their dynamics. Voids
evolve as expanding super Hubble-bubbles (Icke 1984) with an almost constant velocity divergence.
Therefore there are no velocity perturbations within these regions. However, these “low” velocity
dispersion regions are larger in volume than the underdense regions. This is because the mildly non-
linear regions, which still have laminar flows, are also dominated by the large scale motions. A point
to notice in the three maps is that independently of the “mean” σv value chosen, the LGE is located in
a region with a very low velocity dispersion of σv ≈ 60 km s−1.

We have also investigated how the velocity dispersion and the density field are related. Nagamine
et al. (2001) pointed out that the velocity dispersion is an increasing function of overdensity (see also
Kepner et al. 1997; Strauss et al. 1998). Willick & Strauss (1998) studied the small scale velocity
dispersion from data finding a linear density dependence of this velocity dispersion. The middle row
of Figure 7.9 shows the velocity dispersion as a function of density for the C4 catalog. There is a clear
correlation between these two quantities as revealed by the three different samples. At the underdense
regions there is a wide range of velocity dispersions, although the density of points decreases at higher
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Figure 7.10 — Volume-weighted velocity dispersion maps for the same C4 catalog and projection than in
Fig. 7.7 for its three different representations. Contour lines represent the same σv values for the three samples.
The thick contour line represents the “average” velocity dispersion of 140 km s−1 within the surveyed volume.

σv. These high contributions are coming from those low-density regions surrounding the high-density
ones where the velocity dispersion increases as a result of the top-hat window size. This could partly
include virialized regions hence. In the case of FAM this effect is magnified as a result of its inherent
problems. At high density regions, the velocity dispersion increases almost linearly with density.
The highest density regions in the N−body sample are separate from the rest of the point distribution
indicating the virialized nature of such structures. These virialized regions are also clearly identified
at the bulk flow panels as those isolated clouds of points from the general distributions.

The similarities and differences between the three different sets are also reflected in their DFs and
CDFs presented in Figure 7.8. These distributions were computed from the same 1000 random spheres
used to compute the bulk flow distributions (contiguous left panels). The distributions show indeed a
very good agreement between the LSNbody and LSMock sets. The LSFAM distribution differs from the
other two DFs in one main aspect. The tail of the FAM modeled σv distribution extends more than
200 km s−1 away than the “real” and “observed” ones. Furthermore, FAM not only predicts regions
with larger dispersions, but also less number of σv values above 200 km s−1. At low σvs the FAM
distribution follows the DF and CDF expected behaviors.

From the CDFs we can notice that most of the LS volume presents velocity dispersions within
the range of [70,250] km s−1. This is a rather “low” range. This may imply that the LS volume is
in general not very dense, or that there are not many large matter concentrations that could perturb
the velocity field. The mean velocity dispersion value is in the order of ≈ 145 km s−1 (see Table 7.4,
column 4).

7.5.3 The Mach number

We have computed the volume-weighted cosmic Mach number M according to Eqn. 7.7. In this
way, eachM estimate corresponds to a real local value and not to an average value as given by other
M definitions (see Nagamine et al. 2001). Since theM number is the ratio between the local bulk flow
and velocity dispersion, for a given bulk flow a low σv will imply a highM value, while a high σv

a lowM. Regions with low velocity dispersions such as the local void, the LGE and the mildly high
density regions will have high M values, while the filamentary structure concerns a “high” velocity
dispersion with a lowM number.

Figure 7.11 shows the correspondingM maps for the C4 catalog. The contour maps are plotted
along the z−supergalactic plane. The contour lines represent the sameM values for the three samples.
The thick bold line represents the “average” M contour, which we have computed by dividing the
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Figure 7.11 — Volume-weighted cosmic Mach maps for the same three representations of the C4 catalog. The
projection corresponds to that of Fig. 7.7. The contour lines represent the same M values for the three panels.
The thick contour line represents the “average” value ofM= 4.5

average bulk flow in Fig. 7.7 and the average velocity dispersion of Fig. 7.10. As expected, the LS
filament may be identified with the lowM number that crosses the map from the −x to +x region. The
M number decreases inward the central regions of the LS. This may hint a density dependence. The
local void, the LGE and mildly density regions are enclosed by high M estimates. The three maps
present the same general characteristics: a well delimited LS region, the two cold spots at the top of
the maps and the large cold area around the local void. The FAM map presents a smaller cold region
(continuous contours) as a result of its larger measured velocity dispersions. Comparing these maps
with the those for the velocity dispersions, we see that the former are the negative of the latter ones.

This might imply that the M number could also depend on the local density. In the bottom row
of Fig. 7.9 we evaluate whether there is a possible relation between these two quantities. One can
recognize that at the underdense regions (0< δ), theM estimates spread over the whole range of values,
from 15 down to almost 0. This is a consequence of the same large spread observed in the bulk flow
(top row). One of the coldest regions is located just at the border of the map (S GX,S GY) ≈ (−26,0),
a low density region close to the GA. The kinematics of this region is completely dominated by this
structure as revealed by the corresponding bulk flow maps. At higher overdensities (δ > 0),M drops
drastically and presents a tighter point distribution. Still, there is not a clear correlation betweenM and
the bulk flow. The virialized regions correspond to those separated clouds atM> 2 in the N−body case.
In the Mock-observed and FAM samples this is not clear. Despite the differences between the FAM
bulk flow and velocity dispersion with respected to the full and observed samples, itsM density point
distribution resembles the Mock-observed one.

The Mach distribution functions and cumulative ones from the 1000 random spheres are presented
in Figure 7.8 (top and bottom right-most panels). The measured Mock-observed Ms show a good
concordance with the N−body Mach distribution. The FAM distribution reproduces in general the
same behavior as the full and observed samples. The CDFs indicate that FAM predicts slightly more
“colder” regions and less “hot” regions as a result of the higher measured σvs. The strong similarities
between these catalogs are strengthened by the averageM numbers from the three catalog sets,M =
4.6±0.6 (see Table 7.5, column 4).

These results reveal the dominant role of the large scale structure over the LS region. The relative
high volume-weightedM number indicates that the galaxy distribution within a volume of 30 h−1Mpc
radius is mainly dominated by a large coherent bulk flow, partly induced by the GA region. However,
the quadrupole mass distribution around the LS composed by the GA and PP is also responsible for
such velocity quietness within this region, as indicated by the bulk flow and velocity dispersion maps.
Under these circumstances is therefore not surprising that the LGE is rather cold. The LS represents a
peak in the σv−maps or a valley in theM-maps as a result of its dynamical state prone to virialization.
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V ( km s−1)
Sample M-W M-W (DTFE) V-W (DTFE)

N−body 551±51 549±53 535±46

Mock 557±54 552±59 533±47

FAM 536±66 555±70 535±47

Table 7.3 — Average local bulk flows (V) for the LSNbody, LSMockand LSFAMfrom the four catalogs of each
sample. The quantities were computed in three different ways: mass-weighted at the particle position (M-W),
volume-weighted at the same particle positions (M-W DTFE), and volume-weighted at random positions (V-W
DTFE).

σv ( km s−1)
Sample M-W M-W (DTFE) V-W (DTFE)

N−body 619±67 278 ±26 139± 14

Mock 609±49 276±16 142± 12

FAM 635±32 400±35 156± 20

Table 7.4 — Average local velocity dispersions (σv) computed for the same set of samples as in table 7.3.
Quantities were computed in the same ways.

M
Sample M-W M-W (DTFE) V-W (DTFE)

N−body 1.6±0.2 2.6±0.3 4.6±0.5

Mock 1.7±0.2 2.6±0.4 4.5±0.6

FAM 1.6±0.2 2.2±0.3 4.6±0.5

Table 7.5 — Average local cosmic Mach numbers (M) computed for the same samples and methods as in
tables 7.3 and 7.4.

7.6 The Mach statistics at the discrete particle positions

The volume-weighted analysis gives a fair estimate of the Mach statistics at any spatial position with-
out depending of the galaxy distribution. However, the observational estimates only correspond to
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measurements at the discrete galaxy positions. The resulting Mach estimates are then biased toward
high-density regions as most observations.

In this section we investigate the effect of performing the Mach statistics only at the discrete object
positions. For this we will consider two approaches. The first one is by using only the information
given by the object distribution, a mass-weighted statistics. The second one will be by using the
volume-weighted estimates of Section 7.5, but performed only at the particle positions.

As before, we have drawn 1000 spheres of 5 h−1Mpc radius for each catalog from the 3 sample sets.
The spheres have been centered at a particle position, and only those spheres containing more than 2
elements were included for the analysis. This was done in order to avoid zero velocity dispersions, and
therefore undefinedM estimates. The same sample of spheres was used for the N−body sample.

7.6.1 The particle distribution case: mass-weighted

We have computed theM statistics from the discrete particle positions of the 3 sample sets, LSNbody,
LSMock and LSFAM . The plots in this section refer to the C4 catalog. We only present the maps for
the N−body catalog because our intention is to illustrate how these maps change when using mass-
weighted quantities in comparison with the volume-weighted maps.

Figure 7.12 — Bulk flow, velocity dispersion andMmass-weighted maps for the C4 N−body catalog along the
z−supergalactic plane.

Computing the M-statistics at the particle distribution will sample mostly high-density regions,
while the low density ones will be avoided. We have illustrated this in Figure 7.12. It concerns the
contour maps for the C4 N−body catalog for the bulk flow (left panel), velocity dispersion (middle)
and Mach number (right panel). The thick “mean” contours in the three panels represent the same
average contours of the volume-weighted maps, i.e., V = 600 km s−1,σv = 140 km s−1 and M= 4.
The three maps clarify the problems of mass-weighted quantities in the large region devoid of data
which corresponds to the Local void ([S Gx,S GY] = [−10,−10]), and where no information has been
extracted. Unlike the volume-weighted case, the LS region does not show a dominant bulk flow. In
general there are less regions with bulk flows above the 600 km s−1 level. The peak at V ≈ 1000 km s−1

corresponds to the region where the LS connects with the GA ([S GX,S GY] = [−20,20]) and coincides
with its volume-weighted counterpart. The velocity dispersion map looks more similar to the volume-
weighted one at high-density regions. This is because these are the best mapped regions for the mass-
weighted case. Measurements indicate larger σvs than the volume-weighted ones (see also Fig. 7.1).
As in the continuous case, the LS filament contains the largest measured σv. By contrast, no velocity
dispersion measurements have been carried out at low-density regions because of the lack of objects
to perform this measurement. As a consequence of the discreteness in both quantities (V and σv) the
M-map is severely affected. Although the LS is presented as a “cold” region, it is less colder than in
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its volume-weighted counterpart. From these maps one could conclude that the LS volume is “warm”,
much more than in the volume-weighted case.

Figure 7.13 — Bulk flow, velocity dispersions andM distributions for the 3 set of catalogs (top panels). The
respective cumulative distribution functions are shown in the lower panels for each quantity.

The discrete behavior of the maps can be noticed in the corresponding DFs and CDFs in Fig-
ure 7.13. The left column shows the local bulk flows, the central column the velocity dispersions
and the right column the Mach numbers. The N−body, Mock and FAM local bulk flow distributions
resemble each other. This is because this quantity is a large scale characteristics of the field. The
spike at V ∼ 1000 km s−1 corresponds to the region near the GA which is highly overdense and whose
kinematics is dominated by the GA. The average measured bulk flows for the three set of samples
(V ≈ 550± 60 km s−1) are consistent with each other and with the volume-weighted case, be it that
they are ∼ 20 km s−1 larger.

The velocity dispersion panels reveal the effects of using a discrete sample. At low σvs the three
distributions are very similar since these correspond to low density regions. At larger σv differences
are clearly noticeable. The FAM dispersions at these high-density regions are not related anymore to
the real ones as shown by their CDFs. The discrete jumps at high σvs correspond to the very local
virialized regions, the galaxy clusters. These σv distributions are broader than in the volume-weighted
case because particle velocities are more affected by two body relaxation processes. The distributions
expand over a large range of velocities and with measurements of 400 km s−1 larger than in the volume-
weighted case. The corresponding average σv for the four catalogs (σv ≈ 620± 50 km s−1) differs
substantially from the volume-weighted ones (see Table 7.4, second column).

The large σv values shift the Mach DFs toward lower values which peak atM∼ 0.8. This clearly
indicates that such distributions are dominated by the sampling at high-density regions. The long tails
of the DFs toward high Mach values (> 4) are the result of small velocity dispersions measured in void
regions, introducing noisy estimates of the Mach number.

We can conclude that when using mass-weighted quantities the nearby cosmic region is in general
much “warmer” than in the volume-weighted case, as indicated by the average M estimates of ∼
1.6±0.2 (see Table 7.5, second column).
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7.6.2 The particle distribution case: the DTFE

We have performed the sameM statistics as in Sec. 7.6.1 but using the volume-weighted fields. Our
intention is to compare in a fairer way the mass-weighted estimates from the discrete particle positions
with respect to the volume-weighted quantities at exactly the same locations. For this, each sphere was
located at the same position as in the mass-weighted case. This will bias measurements toward the
high density regions. Therefore, the Mach DFs and CDFs will be shifted toward lower values than in
the volume-weighted case.

Figure 7.14 — Volume-weighted distributions for the local bulk flow, velocity dispersion andM for the 3 set of
catalogs, computed at the particle positions as in Fig. 7.13.

Figure 7.14 shows the distribution and cumulative distribution functions for the bulk flow, velocity
dispersion and Mach number for the three representations of the C4 catalog.

The bulk flow distributions are very similar to each other, and also to the mass-weighted distribu-
tions. The small peak at V = 1000 km s−1 coincides with its mass-weighted counterpart, an indication
of the GA effects around its surrounding areas. The average bulk flows are consistent with the other
methods, (see Table 7.3, third column). The velocity dispersion DFs are more compact than in the
mass-weighted case as a result of mitigating shot-noise and two-body relaxation effects.

The average σvs are much smaller than the mass-weighted, but still somewhat larger than the
volume-weighted random measurements (Table 7.4). This is a result of performing biased measure-
ments toward high density regions. The large departure in the corresponding FAM CDF indicates that
its dispersion is not related at all with the real velocity dispersion.

The fact that the Mach distributions are very similar to each other, despite the σv differences,
denotes that the surveyed volume is mainly dominated by the bulk flow. This volume-weighted sam-
pling at high-density regions indicates that the LS volume is not so “warm” as indicated by the mass-
weighted estimates but “cold” (Table 7.5), where the 〈M〉 = 2.6±0.4 for the full and observed cases,
while = 2.2±3 for the FAM case.

7.6.3 M mass-weighted vsM volume-weighted: a point-to-point comparison

We have performed a point-to-point comparison between the mass and volume weighted methods. We
have only used estimates at the same particle positions.
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Figure 7.15 — Point-to-point comparisons of the mass-weighted vs the DTFE volume-weighted quantities for
the 3 representations of the C4 catalog.

Figure 7.15 shows the point-to-point comparisons between the mass-weighted and volume-
weighted estimates for the three representations of the C4 catalog. The solid lines delineate the
one-to-one relations. Because the bulk flow is a characteristic measurement of the large scale mat-
ter distribution, it should not be severely affected by sparse sampling effects, and it should not depend
on the very local density contrast of the region under study. This is indeed showed in the top row
panels.

The mass-weighted estimates give consistently higher values for the velocity dispersions than the
volume-weighted ones. The reason is twofold. The first one concerns sampling covering effects.
While the volume-weighted velocity represents a continuous field, it is not for the discrete case. Thus,
when the calculation is performed near mildly and non-linear density regions, the DTFE velocities
vary more smoothly than in the discrete case. This is also the reason for the horizontal lines of points
at high σv. While the mass-weighted dispersions are the same within the galaxy clusters, they are
not in the volume-weighted case where they vary smoothly. This also explains why at low density
regions the mass-weighted velocity dispersions are smaller than the volume-weighted ones. In the
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former, only 2-3 enclosed particles could characterize σv, while in the latter this is not the case. Each
enclosed region will always contain the same amount of grid-cells with smoothly vary velocities to
characterize the velocity dispersion. The second effect concerns to the size of the tophat kernel used
in the procedure (5 h−1Mpc). This radius is large enough to enclose high density peaks together with
lower density regions, introducing an extra noise and bias in the mass-weighted case, increasing the
respective estimates.

As a consequence of the differences in σv between the two methods, the volume-weighted esti-
mates predict in general much “colder” regions than in the mass-weighted case for the full, observed
and modeled samples. However, the “coldest” regions are much colder in the mass-weighted case than
in the volume-weighted one as deduced from their σv behaviors.

7.7 Discussion and Conclusions

We have presented a study of the kinematics of the large-scale vs small-scale structure for the Local
Supercluster region within a volume of 30 h−1Mpc from the Local Group. For this we have computed
the cosmic Mach number. This is defined as the ratio between the bulk flow within a volume to the
velocity dispersion within that volume. The bulk flow is a measurement of the large scale perturbations,
while the velocity dispersion is a measurement of the small scale components of the power spectrum.

We have used a set of four velocity fields extracted from N−body simulations aimed to reproduce
the nearby mass distribution of large-scale structures (& 5 h−1Mpc). These simulations also mimic
their main dynamic characteristics. We have addressed how sparse sampling could affect the Mach
statistics by constructing Mock “observed” catalogs according to the NBG catalog of Tully (1988).
We have also considered the effect of dealing with modeled velocity fields, such as those from the
FAM modeling.

We have used volume-weighted quantities to compute the Mach statistics since these are closer to
the analytical predictions and suffer less from systematic effects: two-body relaxation and sampling
problems. This has been achieved by applying the Delaunay Tessellation Field Estimator [DTFE] for
peculiar velocities. We have applied this method to discrete N−body, Mock and FAM sets to render
full spatial-covering and volume-weighted velocity fields. By studying the velocity dispersion we have
found that such DTFE fields are not affected severely by grid-resolution effects. A direct implication of
using Mock samples in the DTFE velocity fields is that the interpolated fields would differ more at high
density regions than at low density regions. Due to the DTFE characteristics the velocity dispersion at
high-density regions are smaller as for any discrete velocity field.

The Mach statistics was performed over spheres of 5 h−1Mpc radius in the LS volume. An unbiased
volume-weighted analysis by placing randomly spheres within the volume, showed that our results
were not bias toward the sampled regions. Also, they represented a fair estimate of the coldness of
warmness of the LS volume. We found that the LS volume is dominated by an average coherent bulk
flow of 530±47 km s−1 for the three sample sets, illustrated by the bulk flow maps for a given catalog.
Furthermore, this is not dependent of the local measured density. The bulk flow increases in amplitude
toward the GA region and decreases toward its opposite direction, the PP region. This implies that the
GA is an important source for such coherent motion, but also the other major structures around the
surveyed volume such as the PP supercluster.

The velocity dispersion proved to be the most interesting quantity of this statistics. In average
we measured a σv = 140± 16 km s−1 for the three sample sets. However, the FAM dispersion were
consistently higher than in the other two cases as result of its attached problems. We found that σv

strongly depends on the local overdensity, indicating that the density field is the amplifier and source
for such velocity dispersions. The highest measured velocity dispersions correspond to the highest
density regions. The fact that the average σv is so low for the LS volume is an indication that this
volume is filled out by large underdense regions. Indeed, on average within the LS volume the 77% of
the density field corresponds to underdense regions, while the other 23% to high-density regions. This
is reflected in theM number. We measured aM = 4.6± 0.6 for the three sets. This implies that the
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LS volume is a rather “cold” region dominated by the influence of the large scale structure. Due to the
large bulk flow influence, theM number is a weakly decreasing function of overdensity.

A direct comparison of our results with those reported in the literature is not feasible since the
earlier measurements were mass-weighted and heavily weighted by the densest regions. Therefore, we
performed theM-statistics by placing spheres only at the particle positions for the discrete and DTFE
continuous velocity fields. The bulk flow estimates did not represent any considerable variation with
respect to the volume-weighted measurements. Both techniques gave a V ≈ 550 km s−1.

The velocity dispersion revealed very significant differences between the two techniques. The
measured mass-weighted velocity dispersion indicated a σv = 620± 50 km s−1 for the three samples.
This clearly indicates that the sampling is biased toward high-density regions. At these regions, σv

is dominated by virialization and two-body relaxation processes. By contrast, the volume-weighted
measurements at the same particle locations gave a lower value of σv = 278±26 km s−1 for the full and
observed fields, but a value of 400±35 km s−1 for FAM. This is an indication of the FAM failure for
modeling motions at high-density regions. A direct comparison between mass-weighted and volume-
weighted velocity dispersions indicated that the largest differences are at high-density regions. The
discrete DTFE expected measured σvs are in good agreement with those reported by Tonry et al.
(2000) from the surface brightness fluctuation (SBF) survey (σv = 312±24 km s−1), and also with the
results from (van de Weygaert & Hoffman 1999, σv ≈ 280 km s−1).

The correspondingM values are different for both techniques. The mass-weighted measurements
give a M = 1.6± 0.2, while the volume-weighted M = 2.6± 0.5. These results could bring a strong
discrepancy because while the mass-weightedM-statistics could indicate an open universe (denoted
by the high velocity dispersion), the corresponding volume-weighted measurements indicate a low-
density universe. However, these measurements correspond to the same low-density universe. Hence,
the mass-weighted one is a mere reflex that the statistics has been heavily weighted by the densest
regions. The volume-weighted result at the particle position is consistent with van de Weygaert &
Hoffman (1999), and in principle also with the mean value reported by Nagamine et al. (2001) (also
the mass-weighted one). Because the local cosmic region is in general a low density one, dominated
by a large coherent bulk flow, it is then expected to be “cold”.

We have shown that the effects of incomplete sampling (Mock catalogs) are not important in the
M-statistics provided one deals with the 3D velocity field. However, this statistics is affected when
one has to infer the peculiar velocity field by any method, specially for the velocity dispersion where
one obtains higher values. Although, the use of volume-weighted quantities circumvent this problem.

The fact that the FAM sample has been corrected for unaccounted large scale influences and tidal
effects and that it manages to recover the M-numbers, implies that these two unaccounted external
effects should be taken into account for this kind of studies. The analysis from Nagamine et al. (2001)
about the cosmic Mach number lacks from tidal information. Although they did correct for the miss-
ing very large scale contributions, they did not take into account the more nearby-local contributions
like the shear velocity. This tidal velocity component could affect mainly the velocity dispersion of
galaxies, mainly in the case of the LGE, giving therefore, different values of the Mach number.

We conclude that the Mach statistics is not a good unbias “temperature” estimator. It strongly
depends of how one proposes the analysis, volume-weighted or mass-weighted. A very general anal-
ysis independent of the particle positions indicates that the LS volume is rather “cold”. By contrast, a
volume-weighted biased analysis toward the well sampled regions indicate that the LS is “cold”. How-
ever, this gets “warmer” when the analysis is performed in a mass-weighted fashion. Nevertheless, all
employed methods agree on the fact that the LS is fully dominated by a coherent bulk flow mainly
exerted by the GA region.

7.A Volume & Mass weighted quantities

When one wishes to obtain reliable estimates of statistical parameters from a given observed or
computer-simulated field, one faces the complication of dealing with discrete, non-uniform fields.
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A major issue concerns the fact that analytical/theoretical predictions concern quantities evaluated
uniformly throughout a cosmic volume, while observed or simulated results are biased toward the
measured particle (matter) distribution.

The usual strategy to deal with such discrete data sets is to smooth them with a filter to yield a
continuous field. In the case of the peculiar velocity field several authors (e.g. Bertschinger et al. 1990;
Juszkiewicz et al. 1995; Lokas et al. 1995) filtered galaxy velocities with a Gaussian kernel of a fixed
length for reducing problems of noisy data, sparsely sampled underdense regions and to obtain the
velocity field on a regular grid.

Often, without explicitly stating so, most smoothing procedures are implicitly mass-weighted. For-
mally, a mass-weighted field is defined as:

vmass(x0) ≡

∫
dxv(x)ρ(x)WM(x,x0)
∫

dxρ(x)WM(x,x0)
, (A7-1)

where WM(x,x0) is the used filter function . Effectively WM determines the weight of a mass element.
Usually the filter function is not dependent on the location x0, but on the distance x−x0. The aim
of this procedure is to interpolate the velocity field values at random sampling locations to those at a
regular grid, weighing the contribution by each sampling point by the filter function value. When the
density field has been sampled discretely its effective density field is given by

ρ(x) =
∑

i

δD (x−xi) , (A7-2)

where δD(x−xi) is the Dirac delta function. The resulting mass-weighted filtered field thus becomes

vmass(x0) =

∑

i

wiv(xi)

∑

i

wi

, (A7-3)

where wi ≡WM(xi,x0). Because analytical results involving two fluctuation fields, ρ(x) and f (x), are
more cumbersome to evaluate, most theoretical work relates to the simpler volume−weighted filtered
quantities. In this way, the volume-weighted velocity field ṽ is given by

ṽ(x0) ≡

∫
dxv(x)WV (x,x0)
∫

dxWV (x,x0)
, (A7-4)

where WV (x,x0) is the applied weight function. Hence, for a successful comparison of the analytical
results with the observed ones, and for a full space determination of the desired quantities, it is of
crucial importance to have a reliable estimator of volume-average quantities. The problem turns now
to produce a realistic and very accurate interpolation from a sparsely sampled velocity field to the
whole sampling volume (regular grid) without loosing information at any scale.

Bernardeau & van de Weygaert (1996) proposed the use of Voronoi and Delaunay tessellations as
natural filters and interpolation volumes in multi-D space. They explicitly showed that the zero-order
Voronoi estimator is the asymptotic limit for volume-weighted field reconstructions from discreetly
sampled field values. They extended this to the first order Delaunay estimator showing its the superior
performance in reproducing analytical predictions. In Chapter 6 an interpolation method for peculiar
velocities was described. This is based on the Delaunay Tessellation Field Estimator (Schaap 2005;
Schaap & van de Weygaert 2000). This method has the purpose of rendering a fully volume-covering
reconstruction of a peculiar velocity field from a set of discrete data velocity points. The method
suppresses various discreteness effects such as shot-noise. Combining the volume-average prescription
from Bernardeau & van de Weygaert with our velocity interpolation method, it is possible to compute
volume-weighted quantities for all space under consideration.
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7.B The catalog sample

We present in this appendix the four catalog realizations for one set, the Mock-observed sam-
ple. For reasons of simplicity, we only present one 2D-section through the 3D catalogs along the
z−supergalactic axis for all catalogs and for all maps. Each catalog is indicated by the upper left label:
C1,2,3,4. We present maps for the density contrast, δ (Figure 7.16), the bulk flow V (Figure 7.17),
the velocity dispersion σv (Figure 7.18) and the Mach numberM (Figure 7.19). For each set of plots
the contours represent the same values for the four catalogs. The bold lines represent the respective
average quantity, regions above this value are represented by continuous contours, while those below
that value by broken lines. All quantities have been computed by top-hat filtering of 5 h−1Mpc radius.
As can be noticed, all maps for each quantity share the same large scale characteristics. The main
structures such as the LS and Local void are clearly visible in Figs. 7.16, 7.18 and 7.19. In all catalogs
the strong influence of a bulk flow exerted by the GA is clearly noticed (Fig. 7.17). The LS is recog-
nized by its large velocity dispersion and therefore its lowM number, while the Local void by its low
velocity dispersion and largeM number (Figs. 7.18 and 7.19).

The similitudes and differences between the different catalogs can be noticed on the distribution
functions and cumulative distribution functions for the bulk flow, velocity dispersion and Mach number
(Figure 7.20). The C2 and C4 catalogs display somewhat larger bulk flows than the other two catalogs,
but less regions with the same V values. All catalogs have similar σv distributions. The C2 and C4
M distributions indicate that these catalogs are colder than the other two.



228 Chapter 7: The coldness of the Local Cosmic Environment

Figure 7.16 —
Volume-weighted
density contrast
maps. The thick
continuous line rep-
resents the δ = 0
contour.

Figure 7.17 —
Volume-weighted
bulk flow maps. The
average contour is
the LGE velocity of
600 km s−1.
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Figure 7.18 —
Volume-weighted
velocity dispersions
maps. The bold line
represents the average
velocity dispersion of
σv = 140 km s−1.

Figure 7.19 —
Volume-weighted
Mach maps. The
average Mnumber
is the ratio between
the LGE velocity and
the average velocity
dispersion, hence = 4
(rounded number).
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Figure 7.20 — Volume-weighted distributions for the bulk flow, velocity dispersion and Mfor the 4
catalogs. The calculations have been performed at completely random locations within the LS volume,
independently of the particle positions.
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Weak lensing reconstruction of filaments

J. P. Dietrich, E. Romano-Dı́az, & P. Schneider.

W present a study based on weak lensing analysis, the Aperture multipole moments statistics,
to detect filaments connecting neighbouring galaxy clusters. Within the large scale structure of

the universe, filaments exist between highly clustered and aligned clusters. This should be notable
in the reconstructed surface mass distribution around pair of clusters with weak gravitational lensing.
Observationally, the characterization of filamentary patterns remains ill-defined by absence of a well
defined criterion for identification. The Aperture multipole moments technique is a promising method
to quantify observationally the presence of filaments. It is therefore necessary to establish the reliability
and confidence level of such method before applying it to real observations. In the present chapter
we have applied this technique to quantify the presence of a filament connecting two neighboring
clusters in carefully designed constrained N−body simulations. Results show that although the weak
lensing method employed is not the most ideal technique to detect filaments, there is indeed a small
yet detectable lensing signal that can already be observed using available instruments.
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8.1 Introduction

Within the Gravitational Instability paradigm the large scale structure in the universe of the distribu-
tion of galaxies is the result of initially small Gaussian random density fluctuations which have been
amplified by gravity. Objects such as galaxies evolved from “peaks” in the initial density field. This
structure of galaxies consists of rich and poor cluster of galaxies connected by filaments and sheets
and with large regions devoid of galaxies in between. This filamentary structure which resembles a
“cosmic foam”, has been observed since the earliest galaxy surveys (e.g. Joeveer & Einasto 1978; de
Lapparent et al. 1986; Giovanelli et al. 1986; Geller & Huchra 1989; Vogeley et al. 1994; Shectman
et al. 1996) and more recently at higher redshift by Möller & Fynbo (2001), Ebeling et al. (2004) and
Baugh et al. (2004); Doroshkevich et al. (2004) on the 2DF and SDSS galaxy surveys.

Zel’dovich (1970) was among the first to realize that shear plays an important role in the structure
formation process. The collapsing of density perturbations is not arbitrary but it follows specific direc-
tions determined by the axes of the deformation tensor (see also Doroshkevich 1970; Zel’dovich et al.
1982; Shandarin & Zeldovich 1989). Density perturbations collapse first along one direction giving
origin to planar pancakes, these drain into filaments (second collapse along the second direction), and
finally collapsing into clusters. The validity of the Zel’dovich approximation extends up to regions
where the density contrast is within the the linear regime, δ ≤ 1 (where δ = ρ/〈ρ〉 − 1 is the density
contrast, ρ is the local density and 〈ρ〉 is the average density of the universe), although it gives reason-
able results well beyond such limit. Several authors have worked along the Zel’dovich path in order to
extend such formalism into the quasi non-linear regime. An extensive review of the different methods
may be found in Sahni & Coles (1995). On the other hand, numerical simulations of the growth of
initial Gaussian density fluctuations into the non-linear regime have succeeded in reproducing such
filamentary structure of the universe (e.g. Klypin & Shandarin 1983; Davis et al. 1985; Bertschinger
& Gelb 1991; Evrard et al. 2002).

Bond, Kofman, & Pogosyan (1996) showed that the filamentary “web” that defines the final state
in the N−body simulations is present in the initial density fluctuations. In other words, the pattern of
the web is defined largely by the rare density peaks in the initial fluctuations, with the subsequent non-
linear evolution of the structures bringing the filamentary network into sharper relief. Furthermore, the
filamentary web is a consequence of the distribution and spatial coherence of the strain (shear) field in
the medium. They found that filaments exist between highly clustered and aligned clusters, and that
this should be especially notable in the mass distribution around systems of clusters reconstructed with
weak gravitational lensing techniques which uses the projected strain field.

Because of the greatly varying mass-to-light ratios between rich clusters and groups of galaxies
(Tully & Shaya 1999) it is very challenging to convert the measured galaxy densities without mak-
ing further assumptions. Dynamical and X-ray measurements of filaments will not yield to accurate
mass values, as filamentary structures are probably not virialized. Weak gravitational lensing, which
is based on the measurement of the shape and orientation parameters of faint background galaxies,
is a model-independent method to determine the surface mass density of clusters and filaments. This
method makes no assumption related to the dynamical state of such structures and the nature of the
deflecting matter. However, because of the random orientation of the unlensed faint background galax-
ies, every weak lensing mass reconstruction is unfortunately an inherently noisy process, and therefore
the expected surface mass density of a single filament is too low to be detected with current telescopes
(Jain et al. 2000).

Bond et al. (1996) showed that the surface mass density of a filament increases towards a cluster.
Therefore, filaments connecting neighboring clusters (bridges) should have surface mass densities high
enough in order to be detected by weak lensing analyses (Pogosyan et al. 1998). There have been some
reports that such filamentary structure have been detected through weak lensing studies (Kaiser et al.
1999; Gray et al. 2002; Clowe et al. 1998). Nevertheless, the possible detections remain somewhat
uncertain due to several aspects, foreground structures in front of filaments, edge and systematic effects
on the observational data, etc.

A significant detection of a bridge between galaxy clusters and the estimation of its surface mass



8.2. CONSTRAINED REALIZATIONS 233

density is of utmost importance in observational cosmology and would provide important constraints
for the theory of structure formation.

In this chapter we address the question of how to identify a bridge between two neighboring clusters
using weak gravitational lensing. Normal weak lensing mass reconstructions have strongly correlated
error bars and therefore make it difficult to assign a significance level to a limited part of a structure
(like a bridge between to clusters). Nevertheless, there is one method to avoid this problem, the
aperture mass statistic. Aperture masses are masses inside a circle minus the mass inside an annulus
around the circle. This method allows one to easily determine the SN ratio inside the region covered
by the weight function. The problem here lies in finding a suitable weight function.

The concept of aperture masses can be generalized to multipoles of the mass distribution inside
a circle (Schneider & Bartelmann 1997). In this study, we hope to find a suitable combination of
aperture masses and multipole moments to identify a bridge. Furthermore, we need to develop a
statistic to quantify the significance of a bridge (or no bridge). For these reasons, we have applied
this weak lensing technique to controlled N−body experiments of bridges between clusters, where
one could know in advance the main characteristics of such configuration. This can be done by using
the Constrained Realizations methodology [CR] for N−body simulations (Bertschinger 1987). This
technique has proved to be very useful for investigating in a very consistent and systematic way the
configuration and dynamical evolution of cosmic structures like clusters of galaxies and voids (e.g. van
de Weygaert & van Kampen 1993; van Haarlem & van de Weygaert 1993).

In this chapter we have developed a statistics based on weak gravitational lensing to quantify the
presence of a filament between two galaxy clusters by using N−body constrained realizations aimed to
mimic as close as possible the real configuration presented by two Abell clusters, Abell 222 and Abell
223. Observational evidence suggests the presence of a bridge connecting the two clusters (Proust
et al. 2000; Dietrich 2002). This configuration seems ideal to test the aperture mass statistic technique.

The chapter is structured as follows, we first review the Constrained Realizations algorithm. In
section 3 we present the constrained initial density fields for filaments. In section 4 we evolve the
initial fields into the non-linear regime using N−body simulations. In section 5 we performed lensing
simulations of the given system. The quantification of the clusters and connecting filament is pre-
sented in section 6. The application of the aperture multipole moments is presented in section 7 and
conclusions in section 8.

8.2 Constrained Realizations

Constrained Realizations [CR] were first explored by Bertschinger (1987) who developed a method
to construct a realization of a Gaussian random field which obeys various constraints based on the
path integral formalism from quantum field theory. To sample the fourier modes he resorted to Monte
Carlo numerical methods. This work extended the statistical treatment of Bardeen et al. (1986, BBKS)
of the peaks of Gaussian random fields by allowing one to construct samples of the field subject to
constraints. He demonstrated by means of the path integral description that the probability function of
the constrained field around a peak given by BBKS is the most likely one, in the sense of maximizing
the probability density. He found that a constrained field f , can be written as the sum of a mean field
f̄ , completely fixed by the values and forms of the constraints, and a residual field F. This residual
field, F, provides random noise which is added to the signal f̄ ,

f (r) = f̄ (r)+F(r) . (8.1)

However, this first implementation was rather elaborated and when the degrees of freedom and the
number of constraints increase to more than a few, the system converges so slowly that the algorithm
becomes prohibitively expensive and impractical.

Bertschinger’s method was extended by Binney & Quinn (1991) to a formalism in which the basis
functions are spherical harmonics, rather than plane waves. For a localized set of constraints, such as
the presence and shape of a peak at the centre of the simulating box, the problem can be described by
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a few spherical harmonics and the problem can be solved exactly and not iteratively. The drawback of
this technique is that it can be applied only in the case of quite localized constraints defined around an
obvious centre of symmetry.

Hoffman & Ribak (1991) made the crucial observation that the statistical properties of the ran-
dom field F are independent of the numerical values of the constraints themselves provided that the
constraints are linear functionals of the field f . In this way, the problem of generating a constrained
realizations of a Gaussian field can be solved exactly and has a simple and elegant solution without
involving iterations.

van de Weygaert & Bertschinger (1996) worked out the CR formalism along the lines of the
Hoffman-Ribak method for an arbitrary number of density, velocity and gravity field constraints by
means of a Fourier space description. With this implementation, a peak or dip in the density field
can be characterized by a set of 21 physical constraints, including its scale, position and orientation,
density, velocity and velocity gradient.

Appendix 3.A of Chapter 3 contains a description of the general formalism for constraining a
Gaussian field. In this chapter we will discuss a particular implementation of this formalism. Here
we will first describe the principal aspects and discuss the constraints involved in setting up a cluster-
bridge-cluster configuration.

8.2.1 The Hoffman-Ribak formalism

The construction of a constrained realization of the field f (r) subject to a set of M constraints:

Γ = {Ci ≡Ci[( f );r]|ri , i = 1, . . . ,M} , (8.2)

can be done in five stages (Hoffman & Ribak 1991; van de Weygaert & Bertschinger 1996). Equation
8.2 implies that the linear functionals Ci of the field f are imposed to have specific values ci at ri.

1. Create a random, unconstrained realization of the field f̃ , which is a homogeneous and isotropic
Gaussian random field whose statistics is determined solely by the power spectrum P(k).

2. Calculate for this particular realization f̃ , the values c̃ of the constraints {Ci(r)|ri , i = 1, . . . ,M}.
These variables can be looked upon as defining another set of constraints, Γ̃ = {c̃}. This a poste-
riori set of constraints is evaluated at the positions of the original constraints and has the values
of this specific realization.

3. Calculate for this “random” constrained set Γ̃ the corresponding mean field expected as if the set
was chosen initially,

¯̃f = 〈 f̃ | Γ̃〉 = ξi(r) ξ−1
i j c̃ j , (8.3)

where ξi j represents the constraints’ correlation matrix, ξi j = 〈CiC j〉, and ξi(r) is the cross-
correlation between the field and the ith constraint, ξi(r) = 〈 f (r) Ci〉.

4. Evaluate the residual field F̃ of the realization from the given particular realization and the
calculated mean field Γ̃ as

F̃(r) = f̃ (r)− ¯̃f (r) . (8.4)

The residual field F̃ thus generated is the residual field of a particular realization restricted to
the desired constraints, Γ.

5. Evaluate the desired mean field f̄ , according to f̄ (r) = 〈 f (r) | Γ〉 = ξi(r) ξ−1
i j c j, and add it to the

residual field F̃(r) to obtain a particular realization of the desired constrained Gaussian random
field f (r):

f (r) = f̃ (r)+ ξi(r) ξ−1
i j (c j− c̃ j) . (8.5)
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The constructed field f (r) obeys the imposed constraints and replaces the unconstrained field f̃ (r).
Note that there is a one-to-one correspondence between the trial field f̃ (r) and the constructed one
f (r). Furthermore, the ensemble of realizations produced by this algorithm properly samples the sub-
ensemble of all realizations constrained by Γ. The algorithm is exact and involves the creation of only
one random unconstrained realization and the calculation of the mean field under the given constraints.
There is not restriction over the number of constraints and these can be in a very large number, and they
can be imposed on the field itself or on any linear functional of it (see van de Weygaert & Bertschinger
1996).

8.2.2 The cluster-bridge-cluster configuration

Bond, Kofman, & Pogosyan (1996) realized the importance of the tidal field in shaping the overall
outline of the web-like pattern in a given region (see also van de Weygaert 2002). This relation may
be traced back to a simple configuration, that of a “global” quadrupolar matter distribution and the
resulting “local” tidal shear at its central site (see van de Weygaert & Bertschinger 1996). Such a
quadrupolar primordial matter distribution will almost by default evolve into a cluster-filament-cluster
configuration which appears so prominently in the cosmic foam. The non-local nature fo the tidal
shear constraint can be observed from the expression of the tidal tensor expressed in terms of the
density distribution,

Ti j(r, t) =
3ΩmH2

8π

∫
dr′ δ(r′, t)

{3(r′i − ri)(r′j− r j)− |r′− r|2δi j

r′− r|5
}
− 1

2
Ωm H2 δ(r, t)δi j , (8.6)

one can immediately observe that any local value of T i j has global repercussions for the generating
density field. In Eqn.8.6, H represents the Hubble constant in units of km s−1 Mpc−1, Ωm is the
cosmological matter density parameter, δ represents the density contrast, and δi j is the Levi-Civita
tensor. The strong correlation between the anisotropy in the cosmic force field, and the presence of
anisotropic features in the density field was extensively discussed by van de Weygaert (2002). It is one
of the primary agents behind the cosmic web structure.

There is a strong correlation between the compressional components of the tidal field and the
presence of a dense filamentary structure or, similarly less pronounced, wall-like patterns. Therefore,
the formation of the web pattern follows the directions outlined by the primordial tidal field, mainly
by its compressional components (van de Weygaert 2002). The primeval tidal field is a consequence
of the tiny matter density fluctuations in the primordial universe.

The presence of two nearby large mass concentrations resemble a quadrupolar mass distribution.
This configuration induces a shear pattern around its surroundings and therefore, a cluster-bridge-
cluster system is expected to form. It is then necessary to consider the tidal field when moulding such
a system.

8.3 Constrained initial density fields

8.3.1 Imposing CR constraints

The main equation of the Hoffman-Ribak algorithm for generating a constrained field realization is
given by Eqn. 8.5. We consider that all M constraints Ci[ f ;ri] imposed on the field f (r) are convolu-
tions of the field itself with a Gaussian kernel Hi(r;ri)

Ci[ f ;ri] =
∫

dr Hi(r;ri) f (r) = ci . (8.7)
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The Fourier transforms of the field f (r) and the kernel Hi(r;ri) are defined by

f (r) =

∫
dk

(2π)3
f̂ (k)e−ık·r ,

(8.8)

Hi(r;ri) =

∫
dk

(2π)3
Ĥ(k)e−ık·r .

The first major properties of a peak in a smooth density field are its position and scale. Further
characteristics of a peak may be described by up to 18 constraints of 2nd or lower order. Such con-
straints can be divided into two groups: the first group determines the density field in the immediate
vicinity around the peak and are related to the peak height, orientation and shape of the cluster (10
constraints). The second group determines the gravity field around the peak in terms of the smooth
peculiar velocity field and shear around the peak (8 constraints).

The peak constraints and the corresponding kernels Ĥ were filtered with a Gaussian kernel with
smoothing length RG

Ŵ(k) = e−k2R2
G/2 . (8.9)

Each one of the constraints then can be expressed in the following way (see also van de Weygaert
& Bertschinger 1996):

1. The peak height (1 constraint)

fG(rd) = νσ0(RG) , Ĥ(k) = Ŵ(k)eık·rd , (8.10)

expressed in terms of the variance of the smoothed field σ0(RG) = 〈 fg fg〉1/2. ν is the desired
height of the peak with respect to the variance.

2. Orientation and shape of the clusters (6 constraints)

∂2 fg
∂rir j

(rd) = −
3∑

k=1

λk Aki Ak j , Ĥ(k) = −ki k j Ŵ(k)eık·rd , (8.11)

where i, j = 1,2,3 and λ’s are the axis-magnitudes of the triaxial ellipsoid, which constraint the
shape of the overdensity. The orientation of the peak with respect to the general coordinate
system is described in terms of the Euler angles transformation matrix Ai j (Goldstein 1980).

3. The peculiar velocity field of the field vG(rd) (3 constraints),

gG,i(rd) = g̃iσg,pk(RG) , Ĥ(k) =
3
2
Ωm H2 ıki

k2
Ŵ(k)eık·rd , (8.12)

where σg,pk(RG) is the dispersion of the gravitational acceleration of the peak and gi the
i−component of g. The factor 3

2Ωm H2 is introduced via the Poisson equation between the grav-
ity field and the local density perturbation f (r).

4. The tidal shear components (5 constraints),

EG,i j(rd) = ε̃ σE(RG)
3∑

k=1

LTki Tk j , Ĥ(k) =
3
2
Ωm H2

(ki k j

k2
− 1

3

)
Ŵ(k)eık·rd , (8.13)

where Tki Tk j are the components of the various eigenvectors of the tidal tensor given by Eqn. 8.6.
For the particular case of peaks, there is a strong tendency of the tidal tensor to align itself along
the principal axes of the mass ellipsoid. Therefore, one needs to express the elements with
respect to the reference frame specified by these axes. The magnitude of the tidal field along the
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principal axes of the tidal tensor is given by its eigenvalues L and the tide scalar ε̃ (Bertschinger
& Jain 1994). Furthermore, because the tidal tensor is traceless, it is sufficient to specify only two
eigenvalues. We have expressed the eigenvalues in terms of the dispersion of the off-diagonal
elements (σE) of the tidal tensor,

σE(RG) =
3
2
Ωm H2σ0(RG)

√
1−γ2

15
with γ ≡

σ2
1

σ0σ2
, (8.14)

where σi((RG) are the spectral moments,

σ2
i (RG) ≡

∫
dk

(2π)3
P(k) Ĥ(k)k2i . (8.15)

8.3.2 The real system

The system that we want to model is the one given by two Abell clusters, Abell 222 and Abell 223.
They are a close pair of rich galaxy clusters, both having Abell richness class 3 (Abell 1958), sepa-
rated by 18′, which at the cluster redshift of ∼ 0.21 corresponds to 2.6 h−1Mpc. Several studies have
confirmed that these are massive clusters (e.g. Wang & Ulmer 1997; David et al. 1999). Proust et al.
(2000) observed 4 galaxies at the cluster redshift in the region between clusters, indicating a possible
connection between both clusters (bridge) (Dietrich 2002).

In moulding the observational data we have considered each one of the observational aspects and
cosmological characteristics of the system. We have performed a set of 10 realizations in a periodic
50 h−1Mpc box. The power spectrum of the random field fluctuations for all simulations was the
standard cold dark matter spectrum of BBKS with ΩΛ = 0, Ωm = 1, h = 0.5 and normalized such
that σ(8 h−1Mpc) = 1.0 at a = 1, the present epoch (Davis & Peebles 1983a). All constrains were
imposed over a cubic grid of 64 grid-cells per dimension, and all calculations have been carried out
in Fourier space. In the realizations, all constraints were defined on a Gaussian scale of 4 h−1Mpc for
both clusters, the “typical” scale that allows to study the properties of protoclusters (e.g. Doroshkevich
1970; Peacock & Heavens 1985; Bardeen et al. 1986; van Haarlem & van de Weygaert 1993). Because
we are dealing with rich clusters, we imposed a peak height fG = 3σ0. In all simulations two initial
cluster seeds were placed at the center of the simulation box, separated by a distance d (in h−1Mpc)
along the i−axis. Each simulation contained different combinations from the mentioned 18 constraints.

The first configuration involved spherical clusters at the center of the box with a separation of
3 h−1Mpc. None of the resulting density maps showed a clear filament presence. The next step was
to consider oblate clusters (2nd constraint) and separated by larger distances. We constructed both
clusters with axis ratios λ2/λ1 = 0.9 and λ3/λ1 = 0.8 (λ1 > λ2 > λ3) and both major axes aligned
with each other. The corresponding density fields indicated a weak presence of a bridge between
both structures. The next step was to constrain the gravity field around the system by imposing an
initial momentum (3 constraints) on both clusters approaching to each other with a relative velocity of
100 km s−1 separated at a distance of 12 h−1Mpc. Although this configuration was more successful in
reproducing the desired configuration, the bridge signature was not clear enough. The last constraint
imposed was the tidal field (5 constraint components). We have imposed a “weak” tidal field in order to
produce a realistic field around the clusters. The observed system does not show signatures of objects
falling at high velocities towards the potential well. The stretching mode of the tidal field was aligned
along the same direction given by the major cluster axes (x−axis). The compressional mode was set
perpendicular to the bridge axis. This constraint’s combination proved to be the most successful one
in reproducing (in the linear regime) the configuration presented by the Abell clusters.

Figure 8.1 illustrates the most successful cluster-bridge-cluster configuration. In order to show the
relevant characteristics of the field, we have filtered the initial density field with a Gaussian filter of
2 h−1Mpc scale. The low density regions (dark areas) are denoted by dashed lines, while the density
regions above the zero contour (bold line) are depicted by continuous lines (light regions). The top-
left panel is a slice cut through the central part of the z−axis, the top-right panel for the y−axis. The
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Figure 8.1 — Constrained initial density fields. The top panels present central slices along the z−axis (left) and
y−axis (right). Clearly visible are the two imposed clusters at the center of the box and connected by a filament.
The lower-left panel shows a surface plot indicating the strength of the clusters. The lower-right panel depicts the
3D configuration of the clusters and confirms the real presence of the bridge connecting them.

presence of the two clusters and a bridge connecting them is very clear in both projections. These
plots show that the bridge’s presence is not only a projection effect. This can also be noticed by the 3D
configuration at the right-bottom panel. The isosurface corresponds to structures at the 2× the mean
density level. The two imposed clusters and the bridge connecting them are clearly visible among
other unconstrained structures present in the field. The bottom-left panel indicates the strength of both
structures in comparison with the other unconstrained random structures along the same plane. The
surface plot is scaled with respect to the highest density on the plane. The dominance of both clusters
over the projected field is very clear.
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Figure 8.2 — Evolved density fields at z = 0.21. The top panel presents the particle distribution projected along
the z−axis for a central slice of 5 h−1Mpc thick. Clearly visible are the two imposed clusters at the center of the
box connected by a filament. The bottom panels show 3D zooms of the central region enclosing the clusters and
bridge from the particle distribution (left-panel), and density field (isosurface), smoothed with a Gaussian filter of
1 h−1Mpc size (right-panel).

8.4 N−body simulations

In order to make suitable the initial density fields for their evolution with an N−body code, particle
positions were displaced from a regular cubic grid and velocities assigned according to the Zel’dovich
formalism (Zel’dovich 1970).

The evolution of the linear Constrained density field into the non-linear regime was performed by
means of a standard P3M code (Bertschinger & Gelb 1991). The number of grid-cells used to evaluate
the particle-mesh force was 1283, with a particle mass resolution of 3.3× 1010 M�. We selected 15
time outputs in order to follow the simulation through the non-linear regime, with a time output at
redshift z = 0.21, to match the observed redshift cluster.

Figure 8.2 depicts the same initial density field presented in Fig. 8.1 evolved to redshift z = 0.21.
The top panel shows a wide view of the particle distribution projected along the z−axis, with a thick-
ness of 5 h−1Mpc. A clear peanut shape composed by the two clusters and bridge can be distinguished
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at the center of the plot. A zoom of the 3D particle distribution is presented at the bottom-left panel, in-
dicating the presence of a connecting bridge between the two structures. This situation is more clearly
noticeable at the bottom-right panel, where an isosurface of the same zoomed particle distribution
is presented. The surface level corresponds to an isosurface of 2× the mean density. At this output
redshift, the cluster are separated by ≈ 2.5 h−1Mpc, as required by the observations.

8.4.1 Quantifying Filaments

In order to quantify the presence of a filament and the significance of its detection three problems must
be solved. First, due to the correlation of error bars described in Appendix 8.A the significance of a
filament in a reconstructed mass map cannot be assessed directly from the reconstruction. Statistics like
the aperture mass and aperture multipole moments (Appendix 8.A) allow the calculation of signal-to-
noise ratios for a limited spatial region and are thus well suited to quantify the presence of a structure
in that region. Aperture statistics, however, integrate over the weighted surface mass density in an
aperture. Hence, to quantify the presence of a structure between two galaxy clusters, the aperture
has to be chosen such that it avoids the clusters and is limited to the filament candidate. This is the
second problem. The third and most fundamental question that has to be answered is, “What is a
filament?”. How for instance can we distinguish the overlapping halos of two close galaxy clusters
from a filament? While in some cases the question whether a structure between two cluster indeed
constitutes a filament is easy to answer intuitively, it can be difficult to quantify in many other cases.

Figure 8.3 — Zoom in on the central 10 ×
10 h−1Mpc of an N−body simulation. Displayed is
the projection of a slice of 2.5 h−1Mpc thickness.

Figure 8.4 — Smooth density distribution of the data
in the left panel from the adaptive kernel density esti-
mate. The contours are at κ = {0.03,0.05,0.1,0.5}.

To get density estimates we applied the adaptive kernel method only to an interesting subsample
of the simulation showing the galaxy clusters and the filament connecting them. Figures 8.3 and
8.4 show such a subsample and the corresponding smoothed density distribution. The subsample is
a 10× 10× 2.5( h−1Mpc)3 slice of the N−body simulation at a redshift z = 0.21. The surface mass
density in the right panel was not calculated from the mass of the particles but linearly scaled, such
that the surface mass density in the cluster center is just sub-critical.
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8.5 Lensing Simulations using N−body Data

In this section we will derive the lensing properties of the simulated mass distribution. The lensing for-
malism will be explained in detail in the Appendix 8.A, together with the main results of the Multipole
moments technique and the aperture multipole statistics.

While it is in principle possible to gain the deflection potential and from that the shear by finite
integration and differentiation via the dimensionless surface mass density and magnification matrix
(Eqs. A8-2 and A8-6), this is a cumbersome and time consuming method. It is much faster and
simpler to calculate the shear directly from the simulated surface mass density using its magnification
factor (Eqn. A8-9) and the convolution theorem. The Fourier transformation of the complex kernelD
(Eqn. A8-9) reads,

D̂(~k) = π
k2

1 − k2
2 +2ık1k2

|~k|2
(8.16)

and thus the Fourier transformed shear is given by

γ̂(~k) =
1
π
D̂(~k)κ̂(~k) , for ~k , 0 . (8.17)

The shear is then calculated via the inverse Fourier transformation and the magnification is easily
computed from the right hand side of Eqn. (A8-11).

The Fourier transformation is calculated with the Fast Fourier Transformation (FFT) algorithm
(Press et al. 1992b). An implementation that readily computes lensing quantities like the shear and
magnification on a grid from discrete κ-maps as outlined above is the kappa2stuff program from
Nick Kaiser’s IMCAT package 1. To account for the finite field size, FFT uses periodic boundary
conditions. The surface mass density at the edges of the simulated fields is small enough to not lead to
any artifacts due to the boundary conditions.

For the lensing simulation, catalogs of background galaxies were produced. Galaxies were ran-
domly placed within a predefined area until the specified number density was reached. To each galaxy
an intrinsic ellipticity was assigned from two Gaussian random deviates. Until noted otherwise all
simulations have 30 galaxies/arcmin2 and a one dimensional ellipticity dispersion of σε = 0.2.

Since the shear and magnification is only known on a grid, they were linearly interpolated between
the four grid points neighboring each galaxy to compute these quantities at the galaxy position. To
simplify the program, galaxies at the edges that have less than four neighboring grid points were
removed from the catalog. For each galaxy a uniformly distributed random deviate from the interval
[0;1) was drawn. If the random deviate was bigger than µ−0.5 the galaxy was deleted from the catalog.

Figure 8.5 shows a mass reconstruction of the simulated density map in Fig. 8.4 The lensing proper-
ties of the simulation were calculated as described above on a 2048×2048 points grid and the computed
shear and magnification were applied to a random catalog of background galaxies. The reconstruction
was performed on a 206×206 points grid with a 1′.3 smoothing scale.

The quality of the reconstruction is much higher than one would expect for real observational data
for a number of reasons.

1. All galaxies in the catalog are indeed background objects. In real data, the catalog of background
galaxies would inevitably be contaminated by stars and faint foreground galaxies (mainly dwarf
galaxies in the cluster one observes).

2. No effects like atmospheric smearing and distortions of the image by the telescope and/or camera
optics deteriorate the determination of the observed galaxy ellipticity.

3. The intrinsic ellipticity dispersion of the background galaxies is too low compared with real
data, which suggests σε = 0.3 or even higher.

1http://www.ifa.hawaii.edu/∼kaiser/imcat/
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Figure 8.5 — Reconstruction of the
mass distribution in Fig. 8.4 on a 206×
206 points grid. The scale of the axes
is given in arc minutes. The contours
mark an increase of κ in steps of 0.025
above the mean of the edge of the field.

4. Likewise, the assumed number density of background objects is at the high end of what one
typically can achieve with ground–based observations.

The few differences between the original mass distribution and the reconstruction thus indicate
systematic deviations due to the smoothing and not due to noise caused by the intrinsic ellipticities
of galaxies and their random distribution. Of course, some degree of noise is still present in the
reconstructed mass distribution but it is not the dominant feature of the reconstruction.

It is immediately obvious that many small scale features present in the simulation are not recovered
in the reconstruction. This is due to the smoothing done to the shear data. One can show that in the
absence of Poisson noise and under the assumption g = γ the smoothing of the shear data is equivalent
to a convolution of the mass distribution with the smoothing kernel (van Waerbeke 2000). This also
explains that the density peaks in the reconstruction are broader and not as high as in the original mass
map.

8.6 Fitting Elliptical Profiles to Galaxy Clusters

With all the tools needed to simulate the weak gravitational lens effect at hand, we can now concentrate
on the quantification of a filament. In a first attempt we try to represent the galaxy clusters by elliptical
mass profiles. We then define the filament as the part of the mass distribution which is in excess of the
mass fitted by the ellipses.

Two different approaches can be used when fitting elliptical profiles to the clusters. First, the
fitting can be done to the reconstructed mass distribution. Second, the fitting can be done adjusting the
elliptical profiles so that their shear matches the observed shear.

The first method has the advantage that the surface mass density is a much more intuitive quantity
than the shear. Problems in the fitting procedure are easier to understand when working with the
surface mass density. On the other hand, κ is not an observable. The only observable is the reduced
shear and the surface mass density has to be reconstructed from the shear first. As we have seen in
the previous section, even in the absence of strong observational noise, the reconstructed mass profile
deviates systematically from the true mass profile.
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Fitting directly to the shear avoids the additional intermediate step of mass reconstruction and is
thus not susceptible to the broadening of the core radius introduced by the smoothing of the shear data.
Directly using the shear as the quantity to which the elliptical profiles of the clusters are fitted also
has disadvantages. First, the shear at a given position is determined by the surface mass density on
the whole field. This makes it much harder to control the fitting process by choosing suitable weight
functions that guide the fitting process in the right direction. Second, the profiles for which the shear
can be computed analytically are very limited. While fitting to the surface mass density allows one
to have a flexible radial profile, one is limited to radial profiles for which analytic expressions for the
shear are known, when fitting directly to the shear.

Common to all fitting procedures is that they try to minimize a quantity

χ2 =

∫
d2θ

[
ftrue(~θ)− fsim(~θ)

]2
w(~θ) . (8.18)

For example if one fits to the reconstructed surface mass density, ftrue(~θ) is κ(~θ) from the recon-
struction, while fsim(~θ) is the surface mass density of the fitted ellipses. w(~θ) is a weight function that
can be chosen to guide the minimization procedure in the right direction.

Various methods for multidimensional minimization are available. All programs used for fitting
either used the Downhill Simplex or Powell’s Direction Set algorithms discussed in detail in Press
et al. (1992a). We could not find any systematic differences between the results of the two methods. In
general, their results agreed quite well if the same starting values were used.

Common to all algorithms for multidimensional minimization is the problem that they cannot guar-
antee to find the global minimum but only a local one. One has to choose the starting parameters so
that they are already close to the suspected global minimum to help the minimization procedure find
the right minimum.

8.6.1 Fitting Elliptical Profiles to the Simulated Surface Mass Density

As a first test to see how well clusters could be represented by elliptical profiles, we fitted two ellipses
with a King profile directly to the simulated data. The surface mass density of a circular King profile
is given by

Σ(θ) = Σ0

1+
(
θ

θc

)2
−1

, (8.19)

where Σ0 is the surface mass density in the center, θc is the core radius of the profile, and θ is the dis-
tance from the cluster center. There are 12 parameters that have to be determined in the minimization
procedure, 6 for each cluster. The parameters are position of the cluster center, Σ0, θc, axis ratio of the
ellipse, and orientation of the ellipse. As the position of the clusters in the simulation is well known,
the central position can be used as a starting value. This is necessary to avoid that the minimization
procedure puts both ellipses on one cluster or even on a small mass peak away from the clusters be-
cause this might very well be a local minimum in which we are not interested. It is sufficient to set the
starting values of the other parameters to values in the right order of magnitude to achieve reasonable
fits.

Figure 8.6 shows the fit of two elliptical King profiles to the simulated data displayed in Fig. 8.3. To
reduce the computer time needed for the minimization, which is dominated by the repeated calculation
of the integral (8.18), the data was smoothed on a 512× 512 points grid instead of the 2048× 2048
points grid which was used to calculate the lensing properties of the simulation. The weight function
was chosen to be unity on the whole field.

Fig. 8.7 shows the difference between the simulated data in Fig. 8.4 and the fit to the simulation
in Fig. 8.6. While the two clusters are not fitted perfectly – after all galaxy clusters are not perfect
ellipses – most of the cluster mass is removed in the difference image. An overdensity of the surface
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Figure 8.6 — Fit of two elliptical King profiles to
the simulation data in Fig. 8.4. The contours are at
the same levels as in Fig. 8.4.

Figure 8.7 — Difference image between the sim-
ulated data in Fig. 8.4 and the fit in the left panel.
The contours are at the same level as in Fig. 8.4.
Clearly visible is an excess in the surface mass den-
sity between the two clusters.

mass density is visible between the two clusters, which supports the definition of the filament being
the surface mass density that is in excess of the elliptical cluster profiles.

However, the main problem in all fitting procedures is already visible here. Both clusters in the
simulation have rather elliptical profiles. The orientation of the major axis of the left cluster is almost
parallel to the 1–axis, while the major axis of the right cluster runs from the upper left to the lower
right corner. Contrary to the simulation the fitted mass profiles are almost perfectly circular. Finding
the right ellipticity and orientation seems to be the crucial difficulty in all fitting procedures.

8.6.2 Fitting Elliptical Profiles to the Reconstructed Surface Mass Density

While the fitting described in the previous section can be used as proof of concept that filaments can
indeed be understood as mass that is in excess of elliptical profiles, the true surface mass density is not
accessible in the case of observational data. If one wants to use the surface mass density to fit elliptical
profiles, only the reconstruction is available.

Figures 8.8 and 8.9 show two such fits to the reconstruction displayed in Fig. 8.5. The only differ-
ence between both fits is the starting value for the orientation of the right cluster in the minimization
procedure. Again, the weight function was chosen to be unity. One can clearly see the dependence
of the orientation of the ellipses on the initial value. Even worse, although two completely different
starting values were used, none of them lead to an orientation that is close to the actual orientation of
the cluster.

We tried various weighting schemes in order to control this problem. e.g. only regions close to
the cluster center were taken into account to reduce the influence of the noise further away from the
clusters. None of this lead to more stable solutions. Also the attempt to use flexible radial profiles
instead of the King profiles did not lead to positive results.

8.6.3 Fitting Non–Singular Isothermal Ellipses to the Shear

Although fitting elliptical profiles to the surface mass density seemed promising when done directly
to the simulated data, it failed when reconstructed mass maps where used. Fitting directly to the
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Figure 8.8 — Fit of two elliptical King profiles to
the reconstruction shown in Fig. 8.5. The contours are
at the same level as in the reconstruction.

Figure 8.9 — Same as Fig. 8.8 but with different
starting value for the orientation of the right cluster.

ellipticities and avoiding the intermediate step of reconstructing the mass distribution may be a remedy
for the problems described in the previous section.

An ellipsoidal density distribution for which the shear can be calculated analytically is that of
a softened, oblate isothermal ellipse. Consider an oblate spheroid with axis ratio q3. In projection
this becomes an ellipsoidal density distribution with axis ratio q = (q3 cos2 i+ sin2 i)1/2, i being the
inclination angle with i= 90◦ face–on and i= 0◦ edge–on. If s is the core radius and e= (1−q2

3)1/2 is the
eccentricity of the mass distribution, the density distribution for this model in cylindrical coordinates
is

ρ =
v2

c

4πGq3

e
arcsine

1

s2+R2+ z2/q2
3

, (8.20)

(Keeton & Kochanek 1998). In the limit of s = 0 and q3 = 1 this becomes the density distribution
of a singular isothermal sphere (SIS). With bI = (2πeDdsv2

c)/(Dsc2 arcsine) the dimensionless surface
mass density becomes

κ =
bI

2
√

q2(s2+ θ2
1)+ θ2

2

. (8.21)

Introducing the abbreviation Ψ2 = q2(s2+ θ2
1)+ θ2

2 the shear of this profile can be expressed as

γ1 = k1 cos2ϕ− k2 sin2ϕ , (8.22)

γ2 = k1 sin2ϕ+ k2 cos2ϕ , (8.23)

where ϕ is the angle of the major axis of the ellipse with respect to the 1–axis and

k1 =
bI

2Ψ
[θ2

2 − θ2
1 − (1−q2)s2]2 , (8.24)

k2 = −bi

Ψ
(θ1 cosϕ+ θ2 sinϕ)(θ2 cosϕ− θ1 sinϕ) . (8.25)

Unfortunately, it turned out that minimizing the quantity χ2 =
∑

i |εi−γ(~θi)|2 is extremely sensitive
to the noise introduced by the random orientation of the FBG. While simulations based on catalogs
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with circular background galaxies gave reasonable results, simulations based on the small value of
σε = 0.2 used here did not achieve reasonable fits and were extremely sensitive to the initial values.

Generally, a tendency to over-fit the filament region, so that the difference image had negative
surface mass density there, could be observed.

8.7 Using Aperture Multipole Moments to Quantify the Presence
of a Filament

Aperture multipole moments (AMM) quantify the weighted surface mass density distribution in a
circular aperture. If it is possible to find a characteristic mass distribution for filaments and express it
in terms of multipole moments, AMM can be used to quantify the presence of a filament.

+ +

−

−

Figure 8.10 — Simple toy model of two galaxy clus-
ters connected by a filament. A quadrupole moment is
present in the aperture centered on the filament.

+ +

−

−

Figure 8.11 — Toy model of two galaxy clusters
without a filament, illustrating why it is important to
choose the correct size of the aperture.

Fig. 8.10 illustrates with the help of a simple toy model of two galaxy clusters connected by a fila-
ment why one expects to find a quadrupole moment in an aperture centered on the filament. Fig. 8.11
illustrates that it is crucial not to choose the aperture too large. If the aperture also covers the clusters
a quadrupole moment will be measured even if no filament is present.

Figures 8.12– 8.15 show quadrupole moment |Q(2)| maps calculated from simulated lensing data
of the simulation shown in Fig. 8.4. The weight function was chosen to be

U(θ) =


1−

(
θ

θmax

)2
θ ≤ θmax ,

0 else .
(8.26)

While this weight function is clearly not ideal as it does not closely follow the mass profile of the
simulated data, it is sufficient to identify all relevant features. In the quadrupole maps θmax increases
from 2’ to 5’ . The maps were computed on 55×55 points grid, so that each grid point is 1′ ×1′ big.
Overlaid are the contours of the surface mass density of the reconstruction of Fig. 8.5.

One clearly sees that the quadrupole moment between the clusters increases as the size of the
apertures increases. This is of course due to the growing portion of the clusters in the aperture, that
with their large surface mass density dominate the mass distribution.

Most interesting for the quantification of filaments are the two maps in the top panel. The aperture
quadrupole moment centered on the middle of the line connecting both clusters does not overlap with
what one intuitively would call the galaxy clusters in these two maps. Noteworthy in Figs. 8.12 and
8.13 is also that they show a quadrupole moment on a ring–like structure around the cluster center. This
is indeed to be expected for all galaxy clusters because there is a non–vanishing quadrupole moment if
the aperture is not centered on the galaxy cluster, but somewhere on the slope of the mass distribution.
This now raises the question how we should distinguish the quadrupole moment present around any
cluster from that caused by a filamentary structure between the clusters.
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Figure 8.12 — Quadrupole Moment of the simula-
tion in Fig. 8.4 in a circle of 2’ radius.

Figure 8.13 — Same as Fig. 8.12 in a 3’ radius cir-
cle.

Figure 8.14 — Same as Fig. 8.12 in a 4’ radius cir-
cle.

Figure 8.15 — Same as Fig. 8.12 in a 5’ radius cir-
cle.

The most obvious answer, that the quadrupole moment between the clusters has to exceed the
quadrupole moment at the points having the same distance from the cluster center on the axis connect-
ing both clusters outside the filament fails, due to the particular geometry of this simulation. The two
small mass clumps to the left and the right of the clusters create a situation similar to that depicted
in Fig. 8.11 and thus increase the quadrupole moment to the point where it is roughly equal to that in
the filament center. Other simulations without this special geometry show no such behavior and the
applicability of this criterion will be discussed below.

However, even in this special case there is evidence that the quadrupole signal in the center is
caused by a filament and not by the clusters alone. This evidence is the asymmetry of the quadrupole
moment around the galaxy clusters. An almost closed ring, on which the quadrupole moment is lower,
is visible around the filament. This ring is easier is to spot in the maps generated from filter functions
with larger radii. All aperture statistics act as bandpass filters on structure comparable in size to the
filter radius. As the ring has a radius of ∼ 7′ it is better visible in the maps generated from larger filters.
Still, the asymmetry is well visible in Fig. 8.13 and less well visible but still present in Fig. 8.12. Thus,
the quadrupole maps clearly indicate that the measured quadrupoles on the filament are not caused by
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Figure 8.16 — Smoothed surface mass density dis-
tribution of a second simulation. The projection pa-
rameters are the same as in Fig. 8.3. An additional
contour line is drawn at κ = 0.02 because this filament
is weaker.

Figure 8.17 — Same as Fig. 8.5 for the simulation
in Fig. 8.16 with an additional contour at κ = 0.02.

a symmetric situation, that two galaxy clusters without filament would constitute.
The geometry of the simulation displayed in Fig. 8.16 is less peculiar than that of the previous

simulation but poses other challenges to the quadrupole statistics. As can be seen in the figure, the
surface mass density of the filament connecting both clusters is lower than that of the simulation in
Fig. 8.4. A continuous filament is only visible because an additional contour line at κ = 0.02 was added.
As a consequence only the small peak in the filament rising to κ ' 0.03 is visible in the reconstruction,
but only at the level of the noise fluctuation, as we can infer from the spurious peaks in the lower left
corner of Fig. 8.17.

Figure 8.18 shows a quadrupole map from simulated lens data for this simulation. The aperture
quadrupole moment was computed in a 3’ radius. Again the size of the aperture was chosen such that
the aperture in the middle between both clusters does not cover what one intuitively would identify as
part of the clusters. The two lowest contours, which are partly covered by the aperture in the filament
center, do not belong to the region that obviously belongs to the cluster.

Again we see a quadrupole moment on the filament and around the galaxy clusters. As there are
no small mass clumps on the connecting axis outside the clusters we can test the hypothesis that the
quadrupole moment in the filament region exceeds the quadrupole moment on the corresponding point
on the cluster slope. Fig. 8.19 shows the absolute value of the quadrupole moment in Fig. 8.18 along
a line running through both cluster centers from the left edge of the image to the right. Points which
are not exactly on a grid point were approximated by linear interpolation. The same was done for the
error bars, which were calculated from 1000 randomizations of the galaxy orientations. The points are
connected by straight lines.

Clearly visible is the broad central double peak on the filament bounded by the two minima of the
cluster centers. The quadrupole moment on the slope of the left, less massive cluster is well below that
of the filament. The center of the filament corresponds to the small minimum left of the little “bump”
in the middle of the broad double peak (at ∼ 27′ ). Although the maximum of the quadrupole moments
is on the outer slope of the massive right cluster, the quadrupole moment having the same distance
from the cluster center as the filament center is below the value in the filament center (at ∼ 43′ ).

The double peak structure of the quadrupole moment on the filament is probably caused by the
small mass concentration in the filament. The quadrupole moment in aperture centered on this peak
will be lower than that of aperture which covers this peak and already part of the cluster and thus leads



8.7. USING APERTURE MULTIPOLE MOMENTS TO QUANTIFY THE PRESENCE OF A
FILAMENT 249

Figure 8.18 — Aperture quadrupole moment in a 3’
radius. Overlaid are the contours of Fig. 8.17.

Figure 8.19 — Absolute value of the aperture
quadrupole moment along a line running through the
centers of both clusters from the left edge to the right
edge of Fig. 8.18. The arrows mark the cluster center.

to a situation comparable to that of Fig. 8.11 with one cluster replaced by the small peak.
It is interesting to note that the quadrupole statistics gives a positive result if the reconstruction

fails to show a filament. In fact, until now we have ignored the possibility that the clusters could have
filamentary extensions that do not join.

+ +

−

−

Figure 8.20 — Quadrupole moment of filamentary extensions of cluster that do not join.

An observer not knowing the true mass distribution of Fig. 8.16 would conclude to observe the case
illustrated in Fig. 8.20. This example shows, that while the quadrupole moments can be used to quan-
tify the significance of a filament by computing the significance of the quadrupole moment, measuring
a quadrupole moment alone is not sufficient. Ideally, the filament is also visible (and significant) in a
map of the aperture mass with the same filter radius.

8.7.1 Defining Cluster and Filament Regions

While in the attempt to separate the clusters and filament by fitting elliptical profiles to the clusters,
the filament was defined as the surface mass density excess above the clusters. There is no criterion in
the AMM statistics that defines cluster and filament regions. Much of the discussion of the quadrupole
statistics in the last section was based upon “intuitive separation” of clusters and filament. In many
cases this can be a problem, as seen from Fig. 8.16. While the contours show a continuous connection
between the clusters, one could argue that the clusters in this simulation overlap. The right-hand
cluster has a mass extension to the right, whose maximum spatial extension from the cluster center is
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Figure 8.21 — Simple model of the
surface mass density distribution of an
elliptical cluster and a filamentary ex-
tension along the main axis of the sys-
tem. The axes are labeled in arbitrary
units.

comparable to the distance of the peak in the filament from the cluster center. The situation for the
left-hand cluster is approximately the same. This illustrates the need for a more objective criterion to
separate the clusters from a possible filament, which we try to develop in this section.

Fig. 8.21 shows a simple one–dimensional toy model of the mass distribution of a cluster with a
filamentary extension. The model consists of the following components: We assume a cluster with a
King profile. This is the solid line in Fig. 8.21. In all simulations we see that the clusters are not circular
but stretched and have their major axes oriented approximately towards each other. We attribute this
to tidal stretching and account for it in the model by stretching the right half of the King profile (long
dashed line) by a factor, which has to be determined. This factor will be called the “stretch factor”.
The contribution of the filament (dotted line) is added to the stretched King profile. The result is the
observed surface mass density profile on the right–hand side (short dashed).

We tried to define the “start” of the filament and the “end” of the cluster by the following procedure:
The unstretched King profile, observed on the left–hand side, is stretched by a factor, to model the
influence of tidal stretching. By this step we try to obtain the (unobservable) cluster profile on the right
side without the contribution of the filament. This stretched profile is then compared to the observed
profile containing the contribution of the filament by computing the goodness of fit

χ2 =

N∑

i=i0

(
κstretch(θi)− κtrue(θi)

σi

)2

, (8.27)

at sample points θi in the reconstruction along the main axis of the system. σi is the estimated error
in κ at the ith point and the summation is carried out from the i0th point to the Nth point. χ2 is
repeatedly computed for increasing values of N. Unless noted otherwise, i0 = 1. We can define the end
of the cluster and the start of the filament by the point N, where the probability that κstretch is a good
representation of κtrue falls below a predefined level (“cut–off confidence level”).

We now have to find a way to determine the stretch factor. We assume that the inner portion of the
observed profile on the right–hand side is a fair representation of the (unobservable) stretched profile.
The stretch factor can then be determined by fitting the unstretched profile to the inner portion of the
observed profile. This “stretch factor fit” was done using a χ2 minimization with linear interpolation
between the observed sample points. The size of the inner region to be used in the stretch factor fit
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was measured in units of the core radius of the unstretched profile. Its value is called the “cut–off
parameter”.

The cut-off parameter and the cut–off confidence level have to be determined from simulations.
Figure 8.22 shows the mass profiles to the left and right of the center of the cluster on the left in

the reconstruction displayed in Fig. 8.5 along the main axis of that system. For simplicity the error
bars were assumed to be equal to the standard deviation of a reconstructed mass map of a randomized
catalog of background galaxies.

Figure 8.22 — Sur-
face mass density
profiles of the cluster
on the left in the re-
construction displayed
Fig. 8.5 along the main
axis of the system. The
crosses mark the surface
mass density in the
filament part, the dashes
the surface mass density
on the left-hand side of
the cluster. The x–axis
denotes the distance
from the cluster center
in arc minutes.
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We determined several combinations of the cut–off parameter and confidence level that match the
visual impression of filament beginning and cluster end. However, if these were applied to other
clusters, the separation point between cluster and filament was placed at non–sensical positions.

We also modified the starting value i0 in the summation in eq. (8.27). First, we placed it at the point
closest to the cut–off parameter of the stretch factor fit in order to exclude the central region, which
by definition of this procedure has a small χ2. Second, we calculated χ2 in a moving window of fixed
size and set the separation point between cluster and filament to the start of the window for which χ2

fell below the cut–off confidence level. This was done for various window sizes and confidence levels.
Again, parameters that worked well for one cluster failed horribly for others.

8.8 Conclusions

In this chapter we have investigated two main aspects concerning to filaments. The first point was
to set up proper initial conditions for N−body simulations in order to create bridges between two
neighbouring clusters at a given redshift. By using the approach of Constrained Realizations, we have
been capable of producing controlled and carefully designed initial density fields in order to get the
desired configuration.

The aim was to recreate as close as possible the environment presented by the Abell clusters 222
and 223, with a connecting bridge between the two clusters. We have considered every observed
feature available in order to model the initial density fields. We found that in order to reproduce
successfully such configuration, a set of 18 conditions imposed over each cluster seed were needed.
Those constraints were position, distance, shape, orientation, peculiar velocity and tidal shear. The
shape was specified by the axis ratios of the triaxial density peaks. The clusters were aligned in such
way that their corresponding major axes will point out toward each other. An initial kick was given in
order to approach the system in a smoothly way avoiding violent interaction between the two clusters.
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The tidal field was constructed in such a way that its stretching mode was aligned along the same
main axis-system direction and a compressional mode perpendicular to this main axis. Under these
constrictions, the linear initial density fields showed the desired configuration.

The evolved density fields satisfyingly reproduced the main observed system features, showing
beyond doubt the effectiveness of the CR algorithm to study and reproduce cosmic observed features.
Without the use of the CR formalism, it would be very difficult to find in a N−body simulation the
right situation required for the weak lensing analysis.

The second part of the chapter consisted in quantify the presence of the bridge between the clusters.
For this, the use of weak lensing analysis was employed, in particular the circular aperture method.
The Aperture multipole moments [AMM] technique was used in order to quantify the weighted surface
mass density distribution from the circular aperture method.

The lensing reconstruction results showed that while the quadrupole moments can be used to quan-
tify the significance of a filament by computing the significance of the quadrupole moment, measuring
a quadrupole moment alone is not sufficient. In an attempt to separate the clusters and filament by
fitting elliptical profiles to the clusters, the filament was defined as the surface mass density excess
above the clusters. However, such criterion failed with the AMM statistics since there is none criterion
to define cluster and filament regions with this technique. The aperture quadrupole moment statistics
in principle has the power to quantify the presence of a filament-shaped structure. To objectively apply
this technique, one needs to be able to separate clusters from filaments. We did not find an objective
way to do this and had to resort to subjectively defining the sizes of the apertures used.

We would like to stress that this is not a problem of the weak lensing technique but stems from the
fact that we were unable of giving an objective criterion to define a filament. The visual impression of
what a filament is, is often sufficient in simulations or redshift surveys where filaments stretching long
distances between clusters are seen. In the case of close pairs of clusters -where we can hope to see
filaments with today’s telescopes- a more objective criterion is important, but difficult to find.

8.A Aperture multipoles moments

8.A.1 Definitions

Let ~θ be the position angle of a lensed object and ~β its undeflected position, the two angles are related
to each other via the lens equation:

~β = ~θ− ~α(~θ) , (A8-1)

where ~α is the scaled deflection angle.
Depending on the surface mass density (Σ(Dd~θ), which is defined as the projection of the 3D

density distribution of the lens onto a plane perpendicular to the line of sight, eq. A8-1 can have
multiple ~θ for a given ~β. The dimensionless surface mass density κ(~θ) is defined as:

κ(~θ) =
Σ(Dd~θ)
Σcr

, (A8-2)

where Σcr is the critical surface mass density,

Σcr =
c2

4πG
Ds

DdDds
. (A8-3)

Dd denotes the angular-diameter distances between observer and deflector (lens), Ds between observer
and source, and Dds from the deflector to the source.

The value of κ in eq. A8-2 gives a qualitative description of the lens. If κ > 1 for a given region
in the lens plane, the lens is said to be strong and it can produce multiple images of the background
source. If κ� 1 the lens is called weak and cannot produce several images of the source.
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The scaled deflection angle can be written in terms of κ

~α(~θ) =
1
π

∫
d2θ′ κ(~θ′)

θ− θ′
|θ− θ′|2 .

From this equation is easy to see that the scaled deflection angle can be written as the gradient of a
two dimensional potential, ~α = ∇ψ

ψ(~θ) =
1
π

∫
d2θ′ κ(~θ′) ln |θ− θ′| , (A8-4)

following the analogy with Newtonian theory, ψ satisfies the Poisson equation:

∇2ψ(~θ) = 2κ(~θ) . (A8-5)

An important characteristic of Eq.A8-1 is its non-linearity. Therefore, a gravitational lens will
not only change the position of the source image, but also its shape. The local properties of the lens
mapping are described by its Jacobian matrix, or magnification matrix

A = ∂
~β

∂~θ
=

(
δi j−

∂2ψ(~θ)
∂θi∂θ j

)
=

(
1− κ−γ1 −γ2

−γ2 1− κ+γ1

)
. (A8-6)

The trace-free part ofA is defined as the shear,

γ = γ1+ ıγ2 = |γ|e2ıϕ , (A8-7)

and it is related to the deflection potential as

γ1 =
1
2

(ψ,11−ψ,22) , γ2 = (ψ,12) . (A8-8)

The magnification factor of an image is given by the inverse of the determinant of the Jacobian:

µ =
1

detA =
1

(1− κ)2− |γ|2 . (A8-9)

The tensor of the quadrupole moment of the two-dimensional mass distribution κ(~θ) with respect
to the point (~θ0) is defined as (Schneider & Bartelmann 1997),

Qi j =

∫
d2θκ(~θ+~θ0)w(|~θ|)θi θ j , (A8-10)

for i, j = 1,2, where w(|~θ|) is a radial weight function. The shape of an image can be quantify in terms
of the components of the tensor Qi j via the complex number:

ε =
Q11−Q22+2ıQ12

Q11+Q22+2(Q11Q22−Q2
12)1/2

, (A8-11)

which is called the complex ellipticity (Bonnet & Mellier 1995).

8.A.2 Multipole moment in terms of the shear

The trace-free and trace parts of eq. A8-10 can be written in a very general way for higher multipole
orders. Schneider & Bartelmann (1997) defined the complex nth-order multipole moment (trace-free)
by

Q(n) =

∫ ∞

0
dθθn+1w(θ)

∫ 2π

0
dϕenıϕκ(~θ0+~θ) , (A8-12)
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and the mass moments (trace),

M(n) =

∫ ∞

0
dθθn+1w(θ)

∫ 2π

0
dϕκ(~θ0+~θ) , (A8-13)

where w(θ) is a radially symmetric weight function.
Kaiser (1995) shown by suitably combining third-order derivatives of ϕ in eq. A8-5, that the gra-

dient of κ can be written in terms of the derivatives of the shear components:

∇κ =
(
γ1,1+γ2,2

γ2,1−γ1,2

)
. (A8-14)

This relation can now be used to express the multipole moments just defined in terms of the shear
γ. Since the shear is directly observable from the distortions of the images of faint background galaxies
(in the case of weak lensing, i.e. κ� 1), the multipole moments can be written directly in terms of
observables.

Schneider & Bartelmann (1997) defined the tangential shear γt(~θ;~θ0) and the radial shear γr(~θ;~θ0)
at positions ~θ = θeıϕ relative to position ~θ0 by

γt(~θ;~θ0) = −[γ1 cos(2ϕ)+γ2 sin(2ϕ)] = −<[γ (~θ+~θ0)e−2ıϕ] , (A8-15)

γr(~θ;~θ0) = −[γ2 cos(2ϕ)−γ2 sin(2ϕ)] = −=[γ (~θ+~θ0)e−2ıϕ] ,

where< and = denote the real and imaginary parts of the given complex quantity.
By integrating by parts eq. A8-12, transforming it into polar coordinates and by doing some partial

integrations and algebraic manipulation, it is possible to show that one can get a local estimation of the
aperture multipole moment in a circle of radius R from

Q(n) =

∫ R

0
dθθn+1w(θ)gt(θ)+

ı

n

∫ R

0
dθθn+1[nw(θ)+ θw′(θ)]gr(θ) , (A8-16)

here w′(θ) is the derivative of w(θ), and we have defined

gt(θ) =
∫ 2π

0
dϕenıϕ γt(~θ;~θ0) , gr(θ) =

∫ 2π

0
dϕenıϕ γr(~θ;~θ0) . (A8-17)

In the case of dealing with real data, the integral is replaced by a sum over individual galaxy
ellipticities to compute the aperture multipole statistics.

Q(n)(~θ0) =
1
ng

N∑

i=1

enıϕi

{
θn

i w(θi)εti+ ı
θn

i [nw(θi)+ θw′(θi)]

n
εri

}
, (A8-18)

where ng is the number density of galaxies in the circle, (θi,ϕi) are the polar coordinates of the ith
galaxy with respect to ~θ0, and

εti =<(εi e−2ıϕi) ; εri = −=(εi e−2ıϕi ) , (A8-19)

are the tangential and radial components of ellipticity of the ith galaxy with respect to the origin of the
coordinate system.

The significance of a multipole moment measurement can in the absence of lensing (expectation
value of Q(n) = 0) be computed from

σ(n) =
σε√
2ng


N∑

i=1


(
θn

i w(θi)
)2
+

(
θn

i [nw(θi)+ θw′(θi)]

n

)2



1/2

(A8-20)

where it has been used, in the absence of lensing,

〈εri εr j〉 =
σ2
ε

2
δi j and 〈εti εr j〉 = 0 , (A8-21)

and σε is the dispersion of the intrinsic source ellipticity.
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The DTFE density and velocity fields of

the PSCz catalog

E. Romano-Dı́az, R. van de Weygaert, W. E. Schaap & E. Branchini.

W apply the Delaunay Tessellation Field Estimator to reconstruct the density and velocity fields
of the linear model of the full sky galaxy survey PSCz. The characteristics of the DTFE tech-

nique have allowed us to trace the density and velocity fields at both high and low density regions
without losing resolution. A characteristic of the DTFE method is that velocity-gradient related quan-
tities can be computed in a straightforward manner. We have reconstructed the DTFE divergence and
shear components of the reconstructed velocity field. Our results show a great consistency between
the velocity field and the density field.
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9.1 Introduction

Within the gravitational instability scenario, large-scale flows of galaxies are a response to the under-
lying matter distribution and thus, peculiar velocity measurements are a critical probe for cosmology
and large scale structure. Under the assumption that galaxies trace the matter distribution it is possible
to reconstruct self-consistently density and velocity fields from a galaxy-redshift catalog. Comparison
of the modeled velocity field with a real measured velocity field allows to test the gravitational insta-
bility picture, to measure the relative distribution of luminous and dark matter and to determine the
parameter β = Ω0.6

m /b, where Ωm is the cosmological mass density parameter, and b is the bias of the
galaxy distribution relative to the underlying matter density (Peebles 1980).

A common problem when performing this comparison is the fact that the sampled objects in the
velocity and galaxy surveys are not the same. Although one could assume that both fields faithfully
trace their respective underlying velocity and density fields, this might not be the case. It is therefore
necessary to perform such analysis by counting with volume-weighted velocities that properly sample
the surveyed region.

Reconstructing a continuous volume-weighted velocity field from a sparse sample of peculiar ve-
locities is a challenging task. One needs to interpolate the peculiar velocities into those regions devoid
of data, overcome shot-noise effects and to preserve the large and small scale characteristics of the
peculiar velocities. Several authors (e.g. Bertschinger et al. 1990; Juszkiewicz et al. 1995; Lokas et al.
1995; Baker et al. 1998; Branchini et al. 1999; Dekel et al. 1999) filtered galaxy peculiar velocities
with a Gaussian kernel of a fixed length to obtain the velocity field onto a regular grid. However, the
use of a filtering algorithm smears out all the velocity information contained on scales smaller than the
filter size. Also, in most of the cases, the smoothing procedures are implicitly mass-weighted.

Bernardeau & van de Weygaert (1996) showed that for the velocity field, conventional reconstruc-
tion techniques are unable of recovering this field accurately over its whole range of values from small-
scale to large-scale. They introduced a tessellation based method to recover fully volume-covering and
volume-weighted velocity field, the Voronoi and Delaunay tessellation methods. They demonstrated
the success in reproducing analytical predictions by the Delaunay method. In particular this concerned
the ability to reproduce the velocity-divergence distribution in the quasi linear regime. Based on the
work of Bernardeau & van de Weygaert, Schaap & van de Weygaert (2000) and Schaap (2005) devel-
oped a reconstruction method based on the geometrical concept of the Delaunay tessellation (Delaunay
1934), the Delaunay Tessellation Field Estimator [hereafter, DTFE]. The method enables a natural re-
construction of the density field from the sampling point set. In Chapter 6 we presented an extension
of DTFE for peculiar velocities along the line of Bernardeau & van de Weygaert. The method has been
tested on N−body simulations. Given a discrete set of peculiar velocities, the processed DTFE velocity
field is able to maintain the small and large scale characteristics of the peculiar velocities. It obtains
continuous full coverage volume-weighted estimates. Implicitly, the method involves the computation
of the velocity field gradient. This makes velocity related quantities such as the velocity divergence,
shear and vorticity quite straightforward to compute.

In order to compute a self-consistent reconstruction of the density and velocity fields one needs to
consider a uniform whole-sky sample with complete redshift information. This requirement has lead to
the use of the IRAS catalogs. Here we concentrate on the last and best defined survey, the PSCz survey
(Saunders et al. 2000). The intrinsic characteristics of the IRAS-PSCz catalog such as depth and
sky coverage have made its reconstructed density and velocity fields into faithful representations of
both fields in our nearby universe (Branchini et al. 1999; Schmoldt et al. 1999; Branchini et al. 2001;
Teodoro et al. 2003).

In this chapter, we apply the DTFE velocity interpolation method to the linear modeled PSCz ve-
locity field of Branchini et al. (1999) [hereafter, B99]. Our main aim is to reconstruct in a volume-
weighted fashion the discrete PSCz velocity field, to uncover the intricate velocity pattern in the local
universe and to show the virtues of the DTFE method with “real” data. Testing the performance of
the method with the well controlled spatial reconstructed PSCz catalog should give us confidence for
applying the DTFE technique to the forthcoming surveys such as 2MASS and 6dF.
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9.2 The DTFE method

The DTFE interpolation method was introduced by Schaap & van de Weygaert (2000) (see also Schaap
2005), for rendering fully volume-covering and volume-weighted physical fields from a discrete set of
sampled field values. The method is self-adaptive and does not make use of any artificial smoothing
procedure. It followed the pioneering work by Bernardeau & van de Weygaert (1996) for using the
Delaunay tessellation of the point set as a natural and self-adaptive interpolation frame for recovering
the continuous velocity field sampled by the velocities at those points. Schaap & van de Weygaert
(2000) and Schaap (2005) extended this to the recovery of the density or intensity field when one
assumes it to be fairly sampled by the spatial point distribution.

The DTFE algorithm as a linear multidimensional field interpolation scheme is the linear first-order
version of the natural neighbouring algorithm for spatial interpolation (see Sibson 1981; Okabe et al.
2000). Related procedures have been implemented in a variety of other applied sciences. Success-
ful examples may be found in geophysics (see e.g. Braun & Sambridge 1994; Sambridge 1999) and
engineering mechanics (Sukumar 1998).

The primary ingredient of the DTFE method is the Delaunay tessellation of the particle distribution.
The Delaunay tessellation of a point set is the uniquely defined and volume-covering tessellation of
mutually disjunct Delaunay tetrahedra. A Delaunay tetrahedron is defined by the set of four points
whose circumscribing sphere does not contain any of the other points in the generating set (Delaunay
1934) (triangles in 2D). The Delaunay tessellation is intimately related to the Voronoi tessellation of
the point set, i.e. they are each others dual. The Voronoi tessellation of a point set is the division of
space into mutually disjunct polyhedra, each polyhedron consisting of the part of space closer to the
defining point than any of the other points (Voronoi 1908; Okabe et al. 2000)

It is straightforward to appreciate that on the basis of their definitions both Delaunay and Voronoi
tessellation fully adapt to the local point distribution. Moreover, the minimal coverage characteris-
tics of the Delaunay tessellation imply it to be optimal for defining a network of multidimensional
interpolation intervals. The point in case for its pattern tracing characteristics is provided by the right-
hand panel of Figure 9.1. It shows the 2-Dimensional Delaunay triangulation for a section along the
z-supergalactic plane through the PSCz catalog, the galaxy set which we analyze in this work.

9.2.1 DTFE density and velocity fields

One of the important properties of a processed DTFE density field is that it resolves two of the main
characteristics of gravitational structure formation. It objectively reproduces any anisotropic patterns
in the density distribution without diluting their intrinsic geometrical properties. This is a great advan-
tage when seeking to analyze the cosmic matter distribution, characterized by prominent filamentary
and wall-like components linking up into a cosmic web. Also, it manages to outline the full hierar-
chy of substructures present in the sampling point distribution. Since we assume that structure in the
Universe arose through the gradual hierarchical buildup of matter concentrations, the benefits of an
objective tracer of such features are obvious. In addition, it has been recognized that the low density
regions, e.g. the voids in the galaxy distribution, are evenly rendered as regions of slowly varying,
moderately low density values through the interpolation definition of the DTFE field reconstruction. It
manages to suppress automatically the shot noise in such sparsely sampled regions (see Schaap 2005).

The linear interpolated DTFE velocity field retains the same characteristics as that of the corre-
sponding DTFE density field. In this thesis we have demonstrated that the DTFE velocity method has
indeed the ability to resolve both small and large scale features of the velocity field. Note that a succes-
full DTFE velocity field interpolation does not demand it to be uniformly sampled from an underlying
density field. In this work, however, we assume that they do. The DTFE velocity fields are continuous
and fully volume-covering. Bernardeau & van de Weygaert (1996) introduced the Delaunay method
for velocity field interpolation in an attempt to reproduce volume-weighted velocity field estimates.
The latter was deemed essential for testing theoretical predictions. Most analytical results concerning
the statististics of velocity field related quantities, as they develop gravitationally from a primordial
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Gaussian perturbation field, concern explicit volume-weighted expressions.
Bernardeau & van de Weygaert (1996) explicitly applied the Delaunay method to the velocity

divergence field to test the validity of the second order perturbation theory results. This was particularly
interesting as a mildy non-Gaussian velocity divergence distribution would enable the breaking of
the degeneracy between the cosmic matter density Ω and the bias b between the matter and galaxy
distribution (Bernardeau 1994; Bernardeau et al. 1995). The later work by Schaap & van de Weygaert
(2003) showed the first results on the succesfull reproduction by DTFE of the physical and spatial
correlation between cosmic density and velocity fields in a large GIF N−body simulation (Kauffmann
et al. 1999) (also see Schaap 2005). The corresponding density and velocity maps provide convincing
evidence of the detailed tracing of the velocity flows in and around the cores of high-density regions.
Within the same simulations, the voidlike regions were rendered as super-Hubble expanding bubbles,
consistent with our view of void dynamics (Icke 1984; Sheth & van de Weygaert 2004).

9.2.2 The DTFE general reconstruction

The DTFE field reconstruction method can be summarized in the following sequence of steps:

1. Construction of the Delaunay tessellation from the point distribution.

2. In the case of estimating the density from the point distribution itself, with the extra requirement
of the latter being an unbiased sample of the underlying density field, we first estimate the
density values at the sampled points from the Voronoi tessellation.

3. Calculation of the field (velocity) gradient ∇̂ f | j in each Delaunay tetrahedron j by inversion on
the basis of the field values and positions of the tetrahedron vertices.

(a) In the case of the velocity field v, we may in each Delaunay tetrahedron, directly infer
velocity gradient related quantities such as the velocity divergence, shear and vorticity.

4. Processing. This may involve various operations. The most important ones are “image recon-
struction” and, subsequently, “filtering”. Image reconstruction consists of two steps:

(a) For a set of image points (usually grid points) determine in which Delaunay tetrahedra they
are located.

(b) By (linear) interpolation compute field values at each of these points. For a point x in a
Delaunay tetrahedron j, having x0 as one of its vertices, the resulting DTFE field value
f̂ (x) becomes:

f̂ (x) = f (x0)+ ∇̂ f | j · (x−x0) . (9.1)

9.3 The PSCz catalog

The IRAS-PSCz catalog (Saunders et al. 2000) is an extension of the 1.2-Jy catalog (Fisher et al.
1995a). It contains ∼ 15 500 galaxies with a flux at 60µm larger than 0.6-Jy. For a full description of
the catalog, selection criteria and the procedures used to avoid stellar contamination and galactic cirrus,
we refer the reader to Saunders et al. (2000). For our purposes the most important characteristics of the
catalog are the large area sampled (∼ 84% of the sky), its depth with a median redshift of 8 500 km s−1,
and the dense sampling (the mean galaxy separation at 10 000 km s−1 is 〈l〉 = 1 000 km s−1).

Because of the flux-limited nature of the PSCz catalog, there is a decrease in the objects’ sampling
as a function of distance from the observer. This is quantified by the radial selection function of the
catalog, ψ(r), where the selection function is defined as the fraction of the galaxy number density that
is observed above the flux limit at some distance r. To recover the proper number density of objects
one needs to weight each galaxy by the inverse of the selection function. In this work we adopt the
selection function of B99 (see also Chapter 5).
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Figure 9.1 — Modeled peculiar velocity field at the galaxy positions (left-hand panel). The plot represents
a slice of 2.5 h−1Mpc thickness centered along the z−supergalactic plane. Numbers indicate the major visible
structures along the cut. 1- Local supercluster, 2- Great attractor region, 3- Pavo-Indus-Telescopium complex, 4-
Shapley supercluster, 5- Coma cluster, 6- Camelopardalis cluster, 7- Perseus-Pisces supercluster, 8- Cetus wall,
9- Sculptor void. (From Branchini et al. 1999). The right-hand panel shows the respective Delaunay tessellation
of the galaxy distribution. The shadowed regions illustrate the “contiguous Voronoi cell” concept for two given
points (P1 & P2).

To correct for the selection function, as well as for the 16% of the missing sky devoid of data due
to the cirrus emission and unobserved areas and to correct for redshift distortions, we have used the
spatial reconstructed PSCz catalog of B99. The positions and velocities in real space were computed
following the method I of B99. In this approach, the technique of Yahil et al. (1991) was implemented
to minimize redshift-space distortions (see B99 for a more complete explanation of the method).

9.3.1 The linear modeled PSCz catalog

An important constraint in the spatial reconstructed model of B99 is the fact that the reconstruction is
valid only in the limit of small density fluctuations. The gravity field was smoothed with a top-hat filter
of radius 500 km s−1 to assure the validity of linear theory and thus to obtain the smoothed peculiar
velocity at each galaxy position.

The end product of such procedure is the real spatial position and peculiar velocity for each individ-
ual galaxy for a given value of the β parameter (v ∝ βg). In our adopted reconstructed catalog β = 0.5,
in agreement with the results of Branchini et al. (2001) and Zaroubi et al. (2002) from density-density
and velocity-velocity comparisons. Velocity predictions were made in the Local Group frame [LG,
hereafter] to minimize the uncertainties derived from the lack of information on scales larger than the
PSCz catalog.

The final spatial positions and peculiar velocities can be seen in the left-hand panel of Figure 9.1,
in which a slice of 2.5 h−1Mpc thickness centered along the z−supergalactic plane is shown. Velocities
are displayed at the galaxy positions and normalized to the maximum amplitude within this slice.
The Local Group is located at the origin. The main large-scale structures have been labeled and can
be easily recognized by their gravitational effects in their surroundings. Cluster such as Coma and
Camelopardalis, and superclusters like the Local supercluster, the Great Attractor region (GA, Hydra-
Centaurus supercluster, H-C), the Pavo-Indus-Telescopium (P-I-T) complex, Shapley and the Cetus
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wall are noticeable in the map. Also, underdense regions such as the Sculptor void can be identified. A
peculiar characteristic of the modeled velocity field is the lack of a backflow in the GA region, implying
that the Shapley supercluster is still a major source of the LG velocity field (e.g. Rowan-Robinson et al.
2000; Plionis & Kolokotronis 1998; Basilakos & Plionis 1998).

Around high density regions (cluster of galaxies) where shell crossing might have occurred, there
are tripled-valued regions. In Chapter 5 we addressed this problem by considering two different sam-
ples, one where tripled-valued regions were collapsed, and another without collapsing them. Results
showed that the smoothing procedure used to linearized the data minimized this effect. Differences
between collapsed and uncollapsed samples are less than 10% for their bulk flow and velocity shear
components, and consistent at the 1σ level. The velocity model we have chosen leaves tripled-valued
regions uncollapsed. In this way, we reduce a source of error at high-density regions in the DTFE
procedure.

Since the PSCz velocities have been linearized, the vorticity modes in the peculiar velocity field
have been minimized, although not completely erased. Dekel et al. (1999) employed a Gaussian kernel
of 12 h−1Mpc in order to linearize completely the measured velocity field from the Mark III catalog
(Willick et al. 1997a). The reliability of the modeled density and velocity fields has been confirmed
in several studies and in density-density and velocity-velocity comparisons with other surveys (e.g.
Branchini et al. 2001; Zaroubi et al. 2002).

9.4 DTFE reconstruction of the PSCz density and velocity fields

In order to reconstruct the continuous volume-weighted DTFE density and velocity fields from the
PSCz catalog, we have made use only of the linearized data within a spherical volume of radius
180 h−1Mpc. This radius is large enough to enclose the main sources that contribute to the local
velocity field (e.g. B99, see also Chapter 5). The selected number of galaxies at this radius is 13432.
The DTFE density and velocity reconstruction was performed following the steps described in Sec-
tion 9.2. In our analysis we only present DTFE density and velocity maps up to a radius of 120 h−1Mpc
in order to have a more qualitative comparison with those from B99 and Schmoldt et al. (1999). At
this radius, the sample contains 10651 galaxies with an inter-object separation of ≈ 14 h−1Mpc.

9.4.1 The DTFE PSCz density field: Cosmography

The spatial DTFE density field is shown in Figure 9.2. The density field has been smoothed with a
Gaussian filter of

√
5 h−1Mpc size in order to match the linearized velocity field1. The isosurface level

corresponds to structures at 3 times the smoothed mean density. Two major matter concentrations
along the z = 0 plane dominate the field. The complex formed by the P-I-T and the H-C with its
extension toward the Shapley concentration dominates the left side region. The PP and the Cetus
wall located at the opposite side overshadow the other structures. There is a thin filamentary structure
connecting both massive matter concentrations, the Local Supercluster.

A cut along the 3D density field is presented in Figure 9.3. The slice corresponds to the
z−supergalactic plane. The color density contours represent the density field. The superimposed ar-
rows correspond to the DTFE reconstructed velocity field discussed in Section 9.4.2. Also here the
density field has been convolved with a Gaussian kernel of

√
5 h−1Mpc. The right-hand color bar

indicates the amplitude of the density fluctuations.
High-density regions (reddish regions) as well as low density ones (dark zones) can be eas-

ily recognized along the map. Very conspicuous is the filamentary structure running from
the Camelopardalis cluster ([S GX,S GY] ≈ [45,20] h−1Mpc) toward the Shapley supercluster
([S GX,S GY] ≈ [−120,70] h−1Mpc) and connecting the Local Supercluster with the Hydra-Centaurus
supercluster. The Pavo-Indus-Telescopium supercluster is barely noticeable at ([S GX,S GY] ≈
[−40,−10] h−1Mpc). The Perseus-Pisces supercluster is well defined at ([S GX,S GY] ≈

1We have used the fact that RG = RT H/
√

5 (Suto & Fujita 1990). In our case, RT H = 5 h−1Mpc
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Figure 9.2 — 3D reconstructed DTFE PSCz density field. The field has been smoothed with a Gaussian kernel
of 5 h−1Mpc. The isosurface represents structures at the 2 level of the mean density. Notice the two huge density
concentrations around the z = 0 plane, the PP and Cetus wall complex to the right, and the H-C and P-I-T to the
left side. A well delineated bridge connects both structures, the Local Supercluster.

[45,−20] h−1Mpc). Also recognizable is the Cetus wall ([S GX,S GY] ≈ [20,−40] h−1Mpc) which
connects with the barely visible Sculptor wall ([S GX,S GY] ≈ [0,−80] h−1Mpc). At the top of the plot,
the Coma cluster ([S GX,S GY] ≈ [0,70] h−1Mpc) is the only major concentration visible. A glimpse
of the Coma wall can also be seen.

We can also clearly recognize the voids. The Sculptor void, surrounded by the P-I-T complex and
the Sculptor and Cetus walls is one of the most conspicuous empty features along the supergalactic
plane. The Fornax void is located just at the bottom of the plot ([S GX,S GY] ≈ [10,−110] h−1Mpc).
The small void located between the Coma cluster and the H-C region is clearly well defined.

9.4.2 The DTFE PSCz velocity field

We have reconstructed the continuous volume-weighted DTFE velocity field of the PSCz catalog.
Because the input velocities have been linearized prior to the DTFE processing, we did not have to
smooth the velocity field any further. This will also constraint our reconstruction in the sense that
velocity flows smaller than the kernel size (

√
5 h−1Mpc) will not be recovered.

In Figure 9.3 the projected DTFE velocity field along the same density cut is presented. The
velocity arrows have been normalized to the maximum plotted velocity amplitude. Notice that both
density and velocity fields are strongly correlated with each other. The processed DTFE velocity field
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Figure 9.3 — DTFE density and velocity fields projected along the z−supergalactic plane in a thin
slice. The color bar indicates the plotted density scale. Velocities have been normalized to the maxi-
mum plotted velocity.

reveals intricate details along the whole volume. Large scale bulk flows, distortion patterns such as
shear, expansion and contraction modes of the velocity field are clear features uncovered by our DTFE
technique.

Positive velocity divergence modes within voids resemble very well the dips in the density field.
Velocity shear patterns are also clearly visible in the map. Significant quadrupolar patterns in the
matter distribution are correlated with corresponding shear patterns.

The gravitational influence of the H-C supercluster over its surroundings is more than evident. A
pronounced bulk flow toward the H-C region dominates the general LG region motion. At the top of
the plot the Coma cluster exerts the main gravitational attraction in the surrounding region.
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Local Supercluster Coma

Sculptor void Perseus−Pisces & Cetus wall

Figure 9.4 — Density and velocity zooms for four different regions along the supergalactic plane
indicated by the labels at the top of each frame. The density field has been convolved with a Gaussian
kernel of 1 h−1Mpc for a better impression of such field. The normalization of the velocity field is the
same for the four panels.

9.4.3 Small-scale details in the DTFE reconstructed fields

The ability of the DTFE method to resolve both small and large scale field characteristics can be
appreciated from Figure 9.4. This four-panel plot zooms into four different regions of our supergalactic
plane. To get more detail the density field has been smoothed with a Gaussian kernel of 1 h−1Mpc.

The top-left panel shows the complex velocity field in and around the Local Supercluster. The
Virgo cluster is located just above the LG. Noteworthy is the presence of the Great Attractor region
and its influence on the velocity field. It can be noticed that at the location of the LG there is a very
pronounced velocity shear pattern, exerted by the influence of the GA and PP supercluster (e.g. see
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Figure 9.5 — DTFE velocity-divergence field projected along the z−supergalactic plane. The thin
slice corresponds to the one presented in Fig. 9.3. The velocity-divergence is in units of the Hubble
parameter. The color bar indicates the plotted velocity-divergence scale.

Chapter 5). Other shear patterns are easily recognized. An example is the region located between
the Coma cluster and the Centaurus wall. The velocity field around the Centaurus wall clearly traces
such filamentary structure. A prominent flow can also be observed near the P-I-T complex. The
combined action of the nearby expanding void and the gravitational attraction of the heavy matter
concentration itself generate a massive stream towards the latter. The top-right hand panel depicts
how the Coma cluster, embedded within the Coma wall, distorts the velocity field in its surroundings.
Infalling velocity patterns follow the density distribution. The shear pattern at the bottom-left corner
is the response to the contrasting matter distribution around this region.

The bottom-right frame concerns the Perseus-Pisces supercluster and Cetus wall. Infalling veloc-
ity patterns following the cluster and filamentary structure show a clear dynamical connection between
these two structures. Their gravitational influence can be recognized along the whole zoomed region.
The velocity field around the underdense region located at ([S GX,S GY] ≈ [45,−60] h−1Mpc) is com-
pletely distorted by these two massive structures. At the top-left corner (near the LG location) a shear
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Figure 9.6 — DTFE velocity shear field projected along the z−supergalactic plane. The slice corre-
sponds to the one presented in Fig. 9.3. We have plotted the velocity shear amplitude in units of the
Hubble parameter. The color bar indicates the plotted scale.

pattern can also be recognized.

Finally, the bottom lefthand frame zooms in on the Sculptor void. The lowest measured DTFE
density contrast value (smoothed at 1 h−1Mpc) in this region is ≈ −0.78 at the deepest of the void2. At
the smoothed scale of

√
5 h−1Mpc the DTFE density threshold is −0.74, in agreement with the reported

value by Plionis & Basilakos (2002) of −0.69. The velocity field of this almost “empty” expanding
region is distorted by the surrounding matter distribution. Small, yet detectable, distortions delineate
the dynamical borders of this void with its surrounding matter distribution, the Sculptor wall.

2The theoretical expectation for a mature and shell-crossing void, with a characteristic inverse tophat density profile, is an
underdensity of ∆ ≈ −1.+ (1./1.7)3.
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9.5 DTFE velocity-gradient related fields

Here we reconstruct and present these quantities for the same plane projection (z-supergalactic plane)
as in Fig. 9.3.

In order to compute the full spatial peculiar velocity field it is necessary to calculate the nine el-
ements of the velocity gradient matrix. At each Delaunay tetrahedron the velocity field gradient is
constant. Therefore, the recovered velocity divergence, shear and vorticity are not continuous. How-
ever, they are volume-weighted and fully volume-covering. Having smoothed the velocity divergence,
shear and vorticity fields with the same kernel as in the case of the reconstructed density field has
provided them with the sense of continuity seen in Figure 9.5 & 9.6.

9.5.1 The DTFE PSCz velocity divergence

The velocity divergence computed with DTFE is the sum of the trace of the velocity-gradient matrix
given by:

∇ ·v =
(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
, (9.2)

The velocity divergence and the density contrast are related via the continuity equation (Peebles
1980). In the linear regime this is a strict linear relation. In the quasi-linear and mildly nonlinear
regime the one-to-one correspondance between the two fields remains intact, be it that it involves
higher order terms (see Bernardeau et al. 2002, for an extensive review about the topic). The density
and velocity-divergence maps will therefore look very similar. This is why the density map and the
velocity-divergence map are almost each other negative (see Figure 9.3).

The expanding and contracting modes of the velocity field can be discerned in Figure 9.5 where we
have plotted the normalized divergence θ of the velocity field, θ = (∇ · v)/H0. Here H0 is the Hubble
constant3. Positive divergence modes, indicated by red to yellow tones, mark the location of the
expanding voids. Clearly recognizable are the Sculptor and Fornax voids and the underdense regions
around the Coma cluster. Other expanding regions like the one above the Camelopardalis cluster
located at ([S GX,S GY]≈ [40,45] h−1Mpc) and the one at the right of the Cetus wall at ([S GX,S GY]≈
[50,−55] h−1Mpc) are also notorious.

By constrast, negative divergence modes indicate infalling motions. These modes delineate the
peaks of the density field. The largest contracting regions, represented by the blue tones are clearly
identified with the most massive structures located along this slice. The H-C is the most prominent
infalling region. Other clusters such as Virgo, Camelopardalis, Coma, PP, Cetus wall, P-I-T, and partly
Shapley can be recognized.

The green scale contours delineate density regions just above the mean density contrast. Notice
how all large scale structures are connected through a filamentary velocity-divergence pattern.

9.5.2 The DTFE PSCz velocity shear

Velocity shear can be due to the intrinsic asphericity of evolving structures and/or due to the external
tidal stresses exerted by the surrounding large scale matter distribution. Bond, Kofman, & Pogosyan
(1996) (see also van de Weygaert 2002) pointed out that the filamentary web is a consequence of
the distribution and spatial coherence of the shear field in the medium. Hence, shear is expected to
be present at linear, quasi- and non-linear regions. The recovered shear from the processed DTFE
velocities corresponds to the symmetric traceless part of the velocity-gradient matrix given by

σi j =
1
2

{
∂vi

∂x j
+
∂v j

∂xi

}
− 1

3
(∇ ·v)δi j . (9.3)

3We have adopted a value of h = 0.7 (H0 ≡ 100 h km s−1 Mpc−1) in agreement with the last reported measurements (e.g.
Lahav & Liddle 2004).
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In Figure 9.6 we have plotted the shear amplitude, σ = (Σσi jσi j)1/2, along the supergalactic plane.
Clearly visible is the presence of a strong shear measured around the LG region, which is mainly
exerted by the large scale quadrupolar matter distribution (H-C and PP) surrounding it (see Chapter 5
and references therein). The major matter concentrations (H-C, PP, P-I-T, Camelopardalis) exert a
strong shear distortion onto their surrounding velocity fields. In general there is a non-negligible shear
contribution tracing the overdense regions. At the large empty regions the shear is very small as
expected (Hoffman 1986; Bertschinger & Jain 1994).

9.6 Conclusions

The DTFE reconstruction of the PSCz catalog has been shown to represent a marked improvement over
the previous field interpolations of B99 and Schmoldt et al. (1999). One of the main advantages of
using DTFE is its large dynamic range for tracing small and large scale characteristics. DTFE traces
underdense regions better and deeper. In addition, it clearly resolves high-density regions on small
scales.

The estimated velocity field of B99 and Schmoldt et al. (1999) did not show small scale details
because of their employed interpolation techniques. The diverse features of the linear velocity field
have been exposed in detail by the DTFE technique. The self-adaptive nature of DTFE tracing the
galaxy distribution without loosing resolution and preserving the characteristics of both large and
small scale contributions are also reflected in the reconstructed velocity field. The reconstructed DTFE
velocity field has unveiled the expected infall, expansion and shear motions in our nearby universe.

One of the main virtues of the method is its ability to compute any quantity related to the velocity-
gradient matrix in a very straightforward manner. The divergence and shear maps showed a great
consistency with the reconstructed density field. Large scale structures can be recognized by their
gravitational distortions reflected in the divergence and velocity shear components.

In order to explore in more detail the velocity field of our nearby universe, it would be desirable to
compute the quasi-linear contributions to the velocity field. Techniques like the FAM−z of Branchini
et al. (2002) combined with the DTFE algorithm applied to the forthcoming surveys such as 6dF will
help us to understand more the dynamics of our nearby universe.
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Nederlandse Samenvatting

Deze zon, genaamd 4 Beweging, is onze Zon, waar we nu wonen.
En hier is zijn teken, zoals hij viel in het Vuur van de Zon,
in de goddelijke oven, daar in Teotihuacan.
Deze was ook de Zon van onze Prins, in Tula, van Quetzalcoatl.
De vijfde Zon, 4 Beweging is zijn teken,
wordt de Zon van beweging genoemd, omdat hij beweegt, hij volgt zijn pad.

Azteeks gedicht over de creatie van de Vijfde Zon (fragment, Codex Chimalpopoca).

Waarschijnlijk hebben er al voor het begin van de beschaafde wereld mensen ’s nachts naar de
sterren aan de hemel gestaard en zich verwonderd over de wereld waarin zij leefden. De mens-

heid heeft zich al eeuwen bezig gehouden met vragen als “Hoe is het heelal ontstaan?” en “Hoe is
alles daarna gevormd?”. Door de eeuwen heen zijn er allerlei verklaringen gegeven, want bijna elke
beschaving en samenleving heeft zijn eigen kosmogonie en verklaring voor het heelal gegeven. Deze
zoektocht is krachtig doorgezet tot in de moderne tijd. Het is zelfs zo dat tegenwoordig de mensheid
voor het eerst dichtbij een alomvattend wetenschappelijk verantwoord antwoord op deze eeuwenoude
vragen lijkt te zijn, op basis van een grote hoeveelheid wetenschappelijke kennis waaronder een voort-
durend toenemende en ontzagwekkende hoeveelheid observationeel bewijs.

In het huidige kosmologische model wordt verondersteld dat het heelal waarin wij leven 13,7 mil-
jard jaar geleden is ontstaan, geboren uit een enorme expanderende vuurbal die we de Hot Big Bang
noemen. Op dat moment zijn ruimte en tijd, net als alle materie en energie die het heelal omvat, ont-
staan. Het vroege heelal was extreem heet en dicht, geleidelijk afkoelend en verdunnend terwijl het
uitdijde. De theoretische beschrijving van deze gebeurtenis is gebaseerd op twee cruciale aannames.
De eerste is dat de dynamische ontwikkeling volledig bepaald wordt door de zwaartekracht, die be-
schreven wordt door Einstein’s algemene relativiteitstheorie. Volgens deze theorie is de zwaartekracht
de manifestatie van de kromming van het systeem. Het Big Bang heelal is gebaseerd op de aanname
dat de geometrie van het heelal sterk beperkt wordt door het kosmologische principe. Dit stelt dat het
heelal homogeen en isotroop is. Met andere woorden, het heelal heeft overal gelijke eigenschappen,
zowel wat betreft de verdeling van de materie als wat betreft de fysische wetten die er gelden, terwijl
het heelal er bovendien in elke richting hetzelfde uit moet zien. Er zijn maar drie geometriën die aan
deze eisen voldoen. In combinatie met de vergelijkingen van de algemene relativiteitstheorie vinden
we dat er drie corresponderende oplossingen zijn, de Friedmann-Robertson-Walker-Lemaitre [FRWL]
modellen, die het theoretische kader vormen voor de ontwikkeling van het uitdijende heelal. De ont-
dekking door Hubble in 1929 van het systematisch van ons afbewegen van melkwegstelsels vormde
het eerste bewijs voor de juistheid van deze kijk op de dynamische kosmos.

De directe gevolgtrekking van de ontdekking van Hubble was en is dramatisch: de kosmos moet
een begin hebben! Op basis van de FRWL kosmologische modellen en onze kennis van de wetten
van de natuurkunde hebben kosmologen de volledige thermische geschiedenis van het heelal kunnen
reconstrueren tot op een fractie van een seconde na zijn geboorte. Dit is wat we de Hot Big Bang
theorie noemen. De resulterende voorspellingen voor een verscheidenheid van belangrijke gebeurte-
nissen en fenomenen tijdens de ontwikkeling van het heelal hebben ons een waarlijk indrukwekkende
hoeveelheid bewijzen opgeleverd voor de geldigheid van de Hot Big Bang theorie. Wellicht de meest
indrukwekkende voorspelling is de kosmische achtergrondstraling, het overblijfsel van de straling die
ons uit elke richting van de hemel bereikt en die afkomstig is van 379,000 jaar na de Big Bang. De
ontdekking hiervan in 1965 door Penzias & Wilson wordt terecht gezien als een van de belangrijkste
wetenschappelijke doorbraken van de 20e eeuw. Met een huidige temperatuur van slechts 2.725◦K
is deze vrijwel perfect isotroop en vertoont temperatuursvariaties over de hemel van kleiner dan 1 op
105, een meer dan indrukwekkende bevestiging van het kosmologische principe. Het vroege heelal
was bijna perfect homogeen.

Terwijl de bewijzen ten gunste van het Hot Big Bang heelal zich opeen hebben gestapeld, werden
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Figuur 1 — Voorbeelden van sterrenstelsels in ons heelal, een spiraalstelsel (linkerpanel; Met dank aan: G.F.
Benedict, A. Howell, I. Jorgensen, D. Chapell, J. Kenney en B.J. Smith en NASA) en een elliptisch sterrenstelsel
(rechterpanel, met dank aan: NOAO,AURA,NSF). In het middelste panel wordt een cluster van sterrenstelsels
getoond die bestaat uit enkele tientallen sterrenstelsels (Met dank aan: NOAO,AURA,NSF).

wij geconfronteerd met het raadsel dat op relatief kleine schalen het heelal helemaal niet homogeen
is, lokaal niet eens isotroop. De kosmos wemelt daarentegen van rijke en sterk wisselende structuren.
Iedereen kent planeten en sterren. Zij zijn met honderden miljarden, samen met gas en stof gegroe-
peerd in wat beschouwd kunnen worden als de meest fundamentele bouwstenen van het waarneembare
heelal, de sterrenstelsels. Sterrenstelsels maken op hun beurt deel uit van nog grotere en massievere
structuren, groepen en clusters van sterrenstelsels (zie Figuur 1). Deze zijn ook onderdeel van een
hiërarchie van steeds grotere systemen, op schalen van tientallen en zelfs honderden Megaparsecs vor-
men ze superclusters, die zelf onderdeel zijn van een patroon dat eruit ziet als een kosmisch web dat
zich uitstrekt door het volledige waarneembare heelal.

Een van de belangrijkste vraagstukken uit de hedendaagse kosmologie is daarom het verklaren
van de onregelmatige verdeling van de materie die zich op schalen kleiner dan honderd Megaparsec
bevindt, en wel binnen de context van de Big Bang kosmologie. In dit proefschrift proberen we deze
vraag te beantwoorden, en kijken we in het bijzonder naar zaken die verband houden met de samen-
hangende stromen van materie in het heelal, tot op een afstand van ongeveer 100 h−1Mpc. Hierbij
volgen we de standaardleer van structuurvorming in het heelal, de theorie van gravitationele instabi-
liteit. Deze vormt een uitbreiding van de standaard Hot Big Bang theorie met een extra element. Dit
stelt dat hoewel het vroege heelal vrijwel volledig glad was, dit toch niet helemaal het geval was. In
plaats daarvan vertoonden de verdeling van materie en de kosmische uitdijing kleine fluctuaties. Deze
werden versterkt door de zwaartekracht en groeiden uit tot de rijkdom aan structuur die we door onze
telescopen zien. Ook hiervoor bestaat een ruime hoeveelheid bewijs, waarbij het weer waarnemin-
gen van de kosmische achtergrondstraling en de detectie van kleine temperatuursschommelingen door
de COBE en WMAP satellieten waren die ons voorzien hebben van voldoende vertrouwen om het
onderzoek uit te voeren dat in dit werk wordt gepresenteerd.

De Hot Big Bang

Tot aan het begin van de twintigste eeuw werd aangenomen dat het heelal statisch was. In 1916 stelde
Albert Einstein de algemene relativiteitstheorie op, samen met de vergelijkingen die de dynamica van
het heelal beschrijven. Einstein ontdekte dat volgens deze vergelijkingen het heelal uit moet dijen of
moet krimpen, volledig in strijd met het bestaande beeld van een statisch heelal1.

1Hij geloofde deze resultaten niet en stelde daarom voor om een extra term aan zijn bewegingsvergelijkingen toe te voegen,
zodat het heelal toch statisch is. Deze term wordt de kosmologische constante genoemd en wordt aangegeven met de Griekse
letter Λ.
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Friedman slaagde erin om de bewegingsvergelijkingen voor algemene homogene en isotrope mo-
dellen van het heelal op te lossen binnen de context van de algemene relativeitstheorie. Voortbou-
wend op dit uiterst belangrijk maar destijds onvoldoende erkende werk, was het de Belgische priester
Georges Lemaitre die niet alleen onafhankelijk dezelfde vergelijkingen in 1927 oploste, maar zich
bovendien ook de natuurkundige gevolgen realiseerde. Terugrekenend in de tijd zag hij in dat een
uitdijend heelal een begin gehad moet hebben in een extreem hete en dichte toestand met de naam
”Oeratoom”. Spoedig daarna, in 1929, ontdekte Edwin Hubble dat sterrenstelsels van ons af bewegen
met een snelheid die toeneemt naarmate ze op grotere afstand van ons staan. Dit universele verband
staat bekend als de wet van Hubble. Zonder twijfel vormt deze ontdekking een van de grootste weten-
schappelijke revoluties in de menselijke geschiedenis, die het eerste duidelijke en overtuigende bewijs
leverde voor het feit dat ons heelal niet statisch is, maar “uitdijt”! In de afgelopen paar jaar heeft
de nauwkeurigheid van moderne satellieten geleid tot een convergentie van de geschatte uitdijings-
snelheid van het heelal naar een waarde in het smalle bereik rond H0 ≈ 71 km s−1 Mpc−1 (de Hubble
constante). Voor elke Megaparsec2 verder weg lijkt de snelheid van een ver weg staand object in de
richting van ons toe te nemen met 71 km s−1.

Met het nieuwe bewijs voor een uitdijend heelal werd de astronomische gemeenschap geconfron-
teerd met een volledig nieuw stel vragen. Wat was de aard van deze uitdijing? Zal de uitdijing eeuwig
voortduren? Zal het heelal geleidelijk uitdijen tot deze een dynamisch evenwicht bereikt en vanaf
dat moment voor eeuwig in een statische toestand blijven? Zal het heelal een kritiek punt bereiken
waarna het weer begint samen te trekken als een omgekeerde Big Bang, de Big Crunch? Deze vragen
bleven lange tijd onbeantwoord, aangezien er geen waarnemingen waren die ze overtuigend konden
beantwoorden.

Eén aspect van het uitdijende heelal blijkt voor ons van essentieel belang te zijn om de fysische om-
standigheden en processen in zowel het vroege als het toekomstige heelal te onderzoeken. De FRWL
modellen corresponderen alle met adiabatische uitdijing, hetgeen ons in staat stelt om de temperatuur
en dichtheid van de inhoud van het heelal op ieder moment te voorspellen. Met andere woorden, ter-
wijl het heelal uitdijt, koelen straling en materie af en, omgekeerd, als het heelal zou krimpen, dan
zouden dichtheid en temperatuur toenemen. Dit heeft ons in staat gesteld om tijdens de afgelopen
decennia een indrukwekkende hoeveelheid bewijzen te verzamelen voor de Hot Big Bang theorie door
verschillende van de natuurkundige voorspellingen te testen.

Hoewel er een verscheidenheid aan tests is, vormen vier tot vijf ervan de meest solide pilaren
van de Big Bang theorie. Wellicht de meest eenvoudige is het feit dat de Big Bang een verklaring
geeft voor een verbazingwekkend eenvoudige waarneming door Olbers in de vroege 19e eeuw: de
nachtelijke hemel is donker. Alleen in een heelal met een eindige leeftijd en een eindige lichtsnelheid
kan dit worden begrepen. Het is duidelijk dat Hubble’s (isotrope) uitdijende heelal niet alleen een
belangrijke bevestiging vormt van de werkelijkheid van de FRW beschrijving, maar dat deze ook
beschouwd kan worden als het begin van de kosmologie als “natuurwetenschap”. Wellicht het meest
interessant zijn de twee waarnemingsresultaten die tot de vroegste tijden van onze kosmos reiken. De
ongelooflijke precisie waarmee de Big Bang theorie de uitkomst en resultaten van de allervroegste
fase van de primordiale nucleosynthese van de lichte chemische elementen weet te voorspellen, brengt
ons terug naar de eerste drie minuten van het heelal. De voorspelling van een isotrope deken van
kosmische thermische straling, met een ongelooflijk nauwkeurig spectrum van een zwart lichaam met
een temperatuur van T ≈ 2.725◦K, heeft ons in staat gesteld om de ontdekking hiervan in 1965 om te
zetten in de uiteindelijke bevestiging van de werkelijkheid van de Big Bang. De bijnaam is omgezet
in een eervolle titel!

Ongeveer drie minuten na de Big Bang, toen de temperatuur van het heelal afgekoeld was naar
een paar miljard graden, was het heelal gevormd tot een enorme kernreactor. De lichte chemische
elementen Deuterium, 3Helium en 4Helium, evenals een kleine hoeveelheid Lithium, waren net ge-
vormd voordat de uitdijing de kernreactor uitzette. De voorspelling van de Big Bang theorie voor de
gevormde hoeveelheid van deze elementen komt heel goed overeen met de waarnemingen, een zeer

2Mpc =Megaparsec ≈ 3 260 000 lichtjaar ≈ 30 800 000 000 000 000 000 km
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overtuigende overwinning!
In de daaropvolgende honderdduizenden jaren hebben de fotonen, in een nauwe wisselwerking

met het kleine overblijfsel aan elektronen en protonen3, een evenwicht bereikt en hun energie verdeeld
over een bijna perfect zwartelichaamsspectrum. Ongeveer 279,000 jaren hierna was de temperatuur
van het heelal afgekoeld tot slechts 3000◦K, waarna protonen en elektronen samen waterstofatomen
vormen tijdens deze zogenaamde Recombinatie”4. De resulterende ”ontkoppeling” van straling en
materie vond vrijwel gelijktijdig plaats. Niet langer door vrij rondzwevende elektronen verstrooid,
konden fotonen hun lange reis door de diepten van een vrijwel doorzichtig heelal beginnen. Deze fo-
tonen van de kosmische achtergrondstraling, die hun vrijwel perfecte zwartelichaamsspectrum hebben
behouden, lijken hun oorsprong te vinden op het oppervlak van laatste verstrooiing. Dit oppervlak
markeert de positie van de atomen die de waargenomen fotonen van de komische achtergrondstraling
als laatste hebben verstrooid5. Daarna is de geleidelijke afkoeling van het heelal samengegaan met een
corresponderende afkoeling van de temperatuur van de fotonen.

Een voortdurend toenemende vloed van nieuwe kosmologische waarnemingen, afkomstig van gro-
tere en grotere diepten van het heelal, heeft geleid tot een convergerende concensus met betrekking tot
het heelal waarin wij leven. Met een indrukwekkende nauwkeurigheid is een nogal opvallende ver-
zameling waarden voor de cruciale kosmologische parameters te voorschijn gekomen, nu algemeen
bekend onder de naam Concordance Model. Satellietexperimenten, zoals COBE en MAP, in samen-
hang met ballonexperiment Boomerang, hebben het embryonisch heelal ten tijde van de recombinatie
in groot detail in kaart weten te brengen. Niet alleen hebben ze de geldigheid van de Hot Big Bang
aangetoond, ze hebben ons ook overtuigd dat het heelal vlak is, de leeftijd nauwkeurig vastgesteld op
13,7 miljard jaar en onafhankelijk de baryoninhoud bevestigd waar ook de primordiale nucleosynthese
op wees. Mede dankzij de grote roodverschuivingsstudies die vanaf de grond plaatsvinden, waarvan
we hier de honderduizenden sterrenstelselposities noemen die door 2dFGRS en SDSS gemeten zijn,
hebben we de (donkere) materie inhoud van het heelal kunnen bepalen. De grootste verrassing werd
geleverd door de programma’s om Supernova Ia explosies tot op grote diepten in het heelal waar te
nemen en te meten. Deze hebben geleid tot de bijna onontkoombare conclusie dat een ongrijpbare
maar alomtegenwoordige ”donkere energie” moet bestaan.

Dit brengt ons tot de toestand dat hoewel het Concordance Model een goede beschrijving van de
werkelijkheid lijkt te vormen er nog steeds een groot aantal onopgeloste raadsels overblijft. Het stan-
daard FRW model kan bij lange na niet verklaren waarom het heelal vrijwel ”vlak” is, een probleem
dat gewoonlijk aangeduid wordt met de naam ”Flatness Problem”. Evenzo blijft het de vraag waarom
de kosmische achtergrondstraling in elke richting dezelfde temeratuur heeft, hoewel de kosmische
horizon tijdens recombinatie niet groter is dan ≈ 1◦. Dit probleem staat bekend als het ”Horizon Pro-
blem”. In samenhang met andere samenlopen van omstandigheden hebben deze vragen geleid tot een
uitbreiding van de Hot Big Bang theorie met een inflatie fase-overgang waarin het zeer vroege heelal
exponentieel is uitgedijt met een factor van 60 ordes van grootte. Evenzo, zoals we zullen zien in de
volgende paragraaf, zou inflatie kunnen helpen om de oorsprong van structuur te verklaren.

Kosmische Inventaris: Materie en Donkere Materie

Als we naar het heelal kijken is het licht dat door sterren wordt uitgestraald het eerste dat we zien. Hoe-
wel sterren wellicht de meest opvallende en zichtbare bewoners van ons heelal zijn, blijken ze slechts
een heel klein gedeelte van de totale hoeveel materie in de kosmos te representeren. Volgens de laatste
schattingen zijn bevatten sterren niet meer dan 0,25% van de totale hoeveelheid energie, 0,9% van
de totale hoeveelheid materie en zelfs maar 5% van het totale aantal baryonen in het heelal. Planeten,

3Het is goed om te beseffen dat ons heelal een heel uitzonderlijk fysisch systeem is in de zin dat er twee miljard fotonen zijn
voor iedere baryon!

4Deze gebeurtenis heeft deze naam om historische redenen gekregen. Het is duidelijk geen toepasselijke naam, wat het was
de eerste keer dat elektronen en protonen samen waterstofatomen vormden.

5Sommige van deze fotonen zijn verantwoordelijk voor ∼ 1% van de ruis van onze TV-toestellen.
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manen, asteroı̈den en stof die om deze sterren draaien, corresponderen met een nog bescheidenere frac-
tie. In het verleden is er wel gespeculeerd dat een grote hoeveelheid extreem zwakke sterren, bruine
dwergen of objecten die net niet tot sterren zijn gevormd, gezamenlijk een veel grotere hoeveelheid
massa bevatten, maar er is geen overtuigend bewijs voor deze stelling gevonden. Ook is er geen bewijs
gevonden voor een grote hoeveelheid materie in een kerkhof van overleden sterren, zwarte gaten of
uitgedoofde witte dwergen. Naast de honderden miljarden sterren die zich in sterrenstelsels bevin-
den, bevatten deze echter ook grote hoeveelheden gas. Radiotelescopen hebben het diffuse neutrale
waterstof en de dichtere en massievere moleculaire gaswolken in kaart gebracht. Infrarood- en submil-
limetertelescopen hebben in de kern van deze wolken gekeken, de plek waar sterren geboren worden.
Alles bij elkaar vinden we op deze manier niet meer dan nog eens 30% van de massa in sterren. Een
veel grotere hoeveelheid baryonen is ontdekt binnen rijke clusters van sterrenstelsels. Deze bevatten
grote hoeveelheden extreem heet geı̈oniseerd intra-cluster gas. Bij temperaturen van ongeveer honderd
miljoen graden K zendt dit gas röntgenstraling uit. Dit gas bevat ten minste drie keer zoveel materie
als de sterrenstelsels zelf die in dezelfde cluster bewegen. In totaal zou dit gas maximaal 0,7% van de
hoeveelheid materie in het heelal kunnen bevatten.

Gas en sterren zijn gemaakt van hetzelfde materiaal als wijzelf, baryonische materie die voorna-
melijk uit protonen en neutronen bestaat. Eén van de grote successen van de Hot Big Bang theorie is
de voorspelling geweest dat de totale hoeveelheid baryonen in het heelal een magere 4,4% bedraagt
van de totale hoeveelheid massa die nodig is voor een vlakke geometrie van het heelal. Als we alle
boven beschreven bijdragen bij elkaar optellen dan vinden we dat de meeste baryonische materie nog
niet ontdekt is. Een bijzonder opwindende gedachte daarbij is dat wellicht 80% van de baryonen door
de uitgestrekte structuren van het kosmische web zweeft, en wel in de vorm van een warm of een koud
plasma.

Een ontnuchterende gedachte is dat de materie die uit baryonen bestaat slechts een klein onderdeel
vormt van de totale kosmische inventaris. Door de bewegingen van sterren en gas in melkwegstelsels
te bestuderen, evenals de bewegingen van melkwegstelsels in de kosmos, hebben we ontdekt dat deze
bewegingen veroorzaakt moeten worden door de gravitationele actie van veel grotere hoeveelheden
materie. Waarnemingen laten zien dat terwijl baryonen niet meer dan 4,4% van de kritieke massa van
het heelal kunnen bevatten, de totale hoeveelheid materie 27% van deze kritieke massie moet bedragen.

De eerste twee aanwijzingen voor het bestaan van een gravitationeel dominante donkere materie-
component werden beschreven door Oort en Zwicky in de jaren 30 van de 19e eeuw. Oort ontdekte
dat de sterren in onze Melkweg sneller loodrecht ten opzicht van het vlak van de Melkweg bewegen
dan alle sterren in het Galactische vlak samen kunnen verklaren. De baanbewegingen van sterren en
gaswolken in de buitendelen van sterrenstelsels duiden op zelfs nog grotere hoeveelheden donkere
materie, in een donkere materie halo om sterrenstelsels heen. Het werk van astronomen uit Gronin-
gen (Van Albada & Sancisi) heeft hierbij sleutelrol gespeeld. Op grotere massaschalen werden zelfs
nog sterkere discrepanties tussen de gravitationele en zichtbare materie aangetroffen. Fritz Zwicky
ontdekte in 1930 dat de snelheden van de sterrenstelsels in de Coma clusters zo hoog waren dat de
cluster niet bijeen zou kunnen worden gehouden door de onderlinge zwaartekracht van de sterrenstel-
sels. Als er niet meer dan 100 keer zoveel materie aanwezig was dan zichtbaar in sterren dan zou de
cluster uiteen vliegen. In de jaren hierna is een vergelijkbare hoeveelheid materie aangetroffen in elk
waargenomen cluster van sterrenstelsels. De aanwezigheid van deze materie kon niet alleen afgeleid
worden uit de bewegingen van de sterrenstelsels binnen de clusterpotentiaal, maar ook uit de thermi-
sche toestand van het hete intra-cluster gas dat in het röntgen straling uitzendt, als ook uit het effect
dat de cluster heeft op de lichtpaden van lichtdeeltjes, afkomstig van achtergrondstelsels, die de cluster
passeren (afbuiging door gravitatielenzen). Deze trend zet zich voort op de nog grotere Megaparsec
scalen: de kosmische stromen van sterrenstelsels evenals de recent gemeten zwakke afbuigingen van
het licht dat door de inhomogene Megaparsec materieverdeling beweegt, duiden op een vergelijkbare
of wellicht iets grotere hoeveelheid donkere materie.

Aangezien de totale hoeveelheid kosmische materie ongeveer zeven keer groter is dan de maximale
hoeveelheid baryonische materie, moet de gedetecteerde donkere materie “niet-baryonische materie”
zijn. Tot op heden hebben we geen directe en duidelijke aanwijzingen voor de aard van deze materie
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gevonden. In de loop van de tijd is een groot aantal soorten potentiële kandidaten de revue gepasseerd.
Gedurende een korte tijd vormden de massieve neutrino’s een serieuze kandidaat, om snel daarna
vervangen te worden door een klasse van koude en niet botsende exotische deeltjes met een lange
levensduur, de zogenaamde Koude Donkere Materie. De identiteit van deze donkere materiedeeltjes
is nog steeds onbekend, hoewel er allerlei speculaties gaande zijn. De brede, speculatieve klasse van
zwak wisselwerkende en massieve deeltjes, WIMPs genaamd, of een heel licht deeltje dat axion wordt
genoemd behoren tot op heden beiden tot de favorieten.

Op dit moment lijkt Materie 27% van de hoeveelheid energie in het heelal voor zijn rekening te
nemen, waarvan het merendeel in de vorm van Donkere Materie. Sinds enkele jaren weten we dat
Donkere Energie een nog groter gedeelte, 73%, in beslag neemt, hoewel de aard hiervan vrijwel vol-
sterkt onbekend is. Wat we echter wel weten is dat deze gelijkmatig over het heelal verdeeld is en niet
samenklontert, waardoor de donkere energie een onbelangrijke rol speelt bij de vorming van structuur.
Het is dus zo dat terwijl zowel de donkere energie als de donkere materie de uitdijing en daarmee het lot
van het heelal bepalen, alleen de donkere materie kan samenklonteren en structuren vormen. Daarom
is de Donkere Materie de bepalende factor voor de uitkomst van de structuurvormingsprocessen in het
heelal, die de kern vormen van het werk dat beschreven wordt in dit proefschrift.

De vorming van structuur

De vraag is nu hoe alle planeten, sterren, sterrenstelsels en clusters van sterrenstelsels hebben kunnen
ontstaan in een vrijwel perfect homogeen heelal. Het meest plausibele antwoord dat we hebben is via
structuurvorming middels gravitationele instabiliteit.

Kleine dichtheids- en snelheidsverstoringen werden steeds groter onder invloed van hun onder-
linge gravitationele aantrekkingskracht. Onder invloed van de netto resulterende gravitatiekracht werd
materie aangetrokken door gebieden met een hoger dan gemiddelde dichtheid, waardoor zich op die
plaatsen in de loop van de tijd steeds meer materie opeen heeft gehoopt. Deze hierdoor hoger geworden
dichtheid betekent een sterkere zwaartekracht, waardoor het effect sterker wordt, hetgeen uiteindelijk
leidt tot een vicieuze cirkel: gravatiationele instabiliteit. Andersom zullen gebieden met een lager
dan gemiddelde dichtheid een kleinere gravitationele aantrekkingskracht op hun omgeving uitoefenen.
Daardoor zal materie uit deze gebieden wegstromen naar gebieden met een hogere dichtheid, hetgeen
een steeds leger wordend gebied met een steeds lagere dichtheid achterlaat.

Tijdens de eerste fase van dit proces, wanneer de dichtheidsverstoringen nog relatief klein zijn, is
de resulterende materieverdeling voornamelijk een versterkte versie van de oorspronkelijke verdeling.
Deze fase noemen we het lineaire regime. Op het moment dat de dichtheidsverstoringen substantieel
hiervan af beginnen te wijken, ontkoppelt de expansie van materieconcentraties van de globale kosmi-
sche expansie en beginnen deze samen te trekken. De daaropvolgende ineenstorting verloopt volgens
een reeks van karakteristieke anisotrope patronen. In het begin nemen ze een vlakke wandachtige struc-
tuur aan, gevolgd door een samentrekking tot een uitgerekte filamentaire vorm, voordat uiteindelijk de
volledige ineenstoring en virialisatie tot een klomp van materie plaats heeft. De fysische eigenschap-
pen van de primordiale dichtheidsfluctuaties zijn verantwoordelijk voor een tweede belangrijke aspect
van gravitationele structuurvorming, namelijk de hiërarchische aard ervan. Omdat de fluctutaties op
kleine schalen sterker zijn dan die op grote schalen, zullen de vroegst gevormde objecten klein zijn.
Grotere objecten vormen doordat kleine, eerder gevormde objecten, samen klonteren. Dit proces van
hiërarchische structuurvorming lijkt inderdaad overeen te komen met hetgeen we waarnemen: ster-
renstelsels zijn veel ouder dan de massievere en recentelijk ineengestorte clusters van sterrenstelsels.
Op een nog grotere schaal hebben Superclusters nog niet eens de ineenstortingsfase bereikt of ze zijn
net begonnen met samentrekken.

De manier waarop deze hiërarchisch ingebedde structuren zichzelf hebben geordend in het heelal
bevat een rijkdom aan informatie over het structuurvormingsproces. Ze lijken gegroepeerd te zijn
in vlakke of filamentaire, gedeeltelijk samengetrokken superclusters. Deze zijn onderling verbonden
middels een uitgestrekt webachtig systeem, gescheiden door enorm grote en lege gebieden. Dit kos-
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Figuur 2 — Voorstelling van een gedeelte van het
heelal dat gecreëerd is door een computersimulatie

mische web strekt zich uit over het gehele waarneembare heelal.
Om de theorie van gravitationele instabiliteit te testen, hebben we daarvoor relevante structuren

en fenomenen nodig. Deze zouden bij voorkeur een directe link met de primordiale omstandigheden
in het heelal moeten hebben, zodat we de resulterende informatie relatief eenvoudig kunnen inter-
preteren. Er is een verscheidenheid aan zulke kosmische fossielen. Een belangrijk voorbeeld zijn de
temperatuurschommelingen in de kosmische microgolfachtergrondstraling, een directe reflectie van
de kleine embryonische kosmische verstoringen van waaruit structuur is gegroeid. Een ander be-
langrijk voorbeeld is gerelateerd aan de kaart van de verdeling van materie op Megaparsec schalen,
het hedendaagse produkt van het structuurvormingsproces. Op basis van de veronderstelling dat de
sterrenstelselverdeling een goede weerspiegeling is van de onderliggende materieverdeling, vormen
kaarten van de ruimtelijke sterrenstelsverdeling wellicht het meest geanalyseerde kosmische fossiel.
De hiermee samenhangende kosmische stromen representeren een ander belangrijk fossiel. De studie
van de eigensnelheden van sterrenstelsels vormt daarom een cruciale aanvulling op bovengenoemde
analyses.

Computersimulaties van het heelal

Theoretische kosmologische modellen doen voorspellingen over het structuurvormingsproces in het
heelal. De kosmische structuren die door astronomen worden waargenomen, zijn de eindprodukten
van een lang en gecompliceerd evolutionair proces. Om de verschillende structuurvormingssceniaro’s
te testen, nemen kosmologen hun toevlucht tot computersimulaties die de evolutie van het heelal mo-
delleren.

Het gebruik van computersimulaties heeft zich ontwikkeld tot een belangrijk hulpmiddel voor stu-
dies van de grote schaal structuur. Computersimulaties volgen de evolutie en vorming van kosmische
structuren overeenkomstig de theorie van gravitationele instabiliteit. N-deeltjes simulatiepogramma’s
vormen het belangrijkste gereedschap om de verschillende aspecten van deze evolutie te volgens. In
dit berekende heelal worden deeltjes of vloeistofelementen - die hetzij donkere hetzij lichtgevende
materie representeren - op lokaties neergezet waar ze zich in het zeer vroege heelal hebben moeten
bevinden. Door de zwaartekracht in rekening te brengen, wordt het systeem van deeltjes geëvolueerd
in de tijd. Ook meer gecompliceerde fysische processen zijn in ogenschouw genomen, waardoor het
mogelijk is om te bepalen hoe en wanneer sterrenstelsels gevormd worden en waar het meeste gas in
het heelal zich bevindt.

Figuur 2 laat het resultaat van een N−deeltjes simulatie zien. De grijswaarden geven de dichtheid
(het aantal deeltjes) aan. Op deze manier correspondeert zwart met gebieden met een grote concen-
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Figuur 3 — Symbolische voorstelling van de Lokale Supercluster. Elk puntje representeert een sterrenstelsel. De
grijze gebieden bevatten meer dan een gemiddelde hoeveelheid sterrenstelsels. De meest in het oog springende
clusters van sterrenstelsels worden aangegeven met labels, evenals de lokatie van de Melkweg. (Met dank aan
Brent Tully, zie www.ifa.hawaii.edu/ tully/outreach)

tratie van materie (clusters van sterrenstelsels), grijs met superclusters, lichtgrijs met filamenten en
wit met lege gebieden. De filamentaire structuur (het kosmische web) is duidelijk te zien. De goede
overeenstemming tussen de resultaten van N−deeltjes simulaties en het waargenomen heelal is een
geruststellend succes van de theorie voor de evolutie van het heelal.

De grote schaal structuur van het heelal

Als we om ons heen kijken, dan zien we dat sterrenstelsels de fundamentele bouwstenen van het heelal
vormen. Deze grote en waarlijk magnifieke verzamelingen van honderden miljarden sterren bevinden
zich overal in het waarneembare heelal. Een algemene aanname is dat hun verdeling de onderliggende
verdeling van materie weerspiegelt. Daarom vormen ze een uitstekend hulpmiddel om de structuur en
infrastructuur van het heelal in kaart te brengen.

Sterrenstelsels vertonen een ruime verscheidenheid aan soorten en maten. Vele hebben een schijf-
achtige vorm. Binnen de schijf kunnen we vaak heldere spiraalarmen herkennen, oplichtend door
jonge en blauwe sterren. In de kern van zulke sterrenstelsels vinden we een “bulge”, een geel-rode el-
lipsoı̈de concentratie van oudere sterren. Een kleiner gedeelte van sterrenstelsels heeft een bolvormige
of elliptische vorm, de “elliptische” stelsels. Deze bevatten een voornamelijk oudere sterpopulatie, met
veel minder gas dan de “spiraal”stelsels (zie Figuur 1). De meeste stelsels behoren niet tot deze twee
hoofdklassen en zijn veel kleiner. Vaak hebben ze een onregelmatige en slecht-definieerbare vorm,
hoewel een flink aantal een elliptische vorm heeft.

Onze Melkweg is een spiraalstelsel met ongeveer 200 miljard sterren. Onze zon is een gemiddelde
gele dwergster in de schijf van de Melkweg, ronddraaiend op een straal van ≈ 8,5 kpc van het centrum
van de Melkweg6.

Sterrenstelsels zijn verre van gelijkmatig verdeeld over het heelal. Op schalen van tientallen Me-
gaparsecs vertonen ze een intrigerend schuimachtig patroon, het kosmische schuim, dat zich uitstrekt

6Een “kpc” is een kiloparsec. 1 kpc ≈ 30 860 000 000 000 000 km
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Figuur 4 — Kaart van de verdeling van sterrenstelsels, oriëntatie en lokatie van de grote schaal structuur in
het lokale heelal, geprojecteerd aan de hemel. Clusters en superclusters van sterrenstelsels, filamenten en en-
kele lege gebieden zijn duidelijk zichtbaar. (Met dank aan: 2MASS Extended Source Catalog, T. Jarret en
2MASS/UMass/IPAC-Caltech/NASA/NSF)

over het gehele waarneembare heelal. Op de nog grotere schaal van ≈ 200 h−1Mpc kunnen we geen
structuren meer herkennen: op deze schalen bereikt het heelal de homogeniteit die vereist wordt door
het kosmologische principe. Op kleinere schalen treffen we echter een ingewikkelde hiërarchie van
structuren aan.

Individuele sterrenstelsels worden vaak in groepen en clusters aangetroffen, die op hun beurt
meestal deel uitmaken van nog grotere structuren, superclusters. Groepen van sterrenstelsels bestaan
uit minder dan 50 leden, voornamelijk spiraalstelsels. Alleen in hele dichte en compacte groepen kun-
nen ook elliptische stelsels worden aangetroffen. Clusters van sterrenstelsels zijn groter en bestaan uit
honderden tot duizenden leden. Ze vormen de meest massieve en meest recent volledig ineengestorte
objecten in het heelal. In het centrum van clusters bevinden zich voornamelijk elliptische stelsels,
terwijl spiraalstelsels en onregelmatige stelsels zich voornamlijk in de buitengebieden ophouden. De
omvang van superclusters is in de orde van 20 h−1Mpc of groter. Ze hebben een dichtheid van een paar
tot tien maal de gemiddelde kosmische dichtheid. Dynamisch gezien is de expansie van een deel van de
superclusters net gestopt. Het zal echter nog even duren voordat deze structuren volledig ineenstorten.

Een goede illustratie van deze hiërarchische inbedding van structuren op allerlei schalen vormt
onze eigen Melkweg. Deze behoort tot een kleine groep van sterrenstelsels, de Lokale Groep. Van
de ongeveer 40 leden zijn de twee meest massieve stelsels, Andromeda en de Melkweg, verreweg het
grootst. De Lokale Groep bevindt zich aan de buitenrand van een groter systeem van sterrenstelsels
dat bekend staat als de Lokale Supercluster. Deze bestaat uit verschillende groepen van sterrenstelsels,
enkele kleinere clusters en één hele rijke cluster in zijn kern, de Virgo Cluster. Figuur 3 geeft een beeld
van de Lokale Supercluster, waarbij elk witte puntje een sterrenstelsel representeert. Wij bevinden ons
aan de onderkant van de figuur. De belangrijkste clusters zijn aangegeven met labels.

De kosmische materieverdeling zou bepaald kunnen worden door kaarten van de verdeling van ster-
renstelsels te bestuderen. Als het mogelijk zou zijn om een panoramisch beeld van de verdeling van
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Figuur 5 — Kaart van de verdeling van sterrenstelsels in de ruimte als functie van hun afstand tot ons volgens
de 2dFGR Survey. Merk op hoe de materie concentraties vormt in bepaalde gebieden (clusters en superclusters
van sterrenstelsels), terwijl er ook lege gebieden zijn. (Met dank aan het 2dF Galaxy Redshift Survey team).

sterrenstelsels voorbij de Melkweg te bekijken, dan zou het resultaat op Figuur 4 lijken. Deze afbeel-
ding is opgebouwd uit de meer dan 1,6 miljard sterrenstelsels (aangegeven met puntjes) die vermeld
staan in de All-Sky Survey Extended Source Catalog van de Two Micron All Sky Survey (2MASS).
Belangrijke nabijgelegen concentraties van materie zijn voorzien van een label. De vele overdichte
gebieden zijn duidelijk zichtbaar. Deze bestaan uit clusters van en superclusters van sterrenstelsels,
die de grote schaal van het nabije heelal voor een belangrijk deel bepalen. Merk op dat ons heelal
lokaal helemaal niet isotroop lijkt. Het is belangrijk om te beseffen dat de schijnbaar grootte van onze
Melkweg in deze projectie een artefact is, resulterend door de nabijheid van de Melkweg. Vanwege
onze positie in de schijf van de Melkweg wordt ons uitzicht in het zichtbare licht geblokkeerd door
het stof dat zich ook in de schijf bevindt. Met de 2MASS kaart die op microngolflengte is gemaakt,
hebben we ineens een veel duidelijker beeld van onze omgeving gekregen. Voorheen onttrokken aan
onze aanblik vormt de aanwezigheid van de Great Attractor (H in Figuur 4) een duidelijk voorbeeld
hiervan.

Voor een volledig ruimtelijk beeld van de verdeling van sterrenstelsels is het van belang hun af-
standen te kennen. Deze zijn lastig om op een directe wijze te meten. Hierbij komt echter de Hubble
uitdijing van het heelal ons te hulp. Volgens de Hubble uitdijing is de snelheid van ons af direct even-
redig aan de afstand. Door de snelheid te meten, kunnen we dus de afstand bepalen. De snelheid is
veel eenvoudiger te meten dan de afstand, vanwege de roodverschuiving van het door het stelsel uitge-
zonden licht. Deze valt te vergelijken met de lagere toon van de sirene van een ambulance die van ons
af beweegt. Evenzo wordt het licht van een stelsel roder als het stelsels van ons af beweegt.

Figuur 5 laat de verdeling van sterrenstelsels zien in de Two degree Field Galaxy Redshift Sur-
vey (2dFGRS) in een strook aan de hemel. Op deze kaart ligt de Melkweg in het midden van de
twee kegels en worden individuele sterrenstelsels aangegeven met een punt. De positie van elk stelsel
op de kaart wordt bepaald door zijn roodverschuiving en positie aan de hemel7 Het resultaat is een
ruimtelijke kaart van de verdeling van sterrenstelsels en materie in ons lokale heelal. Sterrenstelsels,
clusters en superclusters vormen samen een webachtig patroon. Hierin markeren superclusters de fi-
lamentaire bruggen en vlakke wanden in dit netwerk, terwijl clusters zich op de dichte knooppunten

7Merk op dat het lijkt dat er minder stelsels zijn naarmate je verder van de Melkweg komt. Dit is echter een schijneffect,
omdat het veel moeilijker is om verder weggelegen en daarom minder heldere stelsels waar te nemen dan dichtbijstaande.
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Figuur 6 — Model van de eigen-
snelheden zoals afgeleid uit de ver-
deling van materie. De pijltjes ge-
ven de richting en grootte van het
snelheidsveld aan. De ononderbro-
ken lijnen laten de materieverdeling
zien, waarbij compacte gebieden die
omsloten worden door een lijn mas-
sieve structuren aanduiden, terwijl ge-
streepte lijnen wijzen op lege gebie-
den. De labels markeren de posities
van de grootste structuren in het veld:
V: Virgo cluster, LS: Lokale Super-
cluster, H-C: Hydra-Centaurus, Sh:
Shapley, P-P: Perseus-Pisces, P-I-T:
Pavo-Indus-Telescopium, Cet: Cetus
wand, Sculp: Sculptor leegte. (Uit
E. Romano-Dı́az et al. 2004, met data
van E. Branchini)
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van het netwerk bevinden. Samen omvatten deze uitgestrekte bolvormige gebieden waar zich vrijwel
geen sterrenstelsels bevinden, de leegten. Tegenwoordig weten we dat dit Kosmische Web een van de
belangrijkste karakteristieken van ons heelal is.

Kosmische stromen

Hoewel op grote schalen het heelal ongeveer met eenzelfde snelheid uitdijt (de Hubble stroom), is
dit niet waar voor afzonderlijke sterrenstelsels. Snelheidsmetingen van afzonderlijke stelsels laten
zien dat deze afwijken van de Hubble stroom. Deze afwijkingen worden de eigensnelheden van deze
sterrenstelsels genoemd.

Migratiestromen van kosmische materie zijn een belangrijke manifestatie van de groei van kosmi-
sche structuren. Verondersteld dat kosmische structuren afkomstig zijn van kleine dichtheidsfluctuaties
die versterkt werden door de zwaartekracht, zijn eigensnelheden en materieverstoringen nauw aan el-
kaar gerelateerd. De kosmische stromen verplaatsen materie richting gebieden waar zich steeds meer
materie opeenhoopt, alwaar zich geleidelijk de structuren vormen die we tegenwoordig waarnemen in
het heelal.

Aangezien eigensnelheden het resultaat zijn van de gecombineerde zwaartekracht van alle mate-
rieconcentraties in het heelal samen, weerspiegelen ze niet alleen de lokale materieverdeling maar ook
verder weggelegen structuren. Aangezien zowel lichtgevende als donkere materie de zwaartekracht
uitoefenen, bevatten kosmische stromen bovendien informatie over de totale materieverdeling. In prin-
cipe zou daarom het snelheidsveld gebruikt kunnen worden om het corresponderende dichtheidsveld
te bepalen of vice versa.

Er is veel energie gestoken in het nauwkeurig meten van eigensnelheden en het corrigeren voor
mogelijke willekeurige of systematische fouten. Hiervoor is het noodzakelijk om de echte afstanden
tot sterrenstelsels te meten in plaats van hun roodverschuivingen. Studies van eigensnelheden zijn
daarom beperkt tot een kleiner gebied dan studies van roodverschuivingen.

Het snelheidsveld is veel gevoeliger voor fluctuaties in de kosmische materieverdeling op grote dan
op kleine schalen. Hierdoor is het voor reconstructties van het eigensnelheidsveld van groot belang
om een voldoende groot volume in aanmerking te nemen. Dit volume moet zo groot zijn dat het alle
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Figuur 7 — Reconstructie van de banen
van sterrenstelsels op basis van het Least Ac-
tion Principle. De punten representeren de
huidige posities van de sterrenstelsels, ter-
wijl de stroomlijnen hun banen terug in de
tijd volgen.

relevante materieconcentraties bevat die het eigensnelheidsveld zouden kunnen beı̈nvloeden.

Een van de meest massieve en nabije materieconcentraties, de Great Attractor, werd ontdekt door
onderzoek aan eigensnelheden. Niet zichtbaar op optische afbeeldingen van de hemel waren het de
eigensnelheden die ons wezen op het gebied dat verstopt ligt achter het vlak van onze Melkweg. Dit
gebied is grotendeels verantwoordelijk voor onze kosmische beweging. Inmiddels weten we dat het
bestaat uit een massieve dichtbijstaande cluster, A3627, die zicht uitstrekt tot de Hydra-Centaurus
supercluster.

De Point Source Catalog Redshift (PSCz) is een goed voorbeeld van de relatie tussen de materie-
verdeling en het snelheidsveld. In Figuur 6 bevindt onze Lokale Groep van sterrenstelsels zich in het
midden. De ononderbroken lijnen geven gebieden met een hoge dichtheid aan, de gestreepte lijnen
gebieden met een lager dan gemiddelde dichtheid. Met behulp van labels hebben we de belangrijkste
structuren aangegeven. De pijltjes geven de richting en grootte van het snelheidsveld aan. Let op
de sterke invalsnelheden in de richting van de meest massieve concentraties. Ook de lege gebieden
beı̈nvloeden de kosmische snelheden, zoals we bijvoorbeeld kunnen zien in het gebied rond de Sculp-
tor leegte waaruit materie richting gebieden met een hogere dichtheid stroomt. De kaart laat bovendien
zien dat onze Lokale Groep in de richting van de Great Attractor beweegt, die onderdeel uitmaakt van
de H-C supercluster.

Dit proefschrift

Ik heb de omgevings- en dynamische effecten bestudeerd die de grote schaal structuur van het heelal
heeft op enkele van de belangrijke grote kosmische structuren zoals clusters van sterrenstelsels en
filamenten. In het bijzonder heb ik het eigensnelheidsveld van sterrenstelsels en de materieverdeling
in de Lokale Supercluster bestudeerd. Hiertoe heb ik het Least Action Principle toegepast en de nieuwe
DTFE methode uitgebreid om een volledig ruimtebedekkend snelheidsveld te verkrijgen.

Hoewel het merendeel van de data die in dit proefschrift wordt gebruikt geproduceerd is door
computerprogramma’s, besluiten we met toepassingen van de betreffende technieken op data van het
echte heelal.
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Voorbij het lineaire regime: het Least Action Principle

Tijdens het structuurvormingsproces worden de dichtheden in materieconcentraties op een gegeven
moment hoger dan de gemiddelde waarden die beschreven worden door de lineaire theorie. Ook voor
deze gevorderde, niet-lineaire fases is het mogelijk om de corresponderende kosmische stromen te be-
schrijven. Eén van de schema’s waarmee ook in deze fases de materieverdeling gevolgd kan worden
is het Least Action Principle. Met deze methode kunnen de banen van sterrenstelsels terug in de tijd
gevolgd worden, gegeven hun huidige posities en onder de aanname dat hun beginsnelheden gelijk aan
nul zijn (een voorwaarde waaraan wordt voldaan omdat het vroege heelal bij benadering homogeen en
bewegingsloos was). Met deze methode is het mogelijk om op elk tijdstip de snelheid van ieder object
te schatten. Figuur 7 illustreert de reconstructie van de banen van een groep sterrenstelsels (puntjes).
De stroomlijnen geven de bewegingen van deze sterrenstelsels aan terwijl het heelal evolueerde. Merk
op hoe in dichte gebieden de banen sterker worden afgebogen dan die van meer geı̈soleerde sterren-
stelsels, hetgeen laat zien waarom het moeilijker is om eigensnelheidsvelden te bestuderen in gebieden
met een hoge dichtheid.

Van een stel “test”-catalogi verkregen uit N-deeltjes simulaties hebben we de eigensnelheidsvelden
gemodelleerd. Hiervoor hebben we een efficiënte implementatie van het Least Action Principle, de
Fast Action Minimization [FAM] methode, gebruikt. Het belangrijkste voordeel van FAM is dat het
mogelijk is om de beweging van deeltjes in gebieden met een hoge dichtheid te volgen, zelfs voor een
groot aantal deeltjes8. Om de betrouwbaarheid van deze gemodelleerde snelheidsvelden te bepalen,
hebben we ze vergeleken met de “echte” snelheidsvelden van de N-deeltjes experimenten.

De belangrijkste resultaten van dit deel van mijn onderzoek zijn:

• In het eerste deel van dit proefschrift hebben we het eigensnelheidsveld (van N-deeltjes simu-
laties) bestudeerd in gebieden die op onze Lokale Supercluster lijken. We hebben de invloed
van de massaverdeling buiten onze Lokale Supercluster op de lokale dynamica bestudeerd. De
resultaten geven aan dat in alle plausibele kosmologische scenarios de massaverdeling buiten
onze Lokale Supercluster de lokale dynamica significant beı̈nvloedt. We hebben laten zien dat
het mogelijk is om rekening te houden met deze effecten, en dat deze door een paar dynamische
termen beschreven kunnen worden. De nauwkeurigheid van onze resultaten hangt af van het
kosmologische model en de precieze configuratie van het systeem.

• Om meer concrete conclusies te kunnen trekken over de invloed van de externe materieverdeling
op de dynamica van de Lokale Supercluster hebben we de Constrained Random Field methode
gebruikt. De correct gemodelleerde beginomstandigheden, ontworpen om de massaverdeling
in ons lokale heelal zo goed als mogelijk te beschrijven, werden geëvolueerd door middel van
een N-deeltjes programma. Onze simulaties zijn erin geslaagd om enkele eigenschappen van
de grote schaal structuur van ons heelal te reproduceren. Zo hebben we structuren die lijken op
de Great Attractor, Perseus-Pisces en Hydra-Centaurus in onze simulaties aangetroffen. Uit een
gedetailleerd onderzoek van deze simulaties blijkt bovendien dat ze het dynamische gedrag van
het waargenomen heelal goed beschrijven.

• Door het resulterende eigensnelheidsveld in de “constrained” simulaties te modelleren, hebben
we aangetoond dat de massaverdeling die onze kosmische omgeving (de Lokale Supercluster)
omgeeft goed beschreven wordt door de gemiddelde snelheid en de zogenaamde “shear”. De
gemiddelde snelheid beschrijft hoe de ingesloten materie als geheel beweegt onder invloed van
de omliggende externe materieverdeling. De shear beschrijft de verstoring van het snelheidsveld
door de structuren die buiten het in ogenschouw genomen gebied liggen.

• We hebben de FAM techniek toegepast om het eigensnelheidsveld van echte data te modelleren,
waarbij we de Point Source Catalog redshift survey (PSCz) hebben gebruikt. Hierbij hebben we

8Desalniettemin faalt ook deze methode in het reproduceren van de bewegingen van sterrenstelsels in de centrale gebieden
van clusters, waar de dichtheid zeer hoog is, hoewel dit probleem geen invloed heeft op onze belangrijkste conclusies
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gezocht naar de belangrijkste structuren die verantwoordelijk zijn voor het eigensnelheidsveld
van ons Lokale Superclustergebied. De resultaten geven aan dat de clusters die op gemiddelde
afstand staan, zoals Hydra-Centaurus en Perseus-Pisces (Fig. 4 en 6), de dynamica van de Lokale
Supercluster bepalen. Ook structuren op grotere afstanden, zoals de Shapley Structuren, hebben
nog steeds een effect op onze lokale kosmische omgeving.

Continue snelheidsvelden: het DTFE snelheidsalgoritme

In het tweede deel van het proefschrift hebben we voortgebouwd op een nieuwe techniek om vanuit
een discreet gesampeld snelheidsveld een continu en ruimtebedekkend snelheidsveld te verkrijgen.

De vergelijking van waargenomen en gesimuleerde snelheidsvelden met de voorspellingen van
theoretische modellen is alleen mogelijk onder de aanname dat de waargenomen velden een goede
beschrijving vormen van het onderliggende snelheidsveld. In werkelijkheid is dit niet het geval. De
eigensnelheden zijn alleen bekend op de lokaties waar zich waargenomen sterrenstelsels of simula-
tiedeeltjes bevinden. Theoretische voorspellingen zijn gebaseerd op de veronderstelling dat het snel-
heidsveld continu en goed gedefinieerd is binnen het volume dat beschouwd wordt. De resulterende
vergelijking met theoretische voorspellingen is daarom niet altijd goed gedefinieerd. De velden die
met elkaar worden vergeleken zijn daarom niet altijd gelijk!

Bij het vergelijken van theorie en waarnemingen wordt het gemeten snelheidsveld geı̈nterpoleerd
naar alle andere posities in het gesampelde volume, waaronder gebieden met weinig of geen data.
Conventionele interpolatiemethoden maken gebruik van kernels die de snelheden van de deeltjes in
de kernel middelen. De prijs van deze benadering is dat signalen met een kleinere afmeting dan de
grootte van de kernel worden uitgewist. Hiermee gaat informatie in gebieden met een hoge dichtheid
verloren. In veel gevallen is de interpolatiemethode bovendien niet in staat om gebieden met weinig
data te beschrijven. Daarom is naast de interpolatie ook een smoothing operatie noodzakelijk. Deze
zorgt er onder andere voor dat er snelheidswaarden worden toegewezen aan gebieden met weinig data.
De prijs van deze smoothing operatie is dat er opnieuw informatie verloren gaat, ditmaal op schalen
kleiner dan de afmetingen van de smoothing kernel.

Idealiter zou alle informatie op zowel grote als kleine schaal behouden blijven, zodat een con-
sistente bestudering van het eigensnelheidsveld mogelijk is. De analyse van de eigensnelheidsvelddis-
persie op kleine schaal bevat bijvoorbeeld informatie over de totale hoeveelheid materie en volledige
dynamische toestand binnen een gegeven gebied. Als deze uit de deeltjesverdeling zelf zou worden
bepaald, dan zouden wellicht misleidende conclusies kunnen worden getrokken. Deze studie geeft
immers veel gewicht aan hoge dichtheidsgebieden die relatief goed gesampeld zijn. Een veel betere
benadering is om een gelijkwaardige significantie toe te kennen aan de slecht gesampelde lage dicht-
heidsgebieden door een continu en ruimtebedekkend snelheidsveld te gebruiken.

Wij hebben een geavanceerd interpolatieschema ontwikkeld dat zich automatisch aanpast aan de
geometrie van de deeltjesverdeling, en dat zowel op kleine als op grote schaal snelheidsvelden oplost.
Van deze Delaunay Tessellation Field Estimator [DTFE] (zie Schaap 2005) techniek is het bekend dat
de hiermee gereconstrueerde snelheidsvelden goed bepaalde statistische eigenschappen hebben (Ber-
nardeau & van de Weygaert 1996). De DTFE is gebaseerd op een driehoekig netwerk, bekend onder
de naam Delaunay tessellatie, die naburige punten verbindt op een volledige adaptieve en objectief
gedefinieerde manier.

Voortbouwend op de introductie van de DTFE laat Figuur 8 een discreet snelheidsveld zien dat
gesampeld is op de deeltjesposities. Het is gemodelleerd met behulp van de materieverdeling zoals
gemeten in de PSCz catalogus van ons nabije heelal. De snelheidspijlen die in het rechterframe worden
aangegeven zijn het resulterende DTFE snelheidsveld. Alle structuren die aanwezig zijn in de discrete
kaart zijn ook aanwezig in de DTFE kaart, maar ook de gebieden zonder eigensnelheidsdata worden
volledig beschreven.

De belangrijkste resultaten van de analyse van DTFE snelheidsvelden kunnen als volgt opgesomd
worden:
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Figuur 8 — Eigensnelheden zoals afgeleid uit de werkelijke snelheidsverdeling van de verdeling van sterren-
stelsels volgens de PSCz catalog van ons nabije heelal. Het linkerpanel toont het discrete snelheidsveld, het
rechterpanel het continue ruimtebedekkende snelheidsveld dat door het DTFE snelheidsalgoritme is gereconstru-
eerd.

• De DTFE snelheidsmethode kan zowel op kleine als op grote schaal de karakteristieke elemen-
ten van het eigensnelheidsveld reconstrueren. De DTFE snelheidsvelden hebben de vereiste
eigenschappen, namelijk dat ze continu en volumebedekkend zijn over het gehele gesampelde
volume. Met onze implementatie kunnen gerelateerde grootheden als de uitdijing of samen-
trekking van het snelheidsveld eenvoudig berekend worden, evenals de rotatie, uitrekking en
compressie. Vergelijkingen van DTFE snelheidsvelden met theoretische voorspellingen komen
zeer goed met elkaar overeen. De resulaten laten zien dat deze techniek een belangrijke stap
voorwaarts is bij het analyseren van kosmische eigensnelheden op zowel kleine als grote scha-
len. Hetzelfde geldt voor studies van de dynamica van het kosmische web.

• Met de DTFE techniek hebben we bestudeerd hoe “koud” de Lokale Supercluster is, i.e., hoe
groot of klein de snelheidsafwijkingen van een pure Hubble stroom zijn. De grootte van deze
afwijkingen hangt af van het kosmologische model. Waarnemingen geven aan dat ons lokale
heelal koud is. Onze methode heeft ons in staat gesteld om objectievere conclusies te trekken,
omdat we de stroom over het gehele gesampelde volume kunnen schatten en bestuderen. De
resultaten geven aan dat onze kosmische omgeving inderdaad vrij koud is. De snelheidsafwij-
kingen zijn erg klein, en onze algemene beweging wordt bepaald door een sterke coherente
stroom die uitgeoefend wordt door een zeer massieve structuur, de Great Attractor.

Detectie van het kosmische web: filamenten

In een project met J. Dietrich en P. Schneider hebben we de zwakke lenseigenschappen van het kos-
mische web bestudeerd met als doel het detecteren van filamenten die twee dicht bij elkaar gelegen
clusters met elkaar verbinden. De massaverdeling in de buitendelen van clusters van sterrenstelsels
is veel moeilijker te onderzoeken dan in de binnendelen van clusters. We hebben de nauwkeurigheid
en de betrouwbaarheid van een methode getest waarmee het in principe mogelijk is om de zwakke
lenssignalen van filamenten te meten. We hebben dit gedaan door filamentaire configuraties te on-
derzoeken waarvan de beginomstandigheden door de Constrained Field techniek bepaald zijn. Deze
simulaties zijn zo ontworpen dat ze zo dicht mogelijk in de buurt komen van de werkelijke configuratie
van twee dichtbij elkaar liggende clusters met een filament die ze verbindt. De resultaten laten zien dat
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er inderdaad een klein maar detecteerbaar signaal van filamenten is. Dit signaal is ook gedetecteerd
voor de dubbele cluster A222 en A223.

Conclusies en vooruitblik

Het centrale thema van dit proefschrift is het begrijpen van de oorsprong en de belangrijkste eigen-
schappen van het lokale eigensnelheidsveld van sterrenstelsels. Hiertoe behoren de grote schaal struc-
turen die de dynamica van de Lokale Supercluster beı̈nvloeden. Het onderzoek van grote schaal struc-
tuur boekt nog steeds snelle vooruitgang door het beschikbaar komen van nieuwe data en dit zal voor-
lopig zo blijven met de ambitieuze surveys die in de komende jaren uitgevoerd zullen worden. Met
betere data en nieuwe theoretische en computergereedschappen kunnen kosmologen vooruit kijken
naar het beantwoorden van enkele van de raadsels die ons huidig kosmologisch wereldbeeld omrin-
gen. Tot de meest belangrijke hiervan behoren vragen die direct gerelateerd zijn aan de oorsprong en
het lot van ons heelal: wat is de aard van de donkere materie en de donkere energie?



English Summary

This sun, called 4 Movement, is our Sun, where we live now.
And here is its mark, as it fell into the Sun’s Fire,
in the divine furnace, there in Teotihuacan.
This was also the Sun of our Prince, in Tula, of Quetzalcoatl.
The fifth Sun, 4 Movement is its sign,
it is called Sun of movement because it moves, it follows its path.

Aztec poem of the creation of the Fifth Sun (fragment, Codex Chimalpopoca).

Probably from even before the dawn of civilization humans have been gazing at the starry nights and
wondered about the world in which they found themselves living. Questions that have occupied hu-

manity were ones like “How did the universe begin?” “How had everything come into being?”. Many
explanations have been given throughout the eons, as nearly every culture and society forwarded its
own cosmogony and understanding of the universe. This quest has been vigorously pursued up to the
modern age. Indeed, for the first time humanity appears to come close to an all-encompassing scien-
tifically justified answer to these age-old questions, on the basis of a vast body of scientific knowledge
supported by an ever-increasing and impressive amount of observational evidence.

Within the current cosmological model, it is assumed that the universe we inhabit came into be-
ing 13.7 billion years ago, born in a massive expanding fireball which we have named the Hot Big
Bang. In this event space and time, as well as all the matter and energy that the universe contains came
into being. The pristine universe was extremely hot and dense, gradually cooling and diluting as it
expanded. The theoretical description of this event rests on two crucial assumptions. The first one is
that its dynamical evolution is entirely dictated by the force of gravity, which has been encapsulated
in Einstein’s Theory of General Relativity. According to this theory, the force of gravity is the man-
ifestation of the curvature of a system. The Big Bang Universe is based on the assumption that the
Universe’s geometry is severely constrained by the Cosmological Principle. It states that the universe
is homogeneous and isotropic. In other words, the universe has the same properties everywhere, both
concerning its matter distribution as well as the physical laws pertaining throughout its realm. In addi-
tion, it also looks the same in every direction. Only three geometries obey these restrictions, and when
working out their repercussions within the context of General Relativity we find that the corresponding
solutions, the Friedmann-Robertson-Walker-Lemaitre [FRWL] models, provide the correct theoretical
framework for the evolution of the expanding Universe. Hubble’s finding in 1929 of the systematic
recession of galactic nebulae established for the first time the reality of this view of a dynamic cosmos.

The immediate implication of Hubble’s discovery was and is dramatic: the cosmos should have
a beginning ! On the basis of the FRWL cosmological models and our knowledge of the laws of
physics cosmologists have even been able to reconstruct the full thermal history of the Universe up
to a fraction of the second after its birth. This is what we describe as the Hot Big Bang theory.
The resulting predictions for a variety of major events and phenomena in the course of the Universe’s
evolution have provided us with a truly impressive body of evidence for the validity of the Hot Big Bang
theory. Arguably the most impressive prediction has been that of the Cosmic Microwave Background,
the remnant of radiation reaching us from every direction on the sky and originating from the time
379,000 years after the Big Bang. Its discovery in 1965 by Penzias & Wilson, is rightfully regarded
as one of the major scientific breakthroughs of the 20th century. With a current temperature of only
2.725◦K it is almost perfectly isotropic, displaying temperature variations over the sky smaller than 1
in 105, a more than impressive confirmation of the Cosmological Principle. The early Universe was
almost perfectly featureless.

While the evidence in favor of the Hot Big Bang Universe has been accumulating to impressive
levels, we are left with the riddle that on scales much smaller than the radius of the visible Universe
it looks far from homogeneous, locally even far from isotropic. The cosmos is teeming with a rich
and highly varied internal structure. Planets and stars are familiar to everyone, hundreds of billions
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Figure 1 — Examples of galaxies in our Universe, a spiral galaxy (left panel; Credits: G.F. Benedict, A. Howell,
I. Jorgensen, D. Chapell, J. Kenney, and B.J. Smith, and NASA) and an elliptical galaxy (right panel, Credits:
NOAO,AURA,NSF). At the central panel a galaxy cluster is shown (Credits: NOAO,AURA,NSF), which consists
of tens of galaxies.

of them aggregate together with gas and dust into what may be regarded as the fundamental building
blocks of our observational Universe, the galaxies. The galaxies themselves clump together into even
larger and more massive structures, groups and clusters of galaxies (see Figure 1). They are part of a
hierarchy of ever larger systems, on scales of dozens and even hundreds of Megaparsecs grouping into
superclusters, which themselves are structural elements of a pattern resembling a cosmic web which
pervades throughout the observable Universe.

One of the key dilemma’s of modern cosmology is therefore to explain the irregular matter distri-
bution on scales smaller than a hundred Megaparsec within the context of the cosmological worldview
of the Big Bang. It is in this thesis that we pursue this question, and in particular explore issues con-
cerning the related flows of matter along the local Universe, out to a distance of around 100 h−1Mpc. In
this we will follow the standard lore of structure formation in the Universe, the theory of Gravitational
Instability. This extends the standard Hot Big Bang theory with an extra element, stating that although
the early Universe was nearly completely smooth it was not perfectly so. Instead, it did contain some
tiny variations in the matter distribution and the cosmic expansion. These got amplified by gravity and
grew into the wealth of structure we see through our telescopes. Also this view has been accumulating
convincing evidence, and again it was the observation of the Cosmic Microwave Background and the
detection of tiny temperature variations by the COBE and WMAP satellites which have provided us
with sufficient confidence to set out on the investigation presented in this work.

The Hot Big Bang

Up to the beginning of the 20th century it was believed that the Universe was static. In 1916, Albert
Einstein proposed his theory of general relativity and the equations that describe the dynamics of the
Universe. Einstein found in those equations that the Universe should be expanding or contracting,
something entirely incompatible with the prevailing notion of a static universe1.

In 1923 Friedman managed to solve the equations of motion for general homogeneous and isotropic
Universe models within the context of General Relativity. Following his seminal yet at the time insuf-
ficiently recognized contributions, it was the Belgian priest Georges Lemaitre who not only indepen-
dently solved the same equations in 1927 but also realized its physical ramifications. Extrapolating
backward in time he saw that an expanding Universe should have had a beginning in an extremely hot
and dense phase. With some measure of imagination, he indicated this primordial state by the name

1He did not believe these results, and hence, introduced an extra term into his equations of motion in such way to produce a
static Universe. This term is called the Cosmological constant and its denoted by the Greek letter Λ
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of ‘Primeval Atom’. Soon thereafter, in 1929, these theoretical ideas found a firm root in reality when
Edwin Hubble discovered that galaxies recede from us with a velocity increasing as they are located
at a larger distance. This universal relation we commonly know as Hubble Law, and since Hubble’s
early results it has been followed throughout the observable Universe as our instruments managed to
peer into larger and larger depths. Without doubt this discovery has been one of the greatest scien-
tific revolutions in human history, providing the first clear and conclusive evidence that our Universe
is not static, but “expanding”! In the past few years the accuracy of modern space instruments have
lead to a convergence of the estimated expansion rate of the Universe to a value in a narrow range
around H0 ≈ 71 km s−1 Mpc−1 (known as the Hubble constant). For each Megaparsec2 of distance,
the recession velocity of a distant object appears to increase by 71 km s−1.

With the new observational evidence of an expanding universe, a whole new set of questions con-
fronted the astronomical community. What was the nature of this expansion? Would the expansion last
forever? Would the Universe expand gradually until reaching a dynamical equilibrium remaining in a
static state forever? Would the universe reach a critical point from which it will start to contract until
reaching the opposite point of the Big Bang, the Big Crunch? These questions remained unanswered
for a long time, since there were no conclusive observations which could answer them convincingly.

One aspect of the expanding Universe proves to be of instrumental importance in our ability to
explore the physical circumstances and processes in both the early as well as the future Universe. The
FRWL Universes all involve an adiabatic expansion, which enables us to predict the temperature and
density of its constituents at each instant of time. In other words, the radiation and matter constituents
cool down as the universe expands. Reversely, as we extrapolate backward in time and the universe
shrinks in size we see both its density and temperature rising. Over the past half century this proved to
be the key for accumulating an impressive amount of evidence in support of the Hot Big Bang theory.

Amongst a range of tests, some four to five pieces of observational evidence have become the
most solid pillars of the Big Bang cosmology. Perhaps the most straightforward one is the fact that
the Big Bang offers an explanation for an amazingly simple observation by Olbers in the early 19th

century: the sky at night is dark ! Only in a Universe with a finite age and with a finite velocity of
light this may be understood. Evidently, it was Hubble’s (isotropically) expanding universe which not
only forms a telling confirmation of the reality of the FRW description but may also be regarded as
the beginning of cosmology as a “physical science”. Maybe most tantalizing are the two observational
results reaching to much earlier epochs of our cosmos. The incredible precision with which the Hot
Big Bang theory manages to predict the products of the very early phase of primordial nucleosynthesis
of light chemical elements brings us back to the first three minutes of the Universe. The prediction
of an isotropic blanket of cosmic thermal radiation, with a mind-boggling precise blackbody spectrum
with a temperature of T ≈ 2.725◦K, enabled us to turn its discovery in 1965 into the final conclusive
proof of the Hot Big Bang’s reality. The nickname coined by Fred Hoyle in 1950 had turned into a
honorary title !

Some three minutes after the Big Bang, when the temperature of the Universe had cooled down to
a few billion degrees, the Universe had turned into a gigantic nuclear reactor. The light chemical ele-
ments of Deuterium, 3Helium and 4Helium, as well as a trace of Lithium, managed to form before the
cosmic expansion turns off its “nuclear power”. The fact that the Hot Big Bang offers the explanation
for the fact that 24% of the mass of all baryons in the world is one of its most convincing victories.

In the subsequent hundreds of thousands of years photons, in close interaction with a tiny residual
of electrons and protons3, reached equilibrium and distributed their energy into an almost perfect
blackbody spectrum. Around 279,000 years after the fact the temperature of the Universe had cooled
to a mere 3000◦K, upon which protons and electrons manage to combine into forming Hydrogen atoms
during this “Recombination” event4. Almost coincidental is the resulting “decoupling” of radiation
and matter. No longer scattered by freely floating electrons, photons assume a long journey along

2One parsec is 3.26 light-years. Mpc =Megaparsec ≈ 3 260 000 light-years ≈ 30 860 000 000 000 000 000 km.
3It is good to realize that our Universe is a highly abnormal physical system in that it has 2 billion photons for each baryon !
4For historic reasons, this resulted into the epoch acquiring the name “Recombination”. Evidently, this is a misnomer as it

was the very first time electrons and protons went in communion.
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the depths of a virtually transparent Universe. These photons of the Cosmic Microwave Background
[CMB], having retained their almost perfect blackbody spectrum, appear to have originated from the
surface of last scattering. This surface marks the location of the atoms from which the observed
CMB photons were last dispersed5. Since then, the gradual expansion of the Universe goes along
with a proportional cooling down of the photon temperature, having reached a present-day value of
T ≈ 2.725◦K.

A continuously rising flood of new cosmological observations, stemming from larger and larger
depths in the Universe, has lead to a converging consensus regarding the Universe we are living in.
With impressive accuracy a rather remarkable set of values for the crucial cosmological parameters has
emerged, now commonly known by the name of “Concordance Model”6. Satellite experiments such as
COBE and WMAP, in conjunction with balloon-borne experiments such as Boomerang, have managed
to map in great detail the embryonic Universe at around the recombination epoch. Not only did they
show the validity of the Hot Big Bang, but they also convinced us that the Universe is flat, accurately
determined its age to 13.7 billion years and independently confirmed the baryon content suggested by
primordial nucleosynthesis. In combination with the ground-based mapping efforts of large redshift
surveys of galaxies, of which we may as yet mention the 100,000s of galaxy positions determined
by 2dFGRS and SDSS, we have been able to track the (dark) matter content of the Universe. The
greatest surprise got delivered by the programs for detecting and measuring Supernova Ia explosions
out to large depths in the Universe. They lead to the almost inevitable conclusion of the existence of an
elusive yet omnipresent “Dark Energy”. This mysterious medium would represent no less than 73%
of the energy content of the Universe. Ever since it started to dominate the dynamics of our Universe,
only as recent as some 7 Gigayears after the Big Bang, it has been propelling an acceleration of the
expanding Universe !!!!

Leaves us to state that even while the “Concordance Model” appears to form a good description
of reality we are left with a large number of unsolved riddles. The standard FRW model would go
nowhere to explain why the Universe appears to be so very close to “flat”, an issue which is commonly
indicated with the name of Flatness Problem. Also, it remains a puzzle why the Cosmic Microwave
Background has the same temperature in every direction while the cosmic horizon at recombination
is no larger than ≈ 1◦. This is known as the Horizon Problem. In conjunction with other possible
coincidences these issues have lead to an extension of the Hot Big Bang theory by an inflationary
phase transition during which the very early Universe got exponentially inflated by a factor of 60
orders of magnitude. Also, as we will see in the subsequent section, it may help in explaining the
origin of structure.

Cosmic Inventory: Matter and Dark Matter

When we look into the Universe the first thing we see is the light and radiation emitted by the stars.
Although they may be the most conspicuous and visible denizens of our Universe, they turn out to
represent only a minute fraction of the cosmic matter content. The latest estimates are that the stars
represent not more than 0.25% of the total cosmic energy content, 0.9% of its total matter content and
even no more than 5% of all baryons in the Universe. Planets, moons, asteroids and dust encircling such
stars represent an even more humbling fraction. There have been speculations that a highly abundant
population of extremely faint stars, brown dwarfs, or objects that just failed to ignite as a star would
make up for far more mass, but no convincing evidence to that end has been found. Neither have the
claims materialized for a vast amount of matter hidden in a graveyard of deceased stars, black holes or
extinguished white dwarfs. In addition to the hundreds of billions of stars which galaxies harbor, they
contain large amounts of gas. Radio telescopes have been able to map the diffuse neutral hydrogen and
the denser and more massive molecular gas clouds. Infrared and sub-millimeter wavelength telescopes
have peered into the cores of the latter, the birth cradles of the stars. Altogether, however, this accounts

5Some of these photons are responsible for ∼ 1% of our tv-set’s noise
6A probably more healthy and modest attitude would resort to the name of “Benchmark Model” (Ryden 2003)
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for not more than 30% of the mass found within the stars. A far larger amount of baryons has been
found within rich galaxy clusters. They contain huge amounts of extremely hot ionized intra-cluster
gas. At temperatures of around hundred of million degrees K this gas radiates at X-ray wavelengths.
It represents at least three times more matter than the galaxies roaming around within the same cluster
potential well. In total it may account for up to 0.7% of matter in the cosmos.

Gas and stars are made of the same material as we, baryonic matter mainly made up by protons and
neutrons. One of the great successes of the Hot Big Bang theory has been the prediction of the total
amount of baryons in the Universe, a mere 4.4% of the amount of mass needed to flatten the geometry
of the Universe. Adding up the above contributions, we find that most of baryonic matter has as yet
not been found. Really exciting is the accumulating evidence that perhaps up to 80% of the baryons is
swirling within the vast structures traced out by the Megaparsec cosmic web, in the form of a warm or
cool plasma.

A sobering thought is the realization that matter made up of baryons is only a minor constituent
of the cosmic inventory. By studying the motions of stars and gas in galaxies and that of galaxies in
the cosmos we have come to realize that they must be induced by the gravitational action of vastly
larger amounts of matter. While baryons cannot account for more than 4.4% of the critical mass of the
Universe, observations indicate that the total amount of matter should account for up to 27%.

The two first observational indications for the existence of a gravitationally dominant dark matter
component were forwarded by Oort and Zwicky in the 1930s. Oort found the stars in our Galaxy to
move faster perpendicular to the plane of the Milky Way than could be accounted for by all the stars
in the Galactic plane. Orbital motions of stars and gas clouds in the outer realms of galaxies appear to
hint at even larger quantities contained in an extended surrounding dark matter halo. In particular the
work by Groningen astronomers (van Albada & Sancisi) has played an instrumental role in reaching
these conclusions. Even more perplexing and stark were the discrepancies between gravitational and
luminous matter on even larger mass scales. Fritz Zwicky found in 1930 that the velocities of galaxies
in the Coma clusters were much too high for the cluster to remain gravitationally bound. If it were not
for the presence of at least 100 times more matter than seen in the form of stars, the cluster would fly
apart. Ever since, the presence of similar amounts of cluster matter has been found in every observed
cluster of galaxies. Not only this came to be inferred from the motions of the galaxies within the
cluster potential, but also from the thermal state of the heated X-ray emitting intra-cluster gas and from
the bending effect that the cluster has on the light paths of passing radiation emitted by background
galaxies (gravitational lensing). The trend continues on even larger Megaparsec scales: the cosmic
flows of galaxies as well as the recently measured cosmic shear, the “weak lensing” of light as it
travels through the inhomogeneous Megaparsec matter distribution, indicate similar or even slightly
larger amounts of dark matter.

As the total amount of cosmic matter is some seven times larger than the maximum amount of
baryonic matter, the detected dark matter has to be a form of “nonbaryonic matter”. As yet we do not
have any direct and compelling evidence for what it may be. A large variety of potential candidates
have been forwarded as dominant matter component in nature. For a short time massive neutrinos
were a serious candidate, soon to be replaced by a class of exotic particles that are long-lived, cold and
collisionless, Cold Dark Matter (CDM). The identity of these dark matter particles is still unknown.
Nonetheless, speculations rife. The broad and speculative class of weakly interacting and massive
particles, WIMPs, or a very light particle called axion are as yet amongst the favorites.

At present Matter appears to account for 27% of the energy content of the Universe, of which
Dark Matter take up the major share. Since some years we have come to realize that Dark Energy
has an even larger share of 73%, although its nature is almost completely unknown. What we do
know, however, is that its nature does not allow it to cluster and therefore it does play a minor role in
the structure formation process. However, the latter is distributed evenly throughout the Universe and
because of its special nature (equation of state) it is unable to cluster. Thus, while both dark energy
and dark matter are both instrumental in steering the expansion and fate of the Universe, only matter is
able to cluster and therefore evolve structure. We therefore find Dark Matter as the decisive agent for
shaping the outcome of the structure formation process which lies at the core of the work presented in
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this thesis.

Gravitational Structure Formation

How then did all the planets, stars, galaxies and clusters of galaxies arise in an almost perfectly ho-
mogeneous Universe? The most plausible answer we have at is that of structure formation through
gravitational instability.

Tiny density and velocity perturbations got amplified by their mutual gravitational interaction.
Under the influence of the net resulting gravitational force, matter starts to migrate to slightly over-
dense regions where more and more matter accumulates. In turn, this growing overdensity represents
an even stronger gravity excess, amplifying the effect and ultimately leading to a runaway process:
gravitational instability. By contrast, regions with a density deficit have a slightly lower than average
gravitational attraction. Matter will stream out of these depressions towards the higher density regions,
leaving a gradually emptying and expanding void.

In the first phase of gravitational clustering, when the density perturbations are still moderate, the
resulting matter distribution is merely a more pronounced version of the initial circumstances. This we
call linear regime. Once the density fluctuations start to deviate substantially, matter concentrations
come to a halt, decouple from the global cosmic expansion, and start to contract. The subsequent
collapse proceeds along a sequence of characteristic anisotropic patterns. At first they acquire a planar
wall-like shape, followed by a contraction onto an elongated filamentary shape before reaching full
collapse and virialization into a clump of matter. The nature of the primordial fluctuations is respon-
sible for a second key aspect of gravitational structure formation, its hierarchical nature. Because the
fluctuations on small scales are more pronounced than the ones on large scales, the first objects to
form are the smaller ones. The larger ones form through the merging of smaller ones that had already
formed. This process of hierarchical structure formation seems indeed what we observe: galaxies are
much older than the more massive and more recently collapsed clusters of galaxies. On an even larger
scale, Superclusters have not even reached a collapse stage, at best they started to contract.

The way in which these hierarchically embedded structures have arranged themselves in the Uni-
verse contains a wealth of information on the structure formation process. They appear to be grouped
in planar or filamentary partially contracted superclusters, interconnected into a vast web-like config-
uration, interspersed by huge and empty void regions, stretching out along the observable Universe.

For testing the theory of gravitational instability we do need to find suitable structures and phenom-
ena. Preferably these should still retain a direct link to the primordial circumstances in the Universe, so
that we can interpret the resulting information rather directly. There is a variety of such cosmic fossils.
A major one are the temperature fluctuations in the microwave background, a direct reflection of the
tiny embryonic cosmic perturbations out of which structure has grown. A crucial one concerns a map
of the matter distribution on Megaparsec scales, the present-day product of the structure formation
process. On the basis of the assumption that the galaxy distribution is a fair reflection of the underly-
ing matter distribution, maps of the spatial galaxy distribution are perhaps the most widely analyzed
cosmic fossil. Propelled by the dynamics of the process, we may hope to find ample information in
the induced cosmic flows. They do indeed represent another important fossil, making the study of the
related peculiar velocities of galaxies a crucial additional field of attention.

Computer Simulations of the Universe

Theoretical cosmological models make predictions about the structure formation process of the uni-
verse. The cosmic structures that astronomers observe are the end products of a long and complicated
evolutionary process. For testing the structure formation scenarios cosmologists resort to computer
simulations that model the evolution of the Universe.

The use of computer simulations have developed into a major instrument for the study of the large
scale structure. They follow the evolution and formation of cosmic structures according to the theory
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Figure 2 — Representation of a portion of the Uni-
verse created by a computer simulated model.

of gravitational instability. N−body simulation codes have become the major workhorse for following
the various aspects of this evolution. In this computed universe, particles or fluid elements -which
represent either dark or luminous matter- are placed at locations where they were supposed to be at
very early times of our universe. By prescribing the force of gravity the system of particles is evolved
in time. Also more complex physical processes have been incorporated, enabling us to follow how and
when galaxies formed, or where most of the gas in the Universe is located.

Figure 2 shows the result of an N−body simulation. The gray scale is an indication of the density
(number of particles). In this way, black represents regions where there is a high concentration of
matter (galaxy clusters), gray for superclusters, light gray for filaments, and the lightest tone represents
the empty regions, voids. The filamentary structure (cosmic web) is clearly distinguishable. The good
agreement between the results from N−body simulations and the observed Universe is an ensuring
success for the theory of the evolution of the universe.

The Large Scale Structure of the Universe

When looking around, we notice that the basic constituents of the Universe are the galaxies. These
huge and truly magnificent agglomerations of up to hundreds of billions of stars are distributed
throughout the observable Universe. A common assumption is that their distribution reflects the
underlying matter distribution. This makes them an excellent tracer for mapping the structure and
infrastructure of the Universe.

Galaxies show a wide variety of sizes and morphologies. Many of them have a disk-like shape.
Within the disk we can often recognize bright spiral arms highlighted by young and blue stars. In
the center of such galaxies we find a bulge, a yellow-reddish ellipsoidal concentration of older stars.
A smaller fraction of galaxies are so-called “ellipticals”, whose spherical or elliptical body contains
mostly an aged star population, and with far less gas than the “spirals” (see Figure 1). While accounting
for most of the starlight in the Universe, in terms of numbers most of the galaxies are far smaller than
these two major classes. Often these have a more irregular and ill-defined shape, although a fair
fraction of these dwarfs appears to have an elliptical shape.

Our galaxy resembles a spiral galaxy, containing around 200 billion stars. Our Sun is an average
yellow dwarf star in the disk of the Galaxy, orbiting at a radius ≈ 8.5 kpc from the Galactic center7.

Galaxies themselves are far from evenly distributed throughout the Universe. On scales of tens
of Megaparsecs they appear to delineate an intriguing foamlike pattern that pervades the whole of

7A “kpc” is a kiloparsec. 1 kpc ≈ 30 860 000 000 000 000 km



292 English Summary

Groningen & Teziutlan

Figure 3 — Symbolic view of the Local Supercluster. Each dot represents a single galaxy. The gray surfaces
outline regions where there are more galaxies than the average number of objects. The most prominent galaxy
clusters are indicated by labels as well as the location of the Milky Way. (Credits: Brent Tully, The Large Scale
Structure of the Universe, www.ifa.hawaii.edu/ tully/outreach).

the observable Universe, the Cosmic Foam. On even larger scales, over ≈ 200 h−1Mpc, we cannot
recognize any real structure: on those scales the Universe reaches the homogeneity demanded by the
Cosmological Principle. On smaller scales, however, we find an intricate hierarchy of structures.

Individual galaxies are hardly ever isolated. Galaxies are usually found in groups and clusters,
which typically form part of still larger structures, superclusters. Groups of galaxies have fewer than
50 members, most of them spirals, except in very dense and compact groups in which many ellipticals
can be found. Clusters of galaxies are larger systems with more than 50 members up to thousands of
galaxies within a sphere of radius of 4 h−1Mpc. They are the most massive and most recent fully col-
lapsed objects in the Universe. The centers of the clusters are mainly populated by elliptical galaxies,
while spirals and irregulars populate the outskirts and surroundings.

Galaxies, groups and rich clusters are generally incorporated into larger structures known as su-
perclusters. Their sizes are in the order of 20 h−1Mpc or more and with a density in the order of a few
to ten times the average cosmic density. Dynamically these structures are on the verge of halting their
expansion, while a lot of them started contracting already, although as yet far removed from collapse.

A nice illustration of this hierarchical embedding is provided by our own Milky Way. It belongs
to a small group of galaxies, the Local Group. Among its approximately 40 members it is mainly
dominated by the two most massive galaxies, Andromeda and the Milky Way. The Local Group sits
near the outer edge of a bigger association of galaxies known as the Local Supercluster. It consists of
several groups of galaxies, a few poor clusters and one very rich cluster at its center, the Virgo Cluster.
Figure 3 provides a view of its structure, with each white dot representing a galaxy. We are located at
the bottom of the plot. The prominent clusters are indicated by labels along with our location at the
bottom of the figure.

One way of assessing the cosmic matter distribution is through the study of maps of the galaxy
distribution. If one could see a panoramic view of the distribution of galaxies beyond the Milky Way,
the result will resemble Figure 4. This image is composed of over 1.6 million galaxies (represented by
dots) listed in the survey All-Sky Survey Extended Source Catalog of The Two Micron All Sky Survey
(2MASS). Major nearby matter concentrations are labelled. Quite evident are the many overdense



English Summary 293

Figure 4 — Chart showing the galaxy distribution, orientation and location of Large Scale Structure in the local
Universe projected on the sky. Clusters and superclusters of galaxies, filaments and some “empty” regions can be
noticed in the map (Credits: 2MASS Extended Source Catalog, courtesy of T. Jarret and 2MASS/UMass/IPAC-
Caltech/NASA/NSF).

regions, prominent galaxy clusters and superclusters, characterizing the large-scale structure of the
nearby universe. Note that locally our Universe looks far from isotropic. It is important to realize
that the apparent large projected size of our Galaxy is only an artifact of its proximity. Because of
our location within the disk of the Milky Way our view in the visible light got obstructed by the dust
it contains. Now with the micron wavelength 2MASS map we are suddenly confronted with a much
clearer view of our surroundings. Previously hidden from view, the presence of the Great Attractor (H
in Fig. 4) forms a telling illustration.

For a full spatial view of the galaxy distribution we need to know the distances to the galaxies.
Direct distances are difficult to measure. Here the Hubble expansion of the Universe proves a great
help. While it says that the recession velocity of a galaxy is directly proportional to its distance, we
may hope to estimate its distance from its velocity. The latter is a lot easier to measure on the basis of
the redshift of the light emitted by the galaxy. Akin to the lower tone of an ambulance’s siren when it
speeds away from us, the light of a galaxy becomes redder the faster it moves away from us. Hence,
measuring the redshift of a galaxy is a useful shortcut to determining its distance.

We have been gradually revealed the intriguing patterns in the galaxy distribution shown in Fig-
ure 5. It depicts the galaxy distribution by the Two degree Field Galaxy Redshift Survey (2dFGRS) in a
strip of the sky. In this map, the Milky Way is located at the center of the two cones and single galaxies
are represented by points. The position of each galaxy in the map is given by its redshift and its posi-
tion in the sky8 (cf. Fig. 4). The result is a true spatial map of the distribution of galaxies and matter
in our local Universe. Galaxies, clusters and superclusters are embedded in a web-like pattern. The
superclusters mark the filamentary bridges and planar walls in this network, with the clusters located
at the densest nodes. These structures surround large roundish regions nearly devoid of galaxies, the

8Notice that in this figure it looks as if there are less galaxies far away from us. However, this is a mere artifact because it is
much harder to observe more distant galaxies than nearby ones. Distant galaxies are fainter and thus harder to detect.
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Figure 5 — Map of how galaxies are distributed in space as a function of distance from us according to the
2dFGR Survey. Notice how matter is clumped at some specific regions (clusters & superclusters of galaxies),
while there are also empty regions (voids). (credits: 2dF Galaxy Redshift Survey team).

voids. We have come to realize that this Cosmic Web is indeed one of the most dominant characteristics
of our Universe.

Cosmic flows

While on large scales the Universe expands roughly at the same rate (called the Hubble flow), this is
not true for individual galaxies. Velocity measurements of individual galaxies show that they deviate
from the Hubble flow. These deviations are called peculiar velocities of galaxies.

Migration flows of cosmic matter are one of the major manifestations of cosmic structure growth.
Indeed, under the assumption that cosmic structure originated from small-amplitude density fluctua-
tions that were amplified by gravity, peculiar velocities and matter perturbations are intimately coupled.
The cosmic flows move out matter toward regions where ever more matter accumulates, gradually as-
sembling the structures we observe in the universe.

Because peculiar velocities are the result of the combined gravitational force of all matter concen-
trations in the Universe, they are not only tracing the local matter distribution but also the surrounding
and more distant structures. Also, as gravity is induced by luminous as well as dark matter, the cosmic
flows form a direct probe of the total matter distribution. Potentially one can use the velocity field to
reconstruct the corresponding density field and vice versa.

Substantial efforts have been directed toward accurately measuring peculiar velocities and to cor-
recting possible random and systematic errors. It is necessary to determine the real galaxy distances
instead of redshifts, which also reflect the involved peculiar velocities. Surveys of peculiar velocities
are therefore limited to a considering smaller region than those of galaxy redshift surveys.

The velocity field is more sensitive to the large scale modes of the cosmic matter distribution, and
less so to the small scale details in the density field. This renders it crucial for sensible reconstructions
of the peculiar velocity field to reach out to sufficiently large volumes. These should include all relevant
matter concentrations that may influence the peculiar velocity field.

One of the most massive nearby matter concentrations known as the Great Attractor was first
discovered through the study of peculiar velocities. Unknown from optical images of the sky, it were
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Figure 6 — Model of galaxy pecu-
liar velocities inferred from the mat-
ter distribution. Velocities are repre-
sented by arrows which are propor-
tional to their magnitude. The con-
tinuous lines (contours) delineate the
matter distribution, small areas en-
closed by contours indicate very mas-
sive structures, dashed lines indicate
voids. The labels mark the position
of the largest structures in the field:
V: Virgo cluster, LS: Local Superclus-
ter, H-C: Hydra-Centaurus, Sh: Shap-
ley, P-P: Perseus-Pisces superclus-
ters, P-I-T: Pavo-Indus-Telescopium
complex, Cet: Cetus wall, Sculp:
Sculptor void (Credits: E. Romano-
Dı́az et al. 2004, with data from E.
Branchini).
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the peculiar velocity flows which pointed us to a region hidden behind the plane of the Milky Way as
the dominant source of our cosmic motion. Now we have learned that this region consists of a massive
nearby cluster, A3627, extending out to the Hydra-Centaurus supercluster.

Arguably one of the best illustrations of the intimate relationship between the matter distribution
and the velocity field is that inferred from the Point Source Catalog Redshift (PSCz). In Figure 6
our local group of galaxies is located at the center of the plot. The solid lines indicate overdense
regions, the dashed lines surround the underdense voids. By means of labels we have indicated the
major matter structures. The arrows indicate the direction and amplitude of the velocity field. Notice
the strong infall velocities into the most massive concentrations. Also the voids influence the cosmic
velocities as maybe discern from the region around the Sculptor void we see matter streaming out of
the voids towards the high density regions. The map shows our local group is rushing towards the
Great Attractor region inside the H-C supercluster.

This thesis

I have studied the environmental and dynamical effects that the large scale structure of the Universe
exerts upon some of the main large cosmic structures such as clusters of galaxies and filaments. I have
specifically studied the peculiar velocity field of galaxies and the matter distribution within the Local
Supercluster. For these purposes I have applied the Least Action Principle and applied and extended
the new DTFE method to obtain a fully volume-covering velocity field.

While most of the data used in this thesis is simulated data produced by computer codes, we
conclude with applications of the involved techniques to data of the real Universe.

Beyond the linear regime: the Least Action Principle

As the structure formation process evolves with time, matter concentrations increase their density
beyond the moderate density values prone to the description of linear theory. Even for such advanced
non-linear stages, it has proven to be possible to predict the corresponding cosmic flows. One such
scheme for following the evolving matter distribution into a more advanced state is the Least Action
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Figure 7 — Reconstruction of galaxy orbits
by means of the Least Action Principle. The
dots represents the actual galaxy positions,
while the stream lines indicate their trajecto-
ries back in time.

Principle. This method can trace galaxy orbits back in time, given the current positions and requiring
that the peculiar velocities initially vanish (a condition fulfilled because the Universe was relatively
smooth and motionless in early epochs). With this method it is possible to estimate the velocity of
each object at any epoch. Figure 7 illustrates the orbits reconstruction of a set of test galaxies (dots).
The stream lines indicate the galaxy motions as the universe evolved. Notice how at dense regions
the orbits become more deflected than those of more isolated galaxies, emphasizing why it is more
difficult to study peculiar velocity fields in very dense regions.

From a set of mock catalogs obtained from N−body simulations, we have modeled peculiar ve-
locity fields. An efficient implementation of the Least Action Principle, the Fast Action Minimization
method [FAM], was used to achieve this. The main benefit of using FAM is that it allows one to follow
the motion of particles into dense regions, even for a large number of particles9. In order to assess
the reliability of these modeled velocity fields, we have compared them with the “real” velocity fields
from the N−body experiments.

The most important results of this part of my research are:

• In the first part of this thesis we have analyzed the peculiar velocity field (from N−body sim-
ulations) of regions similar to our Local Supercluster. We have studied the influence of the
mass distribution beyond the Local Supercluster on the local dynamics. Results show that in all
plausible cosmological scenarios the mass distribution outside the Local Supercluster does sig-
nificantly affect the local dynamics. We have shown that it is possible to account for this effect
and to characterize this external influence by means of only a few dynamical terms. The accu-
racy of our results depends on the cosmological model considered and the exact configuration
of the system.

• In order to draw more concrete conclusions about the influence of the external large scale matter
distribution on the dynamics of the Local Supercluster, we used the Constrained Random Field
method. The properly moulded initial conditions, designed to match the mass distribution in
our Local Universe as closely as possible, were evolved by means of an N−body code. Our
simulations have successfully reproduced some of the large scale features that shape our uni-
verse. Clusters similar to the Great Attractor, Perseus-Pisces and Hydra-Centaurus, could be

9Nevertheless this method still fails in reproducing the galaxy motions at the dense cores of galaxy clusters, although this
problem does not affect our main conclusions.
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recognized in our simulations. A detailed inspection of the simulations shows that they recover
the dynamical behavior of the real observed universe very well.

• The modeling of the resulting peculiar velocity field of the constrained simulations showed
that the mass distribution surrounding our cosmic neighbourhood (Local Supercluster) can be
characterized to a great extent by its bulk flow and velocity shear. The former characterizes how
the enclosed matter moves as a whole due to the surrounding external matter distribution. The
latter describes the distortion of the velocity field by the structures located beyond our sample.

• We have applied the FAM technique to model the peculiar velocity field from real data using
the Point Source Catalog redshift (PSCz) survey. In this study, we have searched for the main
structures responsible for moulding the peculiar velocity field of our Local Supercluster region.
Results indicated that at intermediate distances clusters like Hydra-Centaurus and Perseus-Pisces
(Fig. 4 and 6) play a dominant role over the Local Supercluster dynamics. At large distances,
structures like the Shapley Supercluster still influence our local cosmic vicinity.

Continuous velocity fields: the DTFE velocity algorithm

Having tested and elaborated upon the FAM method to trace galaxy orbits into the more advanced
stages of evolution, we follow up with an elaboration of a novel technique to process discretely sampled
velocities into a continuous volume-weighted velocity field.

Comparison of observed or simulated velocity fields with predictions from the theoretical models
is possible only if one makes the assumption that the observed fields faithfully trace the underlying
velocity field. In reality this is not the case. One only knows the peculiar velocities at the positions of
observed galaxies or simulation particles. Theoretical predictions are based on the assumption that the
velocity field is continuous and well defined within the considered volume. The resulting comparison
with theoretical predictions is therefore not always clearly defined. The compared fields may not really
be the same thing !

When comparing theory and observations, the measured velocity field is interpolated to all loca-
tions within the sampled volume, including the regions poorly sampled or devoid of data. Conventional
interpolation methods make use of kernels which in essence “average” the velocities of the particles
contained within the kernel. The cost of this approach is to erase any signal smaller than the kernel
size and to lose information at high-density regions. In many cases the interpolation procedure alone
is not enough, mainly at regions where the sampling is very poor. In addition the interpolation needs
to be follow up by a smoothing procedure. This assures one of a theoretically well defined scale for the
processed velocity field while it takes care of the assigning velocity values to poorly sampled regions.
The price of this smoothing procedure is the loss of any signal smaller the smoothing kernel.

Ideally, one would like to preserve the large and small scale regimes in order to allow consistent
studies of the peculiar velocity field. For example, the analysis of the small scale peculiar velocity
dispersion contains information on the total matter content and dynamical state within a given region.
When directly determined from the particle distribution itself it will lead to misleading conclusions
since the study will be biased toward regions where the sampling is good. A far better approach, as-
signing equivalent significance to the poorly sampled low density regions is to determine a continuous
covering velocity field.

Here, we work out an advanced interpolation scheme which adapts itself automatically to the ge-
ometry of the particle distribution, resolving both small and large scale velocity fields. This Delaunay
Tessellation Field Estimator [DTFE] (see Schaap 2005) technique for peculiar velocities has been
demonstrated to have very reliable velocity field statistics (Bernardeau & van de Weygaert 1996). The
DTFE is based upon a triangular network, known as Delaunay tessellation, which connects neighbour-
ing points in a fully adaptive and objectively defined fashion.

Following up on the introduction of DTFE, Figure 8 illustrates a discrete velocity field, sampled at
particle positions. It is modeled from the matter distribution as measured by the PSCz catalog for our
nearby Universe. The velocity arrows depicted in the right-hand frame, is the resulting DTFE velocity
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Figure 8 — Peculiar velocity field as inferred from the real galaxy distribution from the PSCz catalog in our
nearby universe. The left-hand panel shows the discrete velocity field, while the right-hand panel the continuous
volume-covering velocity field reconstructed by means of the DTFE velocity algorithm.

field. All structures present in the discrete map are also present in the DTFE map, but also the regions
without peculiar velocity data are fully covered.

The main results from the analysis of DTFE processed velocity fields can be summarized as fol-
lows:

• The DTFE velocity method can reconstruct small and large scale characteristics of the peculiar
velocity field. The processed DTFE velocity fields have the required characteristics that they are
continuous and volume-weighted over the whole sampled volume. With our actual implemen-
tation, velocity-related quantities such as the expansion or contraction of the velocity field, its
rotation, stretching and compression can be straightforward computed. Comparisons of DTFE
velocity fields to the theoretical predictions are in very good agreement. Results showed that
this technique is a major step forward in analyzing cosmic peculiar velocities at both small and
large scales, and studying the dynamics of the cosmic web.

• With the DTFE technique, we have studied how “cold” the local Supercluster is, i.e., how large
or small the velocity deviations from a pure Hubble flow are. The magnitude of these deviations
depends on the cosmological model. Observational studies have indicated that our local universe
is cold. Our method allowed us to draw more objective conclusions as we can estimate and
study the flow throughout the sample volume. Results indicated that our cosmic neighborhood
is indeed rather cold. The velocity deviations are very small, and our general movement is
governed by a strong coherent flow exerted by a very massive structure, the Great Attractor.

Detecting the cosmic web: filaments

In a project with J. Dietrich and P. Schneider, we have explored the weak lensing properties of the
cosmic web in order to detect filaments connecting two neighbouring clusters. Probing the mass
distribution in the outskirts of galaxy clusters is much harder than close to the cluster centre. We
have tested the accuracy and reliability of a method that in principle allows one to measure weak
lensing signals from filaments. We have done so by exploring filamentary configurations whose initial
conditions were set up by the Constrained Field technique. The constrained simulations were designed
to mimic as close as possible a real configuration of neighbouring clusters and a filament between
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them. Results showed that there is indeed a small yet detectable lensing signal from the filament that
has indeed been detected for the double cluster A222 and A223.

Significance and Prospects

The central theme of this thesis has been to help understand the origin and main characteristics of
the local peculiar velocity field of galaxies. This includes the large scale structures which influence
the dynamics of the Local Supercluster. The study of large scale structure is still advancing rapidly
from forthcoming new data, and will do even more so on the basis of more ambitious forthcoming
surveys. With better data and new theoretical and computational tools, cosmologists have the prospect
of solving several of the enigmas besetting our modern cosmological worldview. Amongst the most
important ones are the questions directly related to origin and fate of our universe: what is the nature
of dark matter and what is the nature of the dark energy?
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