Weak Lensing studies of galaxy clusters

Henk Hoekstra
Leiden Observatory
Masses are important

Cluster survey → Mass proxies → Cosmology?
Masses are important

Cluster survey → Mass proxies → Cosmology?

I think you should be more explicit here in step two.
Things can get messy...

We need to account for these non-relaxed systems

Mahdavi et al. (2007)

Clowe et al. (2006)
A revival of cluster lensing?

In 2000 the first cosmic shear detections were published, and cluster weak lensing seemed no longer “fashionable”.

But the measurement techniques and wide field imagers developed for cosmic shear are great for cluster work as well. Now we can reliably measure the lensing signal for large samples of clusters out to large radii!
We need large(r) cluster samples

A sample of clusters with accurate weak lensing masses is important for the success of cluster abundance studies. Requires large range in mass/redshift

Only a relatively small number of clusters have accurate weak lensing masses (but this is changing!)

Cluster mass profiles: comparison with other tracers
Learn about cluster physics
Modern cluster lensing

Compared to earlier work we now have a better understanding of the source redshift distribution and can correct better for systematic effects.

As the sample sizes increase, the lensing analyses need to become more sophisticated: dealing with contamination by cluster galaxies, centroid errors, contributions from local and distant large scale structure, etc.
Multi-wavelength comparisons

CCCP: “good for the masses”

The Canadian Cluster Comparison Project is a multi-wavelength study of 50 massive clusters of galaxies.

Henk Hoekstra (PI)
Arif Babul
Andi Mahdavi
Chris Bildfell
Jon Sievers
CCCP: comparison with X-ray

Hoekstra (2007)
Mahdavi et al. (2008): at large radii the gas is not in hydrostatic equilibrium.
Mass density profiles

Joint X-ray + lensing model can help constrain profile parameters (Mahdavi et al., in prep)
Mass density profiles

Correlated (X-ray)

Uncorrelated (X-ray + lensing)

X-ray mass

lensing mass

Mahdavi et al. (in prep)
Pipino et al. (2009): Blue core systems detected in GALEX data show young stellar populations.

We see no “E+A” BCGs...

Bildfell et al. (2008)
Limitations of weak lensing

The mass depends on the adopted centre!

This is particularly problematic if we fit a simple parametric model and is made worse if there is substructure!

Use aperture masses (1-d masses):

- This can minimize the model dependence
- This reduces the sensitivity to the centroid

\[
g_T(r) \propto \langle \Sigma(<r) \rangle - \langle \Sigma(r) \rangle
\]
Limitations of weak lensing

- Weak lensing gives the projected mass distribution.
- The weak lensing signal depends on all matter along the line of sight.
- The interpretation of the signal requires good knowledge of the source redshifts.

Uncorrelated large scale structure is an additional source of noise.

This limits the accuracy with which masses can be determined.
Effects of distant structures

\[M_{200} = 10^{15} h^{-1} M_\odot \]
\[c = 4.64 \]
\[z = 0.3 \]

Hoekstra (2003)
Effects of distant structures

Hoekstra (2003)
Effects of projections

White et al. (2002)

Projections are also important when studying peaks in large scale weak lensing maps and comparing lensing masses to other mass proxies.
Conclusions

- Weak gravitational is the weighing scale of choice, but does have limitations! We need to take those into account.

- Key ingredient in cluster abundance studies.

- Comparison with other probes will provide new insights in cluster physics/formation.

Much progress expected in the coming years