Particle Astrophysics and Cosmology
                    U. Klein H.P. Nilles N. Wermes

                            SS 2001, Lecture 6793
 

1. Introduction: observational overview

    1.1 What is cosmology? chronology
    1.2 Some numbers
        no. of stars, galaxies, average density of matter crit.density
        mass of sun, some important distances, length scales, etc.
    1.3 Evidences for big bang expansion
        1.3.1 isotropic distribution of galaxies
        1.3.2 redshift (naive & relativistic formula)
        1.3.3 Hubble expansion (observational, age of the universe)
        1.3.4 Cosmic microwave background
            number of photons cm, black body spectrum, Wien
            law, Stefan-Boltzmann
        1.3.5 Olbers' Paradox
        1.3.6 The cosmological principle
            homogeneity & isotropy is not the same
    1.4 Useful quantities and constants
    1.5 The cosmic distance latter
        solar system, parallax, star clusters, spectroscopic
        parallax, cepheids, SN-Ia, Tully-Fisher
    1.6 A brief history in time (BB evolution)
        time table and relations between energy density,
        temperature, time and scale factor (without derivation)
 

2. Standard Cosmology

    cosmological principle, expansion scale factor

    2.1 Hubble?s law revisited
        Hubble-parameter - Scale factor relation, true meaning of
        redshift
    2.2 Curved Space
        equivalence principle, 3-D analogy,
        Robertson-Walker metric
    2.3 Events, Horizons
    2.4 The Friedmann-Lemaitre-Equations
        2.4.1 Classical derivation of the first FL-equation
        2.4.2 From Einstein?s Field Equations to FL-equations
        2.4.3 Classical derivation of 2nd Friedman-equation
        2.4.4 Interpretation of Friedmann equations
        2.4.5 The age of the universe
        2.4.6.Critical density and Omega
        2.4.7 The deceleration parameter
    2.5 Redshift dependencies
        2.5.1 Distance Measures
                angular size and luminosity distance
        2.5.2 Cosmic time and redshift (lambda=0)
        2.5.3 Distance measure and redshift (lambda=0)
        2.5.4 Angular size and redshift (lambda=0)
        2.5.5 Relations with non-zero lambda
    2.6 Cosmic Sum Rule
        different densities and Omegas
    2.7 The cosmological constant
        Einstein?s reason, omega_m vs omega_l Plot, cosmic triangle
    2.8 Summary of cosmology equations
        Friedmann eq., fluid equation, 1st law of thermodynamics
    2.9 Equation of state for the universe
    2.10 Solving Friedmann equations
        R(t) dependencies, solving for lambda-dom. term
    2.11 Problems of the standard cosmology
        2.11.1 Flatness/Age/Fine Tuning Problem
        2.11.2 Horizon/Homogeneity Problem
        2.11.3 Further questions to which Standard Cosmology has
            no answer
 

3. Thermodynamics in the Universe

    3.1 Equilibrium Thermodynamics
        3.1.1 First Law and Entropy
            entropy in comoving volume, entropy density
            thermal equilibrium
        3.1.2 Quantum Statistics
            distribution functions, degrees of freedom
    3.2 Deviations from thermal equilibrium
        3.2.1 Neutrino decoupling (as an example)
        3.2.2 Reheating
        3.2.3 Neutrino background
    3.3 Equality of matter and radiation
 

4. Particle Physics

    4.1 Elementary particles and interactions
    4.2 Quantum numbers
    4.3 Field theory and Lagrange formalism
    4.4 Gauge symmetry interactions
    4.5 Symmetry breaking and Higgs mechanism
        4.5.1 Goldstone Bosons
        4.5.2 Higgs mechanism
    4.6 Standard model of particle physics
 

5. Nucleosynthesis

    5.1 Neutrino decoupling
    5.2 Annihilation
    5.3 Helium abundance
    5.4 Fusion processes
    5.5 Photon/baryon ratio
 

6. Cosmic Microwave Background

    6.1 Spectrum of the CMB observations
    6.2 CMB anisotropy
        6.2.1 Dipole anisotropy
        6.2.2 Other anisotropies
    6.3 Density and temperature fluctuations
    6.4 Density fluctuations
        6.4.1 Jeans instability
        6.4.2 Jeans instability in an expanding medium
        6.4.3 The basic problem....
    6.5 Sound waves
        6.5.1 Particle horizon
        6.5.2 Jeans length
        6.5.3 Sound horizon
        6.5.4 Thickness of LSL
        6.5.5 Damping scale
    6.6 Measurements of CMB anisotropies
        6.6.1 Bolometric measurements
        6.6.2 Data analysis
        6.6.3 Results
    6.7 Interpretation
        6.7.1 Acoustic oscillations
        6.7.2 First peak
        6.7.3 Second peak
        6.7.4 Third and higher peaks
        6.7.5 Damping
    6.8 Sunyaev-Zel?dovich effect
 

7.  Neutrinos
    7.1 Neutrino species
    7.2 Dirac & Majorana neutrinos
    7.3 Neutrino interaction
    7.4 Neutrino mass limits
    7.5 Seesaw model
    7.6 Neutrinos and cosmology
    7.7 Neutrino oscillations
        7.7.1 Atmospheric neutrinos
        7.7.2 Solar neutrinos
        7.7.3 MSW effect
 

8.  Particles and their contribution to the density of the Universe
    8.1 Relics
    8.2 Hot relics (HDM)
    8.3 Cold relics (CDM)
    8.4 Baryon - antibaryon symmetric universe
    8.5 Heavy neutrinos
 

9. Dark Matter
    9.1 Introduction
    9.2 DM and cosmology
    9.3 Galaxy rotation curves
    9.4 Clusters of galaxies
        9.4.1 Velocity dispersion
        9.4.2 X-ray halos
        9.4.3 Gravitational lensing
    9.5 Problems

galaxy rot. curves, lensing, CMB anisotropy (short, results only), x-
ray halos, machos, wimps
 

Inflation Scenarios

need for inflationary models (flatness, horizon, smoothness,
monopole problem) standard inflation (Guth), higgs field, chaotic
inflation (Linde), reheating, wormholes, quintessence
 

Structure Formation

evolution of fluctuations, hot and cold matter scenarios
 

The State of the Universe