
Particle Astrophysics and Cosmology (SS 08)
Homework no. 3 (April 30, 2008)

Tutorials: Wednesday, 17:15 to 18:45, AVZ, room 116 (first floor)

1 Horizons

• Particle Horizon: Largest distance over which causal connection can have existed

between any two events. The largest distance from which light signals can have
reached us.

• Event Horizon: Largest distance over which causal connection can ever exist

between any two events. This horizon is particular important for black hole physics.

Use these two intuitive definitions of horizons to understand some important properties of
the Robertson–Walker space time while comparing it to other spaces. Hint: Consider first
the particle horizon by inserting the information on propagation of light into the metrics,
respectively. Then determine the integral of the propagated distance:

hp(t) = a(t)

∫ r0

ri

dr ,

where subscript i denotes initial and 0 denotes today. This integral neglects effects of space
curvature. Is this a good approximation? Interpret the results.

(a) Determine the particle and event horizon for the Minkowski spacetime.

ds2 = dt2 − dr2 − r2
(

dθ2 + sin2 θdφ2
)

.

(b) Determine the particle and event horizon for the Robertson-Walker spacetime.

ds2 = dt2 − a2(t)
{

dr2 + r2
(

dθ2 + sin2 θdφ2
)}

.

(c) Determine the particle and event horizon for the de Sitter spacetime.1

ds2 = dt2 − e2Ht
{

dr2 + r2
(

dθ2 + sin2 θdφ2
)}

.

1The de Sitter geometry corresponds to the domination of a cosmological constant. The constant
expansion rate H and the cosmological constant are related by H = (Λ/3)1/2.
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2 Thermal distribution function of particles

In the lecture the following equations for the number density n, the energy density ρ and
the pressure P were given (suppressing time dependence):

n =

∫

d3p f(p) ; ρ =

∫

d3p Ef(p) ; P =

∫

d3p
|p|2

3E
f(p).

The particle momentum p and its energy E are related by E2 = p2 +m2. The distribution
function f is given by

f(p) d3p =
g

(2π)3

d3p

exp [(E(p) − µ)/T ] ± 1

By integrating over the distribution function, find the expressions for n, ρ, p in terms of
temperature in (a) relativisitic (T ≫ m), nondegenerate limit (T ≫ µ), and (b) nonrela-
tivistic limit (m ≫ T ).
(Hint: You will obtain different formulae for bosons and fermions in (a). The Riemann-zeta
function is given as

ζ(s) =

∞
∏

P (prime)=2

(1 − P−s)−1,

and ζ(3) ≈ 1.202...)
In the class, we learned that the entropy density,

s ≡
ρ + P −

∑

i µini

T
≈

ρ + P

T
,

is always dominated by radiation. Does it contradict with the fact that the radiation
density is negligible in the current universe? (Recall the value given in Homework no.2)

3 Decoupling of neutrinos from the thermal bath

At high temperatures, neutrinos are kept in thermal equilibrium with the charged leptons
by the weak interactions. At a given temperature Td (to be calculated below) the weak
interactions become inefficient and the neutrinos decouple. To have a rough (but very
quick!) estimate of Td one usually compares the interaction rate Γ of the process with the
expansion rate H of the universe. Use H ∼ T 2/Mpl; the interaction rate is instead given
by Γ ∼ υσn, where υ ∼ c = 1 is the (average) velocity of the neutrinos, and where the
(average) cross section σ can be estimated as

σ ∼ G2
F E2, (1)

where GF ∼ 10−5GeV−2 is the Fermi constant and E is the energy exchanged in the
process. The above relation (2) is valid for energies much smaller than the mass of the W±
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and Z bosons, E ≪ 80 GeV. Finally, n is the number density of the neutrinos, n ∼ T α.
If you do not remember α, you can easily get it by dimensional arguments, remembering
that both Γ and T have dimensions of energy (use GeV in this exercise).

(a) Find Td, by requiring it to be the temperature at which Γ(Td) = H(Td). Check that
Td ≪ 80 GeV, so that eq. (2) is indeed valid.

(b) After the neutrinos have decoupled, the thermal bath is made only by γ, e±. At a
temperature Tγ < Td, the electron /positrons annihilate, and their energy is trans-
ferred to the photons, but not to the neutrinos (since they are decoupled!). As a
consequence, the temperature of the photons increases to T ′

γ > Tγ, while the ones of
the neutrinos remain Tν = Tγ . Calculate T ′

γ/Tν .

(c) In this exercise, you have assumed an instantaneous decoupling of the neutrinos at Td.
Actually, this is not precisely the case, since the decoupling is not a sudden process,
but it lasts for some time (approximately, from T ∼ 5 MeV to T ∼ 0.1 MeV). When
the e± annihilate, the neutrinos are not completely decoupled, and they receive some
energy from the annihilation. Precise numerical calculations give T ′

γ/Tν = 1.399.
Compare it with the analytical result found in the part (2) of this exercise.
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