Particle Astrophysics and Cosmology (SS 08) Homework no. 2 (April 23, 2008)

Tutorials: Wednesday, 17:15 to 18:45, AVZ, room 116 (first floor)

1 Living on a 3-sphere

It was shown in the lecture that a line-element $(d\vec{x})^2$ on the surface of a 2 sphere with radius R_c is

$$(d\vec{x})^2 = \frac{(dr)^2}{1 - \frac{r^2}{R_c^2}} + r^2 (d\theta)^2 \tag{1}$$

This already looked somewhat similar to the spatial part of the line-element of the Robertson-Walker metric, given by

$$(ds)^{2} = (dt)^{2} - a^{2}(t) \left[\frac{(dr)^{2}}{1 - \frac{kr^{2}}{R_{c}^{2}}} + r^{2}((d\theta)^{2} + \sin^{2}\theta(d\psi)^{2}) \right]$$
(2)

Calculate $(d\vec{x})^2$ for a 3-sphere embedded in a flat 4-dimensional space, and compare with the Robertson-Walker metric. *Hint:* Use spherical coordinates for the 3-dimensional surface of the sphere and $x_1^2 + x_2^2 + x_3^2 + x_4^2 = R_c^2$, where x_4 is the fictional 4th spatial dimension.

2 The $\Omega_{\Lambda,0} - \Omega_{m,0}$ plane

In this exercise we will discuss the behaviour of the universe depending on the parameters $\rho_{\Lambda,0}$ and $\rho_{m,0}$, i.e. the dominant contributions to today's energy density. The radiation will be neglected in most of the following arguments. (Recall: $\rho_{r,0} \sim 10^{-4} \rho_{\text{crit},0}, \rho_{m,0} \sim 0.25 \rho_{\text{crit},0}$ and $\rho_{\Lambda,0} \sim 0.75 \rho_{\text{crit},0}$, where $\rho_{\text{crit},0}$ is today's value of the critical energy density, corresponding to a flat Universe.)

2.1 Friedmann equation and the Cosmic sum rule

In class the first Friedmann equation was written in the form

$$H^2 = \frac{\rho}{3M_P^2} - \frac{k}{R_c^2 a^2},$$
(3)

where $H = \dot{a}/a$ is the Hubble parameter, ρ is the energy density, M_P is the reduced Planck mass, and R_c is the curvature radius of the Universe. In order to derive the "cosmic sum rule", divide both sides of this equation by H^2 , split ρ into the sum of matter and radiation densities and a contribution from a cosmological constant, and express these densities in terms of their current values and appropriate powers of a. *Hint:* The result looks a bit neater if expressed in terms of the critical energy density. The ratios of actual densities ρ_i and the critical density are usually denoted by Ω_i .

2.2 Flat, static and constantly expanding universe

Set $\Omega_{r,0} = 0$.

- (a) Derive the relation between $\Omega_{\Lambda,0}$ and $\Omega_{m,0}$ for a flat universe.
- (b) Derive the relation between $\Omega_{\Lambda,0}$ and $\Omega_{m,0}$ for a universe with constant expansion rate today, $\ddot{a} = 0$. *Hint:* Use the second Friedmann equation.
- (c) Derive the relation between $\Omega_{\Lambda,0}$ and $\Omega_{m,0}$ for a static universe, $\dot{a} = 0$, as first envisioned by Einstein. Is this solution stable against small perturbations?

2.3 The (dark?) fate of the universe

Again set $\Omega_{r,0} = 0$.

- (a) Consider an empty universe, $\Omega_{m,0} = 0$. Use the first Friedmann equation and the cosmic sum rule to discuss the early and late time evolution of the universe.
- (b) Consider a pure matter universe, $\Omega_{\Lambda,0} = 0$. Use again the first Friedmann equation and the cosmic sum rule to discuss the early and late time evolution of the universe.
- (c) Indicate the border line between eternally expanding and recollapsing universes in the $\Omega_{\Lambda,0}$ vs. $\Omega_{m,0}$ plane.