Chapter 2
Standard Cosmology
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Hubble expansion

Time

r(t) = a(t) - r(t) = a(t) - r,
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Time dilation
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Innocent beings

great circle

‘\ circle of very large ‘‘radius”’
and small circumference
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Curved space

positively curved space
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Spacetime
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Some history

1915 Einstein GRT
1917 Einstein: cosmological constant
1922 Friedman's first paper (GRT + RWM)
1924 Friedman's 2nd paper
- expanding universes with open
and closed geometries
1925 Friedman dies
1927 Lemaitre "rediscovers” Friedman's
findings
1929 Hubble: receeding galaxies
=> Einstein withdraws cosm. constant
("my biggest blunder")

Aleksander Friedman(n)
1888 - 1925
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Evolution of the universe in “"dust models” A = O

2D analogy

Critical

Size

Time
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Supernovae as candles (identical light curves)
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Supernovae (~2001)

fainter
(log)

A
24

\¥]
M

NI
o

effective mp

0o

16

14

acceleration
Supernova

Project

Calan/Tololo
(Hamuy er «l,
A, 1996)

Cosmology

-

deceleration

0.02 0.05 0.1 0.2
redshift z

0.5

—

Particle Astrophysics & Cosmology SS 2008

10



S

N Ia red shifts
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Past Deceleration, Present Acceleration
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The present state of knowledge ...

vacuum energy density

(cosmological constant)
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HST SN-Ia and Cosmic Sum Rule
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The Cosmic

Triangle

Fig. 1 (left). The Cos-
mic Triangle. This trian-
gle represents the three
key cosmological pa-
rameters ({2}, Q,, and
(), where each paint in
the triangle satisfies the
sum rule &+ 0, +
{}, = 1. The horizontal
line (marked “FLAT")
corresponds to a flat
universe ({1, + 1, =
1), separating an open
universe from a closed
one. The red line, nearly
along the A = 0 line,
separates a universe that
will expand forever (ap-
proximately €2, = 0)

from one that will
eventually recollapse

(approximately €, <
0). And the vyellow,
nearly vertical line sep-
arates a universe with
an expansion rate that is currently decelerating from one that is accelerating.
The locations of three key models are highlighted: SCDM, dominated by
matter ({1 = 1) and no curvature or cosmological constant; flat (ACDM),
with £} = 1/3,(), = 2/3, and {}, = 0; and OCDM, with {} = 1/3,0), =
0, and {), = 2/3. ( The variant tilted TCDM model is identical in its position
to SCDM.) Fig. 2 (right). The Cosmic Triangle Observed. This triangle
represents current observational constraints. The tightest constraints from
measurements at low redshift (clusters, including the mass-to-light method,

baryon fraction, and cluster abundance evolution), intermediate redshift
(SNe), and high redshift (CMB) are shown by the three color bands (each
representing 10 uncertainties). Other tests that we discuss are consistent
with but less constraining than the constraints illustrated here. The cluster
constraints indicate a low-density universe, the SNe constraints indicate an
accelerating universe, and the CMB measurements indicate a flat universe.
The three independent bands intersect at a flat model with (1 = 1/3 and
{1, = 2/3; the model contains a cosmological constant or other dark energy|
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Age of the universe - I
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Age of the universe - IT
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Age of the universe - III

age becomes larger with increasing Q,
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Age of the universe - IV
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Solution to the Friedman Egn

scale factors A (t) and critical values of the cosmological constant A

in Friedmann universes

James E. Felten®

Code 697, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771
and Astronomy Program, University of Maryland, College Park, Maryland 20742

Richard |saacman
Applied Research Corporation, 8201 Corporate Drive, Landover, Maryland 20765

The authors review the equations, notational choices, and confusing terminology of the Friedmann (zero-
pressure) and Lemaitre cosmological models, retaining cgs units as far as practical and in particular retain-
ing units em~? for the present Gaussian curvature K of three-space. They integrate the Friedmann equa-
tion numerically, requiring solutions to match the present Hubble parameter H, and mass-density (“clo-
sure”) parameter {lg at present time fp=0, and generate families of curves showing the scale factor R (7)
(with Rg=1) vs 7 (time in units Hy") for fixed {1 and various values of the cosmological constant A (in
units H3). These unusual graphs show the continuity-of the solutions and the physical significance of A.
Families for several values of £ exhibit known but unfamiliar features. The authors also show the family
of “standard models” (A=0) and the family satisfying the “inflationary constraint” (K=0). They obtain
new and simple formulas for the critical value A,(Hg, 1), which separates models with a big bang from
those without, Their definition of A, at fixed Hy and Qg differs from usual practice but proves useful.
These formulas also give the quasistatic scale factor R, and redshift z, for the corresponding Eddington-
Lemaitre model, and give R, and z, approximately for the neighboring “Lemaitre coasting models,” which
have A <A,. The conventional wisdom that A=A,(14¢) for the coasting models applies to a different
characteristic value A,. A quasistatic state in the future, with a second critical value A,,, is possible if
Q> 1. The parameters Qo, A/HE, A,/H§, and Ay2/H} can be used to classify the Friedmann models.

Rev. Mod. Physics 58 (1986) 689-698
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Solution to the Friedman Egn.- I

scale factor
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Solution to the Friedman Egn.- IT

Flpt Universes
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Solution to the Friedman Eqn. - III

i 3 L DL L LR U DL L LR L DL F F AL EL L DL LR ELELE DL
c i .
E sz() bouncing arbitrary - I
%25— -
2 Q;,,\=1.3 _
[ Q. =2 Q+Qi+Q, =1
1.5__ —
QA=-0.5
1_ —
05 loitering _
0 | | |

5 4 3 2 1 0 1 2 3 4 5
cosmic time (t-t))/H,

Particle Astrophysics & Cosmology SS 2008 23



Solution to the Friedman Egn. - IV
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Solution to the Friedman Egn. - V

: arbitrary - ITT
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Illustration of Flatness Problem - I

Qo (1+2)

Q(z) =
1+ Q2

MD universe
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Illustration of Flatness Problem - II
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Illustration of Horizon Problem
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