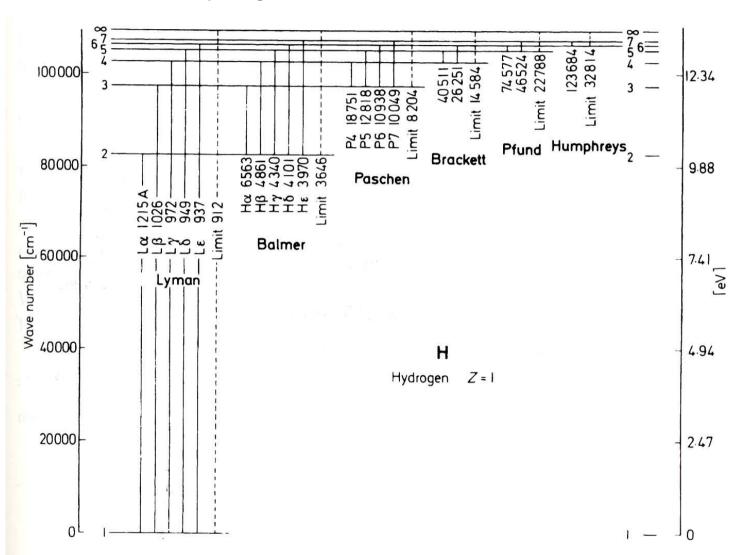
Atomic mass	$R_M(10^{15} \mathrm{Hz})$	$\Delta v \ (\mathrm{km} \ \mathrm{s}^{-1})$	
1.007 825	3.288 051 29(25)	_	
4.002 603	3.289 391 18	-122.166	
12.000 000	3.289 691 63	-149.560	
14.003 074	3.28971314	-151.521	
15.994 915	3.28972919	-152.985	
∞	3.289 842 02	-163.272	
	1.007 825 4.002 603 12.000 000 14.003 074 15.994 915	1.007 8253.288 051 29(25)4.002 6033.289 391 1812.000 0003.289 691 6314.003 0743.289 713 1415.994 9153.289 729 19	


Rydberg constants and velocity shifts of hydrogen-like atoms

Nomenclature for recombination lines

Lyman	$n_{ m u} ightarrow n_{ m l}$		Balmer	$n_{ m u} ightarrow n_{ m l}$		Paschen	$n_{ m u} ightarrow n_{ m l}$	
$Ly\alpha$	$2 \rightarrow 1$		m Hlpha	$3 \rightarrow 2$		$P\alpha$	$4 \rightarrow 3$	
$Ly\beta$	$3 \rightarrow 1$		$H\beta$	$4 \rightarrow 2$		$P\beta$	$5 \rightarrow 3$	
$Ly\gamma$	$4 \rightarrow 1$		$ m H\gamma$	$5 \rightarrow 2$		$\mathrm{P}\gamma$	$6 \rightarrow 3$	
α -Series			β -Series			γ -Series		
$Ly\alpha$	$2 \rightarrow 1$	1215.67	$Ly\beta$	$3 \rightarrow 1$	1025.72	$Ly\gamma$	$4 \rightarrow 1$	972.537
$H\alpha$	$3 \rightarrow 2$	6562.80	${ m H}eta$	$4 \rightarrow 2$	4861.32	$ m H\gamma$	$5 \rightarrow 2$	4340.46
$P\alpha$	$4 \rightarrow 3$	18751.0	$P\beta$	$5 \rightarrow 3$	12818.1	$\mathrm{P}\gamma$	$6 \rightarrow 3$	10938.1
$\mathrm{Br}lpha$	$5 \rightarrow 4$	40512.0	${ m Br}eta$	$6 \rightarrow 4$	26252.0			
H 109 α	110 ightarrow 109		H 109 β	111 ightarrow 109				
He 137α	$138 \rightarrow 137$ He 137β		$139 \rightarrow 13$	7				

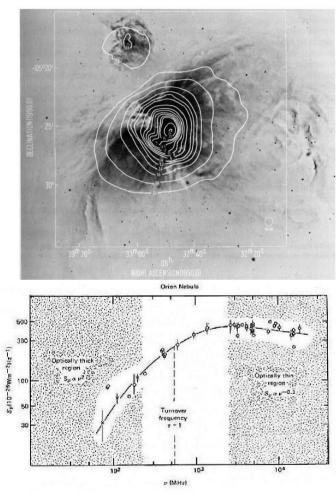
Table 5.2: Nomenclature for recombination lines

Names of higher H series are Bracket (to n = 4), Pfund (to n = 5), Humphreys (to n = 6) Wavelengths of the lower transitions are given in Å

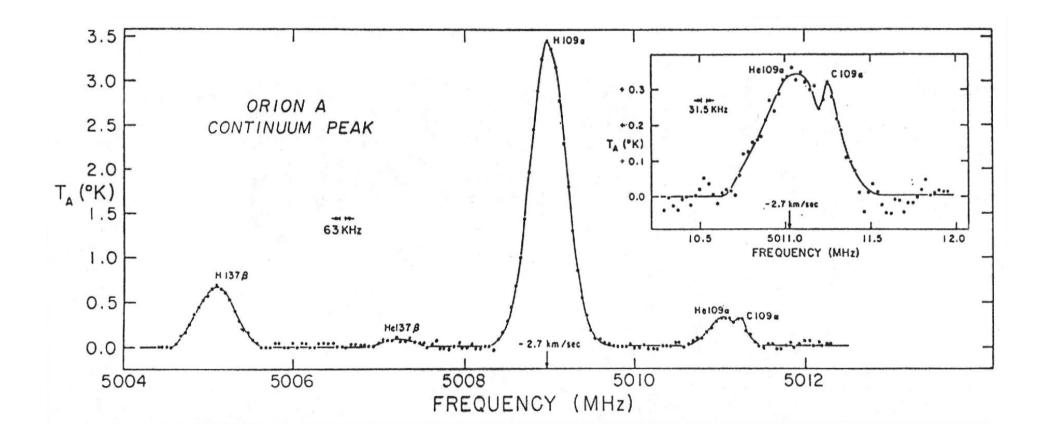
Atomic hydrogen: Balmer line transitions

Ionized gas

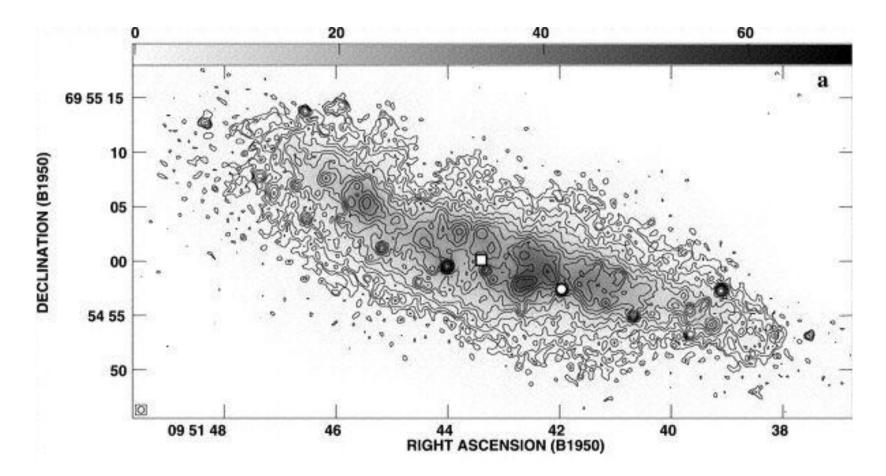
Oriona nebula:

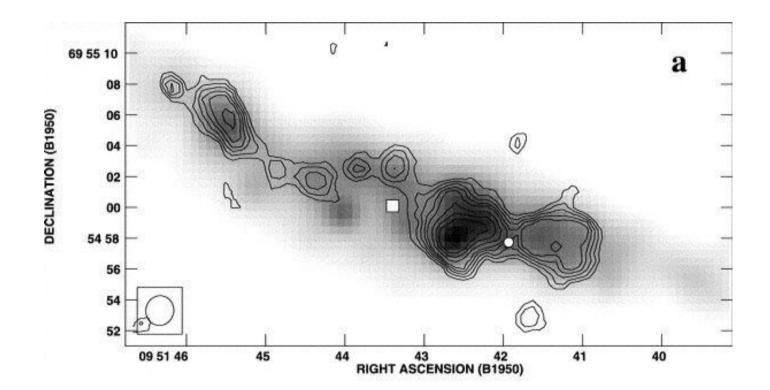

 $H\alpha$ in colour (left)

 $H\alpha$ in grey-scale, with contours of thermal free-fre radio continuum at 23 GHz (upper right)


Radio spectrum of the thermal free-free emission, showing the transition to optically thick radiation (lower right)

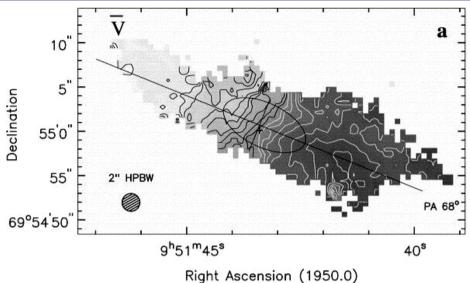
Orion Nebula: Balmer line and free-free emission


Recombination lines in the Oriona nebula at 5 GHz

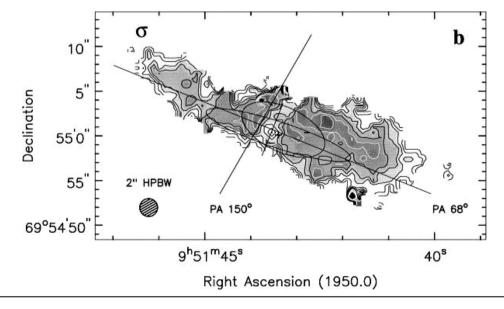

Ionized gas

107 10⁶ 104 0.9 Correction factors for non-LTE å conditions (parametrized for 0.8 T=10000K various values of n_e 0.7 0.6 60 PRINCIPAL QUANTUM NO 100 40 80 20 50 T=10000K 40 104 30 1 – B 20 105 10 10⁶ 80 100 60 PRINCIPAL, QUANTUM NO. 40 20

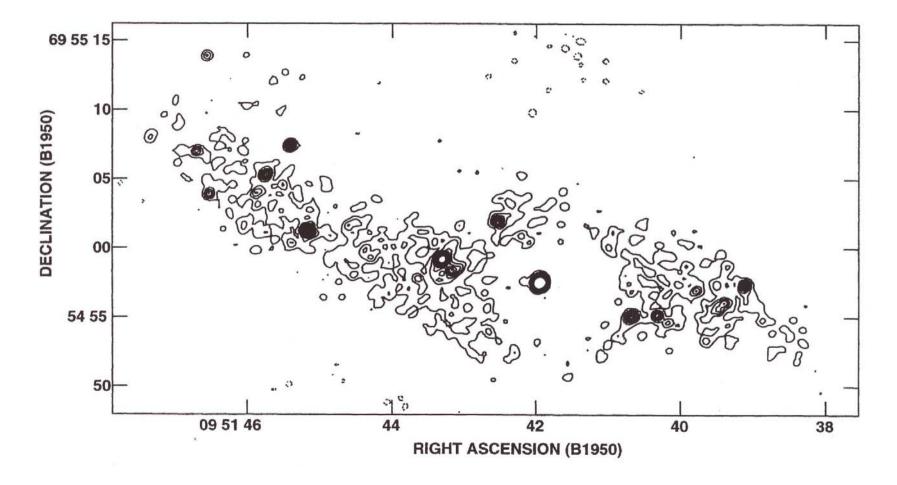
Thermal free-free emission in the starburst galaxy M 82 at 8.3 GHz



Thermal free-free emission in the starburst galaxy M 82 (grey-scale) and H92 α (contours), both observed at 8.3 GHz



Ionized gas


velocity field of the ionised gas of the starburst galaxy M 82 derived from the H92 α line

velocity dispersion

Map of the radio continuum emission of the starburst galaxy M 82 at 408 MHz, which is essentially synchrotron radiation at this frequency; note the circular region of thermal free-free absorption.

