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Chapter 1

Introduction

1.1 Cycle of matter

Figure 1.1: Cycle of matter

BBNS1 76% H, 24% He, 10−4 3He, 10−4 2H, 10−10-10−9 Li, Be

today 66% H, 32% He, 2% “metals” (C, N, O, Mg, Si, S, Fe)

Important for us (in this classroom or whereever you are): Chemical evolution

� first step is nucleo-synthesis in stars (up to Fe; higher elements are formed in SNe)
chemistry in ISM (gas-pahse and on dust grains)
gas-phase chemistry in photo-dissociation regions and in shocks (allowing also endother-
mal reactions)

� heating and cooling balance: different gas phases (n,T ) have different heating and cool-
ing meachinsms.

1



2 CHAPTER 1. INTRODUCTION

1.2 Phases of the ISM

� Chemical composition of the ISM comparable to the elements abundance of the Solar
System

� The state of Hydrogen determines the state of the ISM

– Molecular region H2

– Neutral region Hi

– Ionized region Hii

� Hii regins expand, not held “back by” stars

� molecular clouds maintained by their own gravity

Phase n [cm−3] T [K] Mtot[M�]

atomic (Hi) cold v 25 v 100 1.5 · 109

warm v 0.25 v 8000 1.5 · 109

molecular (H2) & 103 . 100 109

ionized Hii v 1 · · · 104 v 10000 5 · 107

diffuse v 0.03 v 8000 109

hot v 6 · 10−3 v 5 · 105 108

Table 1.1: Components of the ISM (phases)

Some of these are in pressure equilibrium

P = nkBT =
B2

8π
=

1
3
· u (1.1)

Just compute n · T to compare pressures.

1.2.1 Molecular regions

� Diffuse molecular clouds, T = 40 · · · 80 K, n = 100 cm−3

� Dark clouds, T = 10 · · · 50 K, n = 104 · · · 106 cm−3

1.2.2 Neutral regions

� Dusty cirrus clouds, T = 80K, n = 1 cm−3

� Warm neutral gas, T = 6000K, n = 0.05 · · · 0.2 cm−3

1.2.3 Ionized regions

� Hii regions are envelopes of early-type stars, T = 104 K, n = 0.1 · · · 104 cm−3

� Coronal Gas T = 106 K, n = 0.005 cm−3
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1.2.4 Dust

� Product of star formation, consists of silicates and graphites

� Insignificant by mass, Mgas/Mdust ≈ 150

� Plays important role for chemistry → H2 formation
dust serves as catalyst

1.2.5 Relativistic plasma

� Galaxies are pervaded by magnetic fields
B2

8π ≈ nkBT ⇒ B ≈ 3 · · · 10 µG

� Supernovae produce and accelerate particles, primarily p and e− ⇒ become relativistic
⇒ synchrotron radiation
primarily e−, since mp/me ≈ 2000

� n.b.: most of the energy of relativistic particles resides in p, owing to their much larger
mass, while radiation is produced by the e−, owing to their low mass

1.3 Discovery of the ISM

� W. Herschel compiles the first catalog of “nebulae”

� Until ∼1900 absorption lines have been discovered, but it is unclear whether they are
stellar (circum-stellar) or interstellar

� 1919 Barnard compiled the first catalog of “Dark Clouds”

� 1933 Plasket & Pearce found a correlation between the Caii absorption line strength
and the stellar distance.

� ∼1937 the first interstellar molecules CH, CH+ and CN were discovered

� 1945 van der Hulst predicted the detect ability of the Hi 21 cm line

� 1949 discovery of interstellar magnetic field by polarization measurements

� 1950‘s maps of the Milky Way in Hi (10% of the stellar mass is in Hi)

� 1960 discovery of the soft X-ray background

� 1963 the first interstellar maser had be discovered (OH)

� 1968 NH3, the “thermometer” in the Universe was observed for the first time

� 1970 12CO(1 → 0), the second most abundant molecule in the Universe was discovered

� 1970‘s infrared astronomy opens the window to the most abundant molecule H2

� ∼ 1990 Submillimeter astronomy opened the window to molecular clouds and star form-
ing regions
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� 1990 COBE studied the distribution of the dominant cooling line of the ISM Cii

� 1995 allowed detailed spectroscopic studies of the dust, the vibrationally excited H2

emission line and the infrared dark clouds

� 1998 until 2006 SWAS studied the distribution of H2O, O2, Ci up to 500GHz

� 2000 until today FUSE observation of H2 in absorption against background continuum
sources, observation of the vertical structure of highly ionized gas like Oiv and Nv

� 2000 until today Spitzer studies the ISM with high angular resolution

1.3.1 Properties of the 21 cm line

� Natural line width is 10−16 km s−1, accordingly the line is ideally suited to trace turbu-
lence and Doppler motions.

� The thermal line width is σ ≈ 0.09
√
T , which corresponds to 2 km s−1 at T = 100K

1.3.2 Neutral hydrogen in the Milky Way

� Assuming that the gas encircles the center of the Milky Way on concentric orbits, it is
feasible to determine its distance (tangentialpoint method).

� The method is restricted to the inner galaxy. However, it probes a large fraction of the
baryonic mass.

� The tangent point method is only applicable for R < R�.

� For the outer galaxy we can use stars as tracer for the potential and Hi 21 cm line
measurements, which reaches about a factor of three further out than stars.



Chapter 2

Continuum radiation processes

2.1 Radiation of an accelerated electron

Figure 2.1: Sketches of an accelerated electron

Electric field of an accelerated electron at point P 1:

~E =
e

c
· ~n× [(~n− ~β)× ~̇β]
R · (1− cos θ · β)3

(2.1)

~β =
~v

c
(2.2)

~̇β =
~̇v

c
(2.3)

1See Jackson, Chapt. 14

5



6 CHAPTER 2. CONTINUUM RADIATION PROCESSES

Poynting vector:

~S =
c

4π
· ~E × ~B =

c

4π
· | ~E|2 · ~n (2.4)

Radiated power:

dP (t)
dΩ

= |~S| · (1− β · cos θ) ·R2 (2.5)

=
e2

4πc
· |~n× [(~n− ~β)× ~̇β]|2

(1− β · cos θ)5
(2.6)

This equation will be used for the case of thermal radiation, where β � 1 and the case of
nonthermal radiation, where β ' 1

θ = ](~v, ~n), i.e. cos θ = ~n · ~β

2.2 Free-free radiation

2.2.1 Situation

We first need to compute the emitted power of a single accelerated electron. Situation: Plasma
(Hii region) with T ≈ 104K ∼= 1eV, mostly protons and electrons (some He ions); ne ≈ np

ranges from 0.03 cm−3 to 106 cm−3 (e.g. centre of Ori A); electrons move on hyperbolic orbits
between protons; acceleration, mainly ~̇v ⊥ ~v

Coulomb law:

~̇v(t) = −Z · e
2

me
· ~r
r3

(2.7)

main acceleration acts in the x-direction:

ẍ =
Z · e2

me · r2
· cosφ (2.8)

ÿ =
Z · e2

me · r2
· sinφ (2.9)

2.2.2 Radiation in the non-relativistic case

dP (t)
dΩ

=
e2

4πc
· |~n× [(~n− ~β)× ~̇β]|2

(1− β · cos θ)5

=
e2

4πc3
· v̇2(t) · sin2 φ′ for β ≈ 0 i.e. (1− β cos θ) = 1

P (t) =
x

4π

dP

dΩ
· Ω =

2e2

3c3
· v̇2(t) (2.10)
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We now have P (t), but need P (ν) or P (ω) in order to derive the frequency spectrum of
a single particle; usual procedure: Fourier analysis, or Fourier transform.

ẍ(t) =
∫ ∞

0
C(ω) · cosωt · dω (2.11)

C(ω) =
1
π

∫ +∞

−∞
ẍ(t) · cosωt · dt (2.12)

ẍ(t) looks like a “spike” as we have seen. If it were a pulse (δ-function), then the frequency
spectrum would be finite. Its finite width gives rise to a finite frequency spectrum.

Coulomb’s law: ẍ =
Z · e2

me · r2
· cosφ (2.13)

particles move a distance v · dt during dt:

v · dt = d(p · tanφ) = p · dφ

cos2 φ
(2.14)

(since p doesn’t change significantly while ẍ is large)

⇒ dt =
p

v
· dφ

cos2 φ
(2.15)

radiation only significant for −p
v < t < p

v for which ωt � 1 ⇒ cosωt ≈ 1. With p = r · cosφ
we have

C(ω) =
1
π
·
∫ π/2

π/2

Ze2

mep2
· cos3 φ · p

v
· dφ

cos2 φ

=
Ze2

πmepv
·
∫ π/2

π/2
cosφdφ =

2 · ze2

πmepv
(2.16)

Now Parseval’s theorem comes2 into play:∫ +∞

−∞
v̇2(t)dt = π ·

∫ ∞

0
C2(ω)dω (2.17)∫ +∞

−∞
P (t)dt =

∫ ∞

0
P (ω)dω (2.18)

With

P (t) =
2e2

3c3
· v̇2(t) (2.19)

this yields

P (ω)dω = P (t)dt =
2e2

3c3
· π · C2(ω)dω

=
16 · e6 · Z2

3 ·me · p2 · v2 · c3
dν (2.20)

2Recall that P (t) ∼ ẍ2
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Recalling that P (ω) ≈ 0 for ν > v
2πp we have

P (ν)dν =
16 · e6 · Z2

3 ·me · p2 · v2 · c3
dν for ν ≤ v

2πp
(2.21)

P (ν)dν = 0 for ν ≥ v

2πp
(2.22)

estimate of νmax: e.g. ne = ni = 103 cm−3 (centre of Orion), Te = 104 K; ne ⇒ d = 0.1 cm ⇒
p ≤ 0.05 cm, v = 700 km s−1 ⇒ ν = 1/τ ≈ 1.4 GHz

2.2.3 Total radiation

We now consider the emis-
sion of an ensemble of ther-
mal electrons. Let ne be the
number of electrons and ni

the number of ions. Electrons
have collision parameters be-
tween p and p + dp; the the
number of Coulomb collisions with (p, p + dp) per second of time that an electron with ve-
locity v will experience is equal to the number of ions within a cylindrical ring with length v
and, respectivly, inner and outer radii p and p+ dp; this produces

nc = v · 2πp · dp · ni (2.23)

collisions; the number of collisions per cm3 involving electrons with velocities between v and
v + dv then is

dN(v, p) = (v · 2πp · dp) · ni · ne · f(v)dv cm−3 s−1 (2.24)

where f(v) is the Maxwellian velocity distribution:

f(v)dv = 4π
(

me

2πkBTe

)3/2

e
− mev2

2kBTe · v2 · dv Te = electron temperature (2.25)

Total energy emitteld per second, per Hz, per cm3 = 4π · εν

4π · εν =
∫ p2

p1

∫ ∞

0
P (v, p) · dN(v, p)

=
x 16 · e6 · Z2

3 ·m2
e · p2 · v2 · c3

· ni · ne · f(v) · 2πp · dp · vdv

=
32 · π · e6 · Z2 · ni · ne

3 ·m2
e · c3

·
∫ ∞

0

f(v)
v

dv ·
∫ p2

p1

dp

p

so that

εν =
8 · e6 · Z2 · ni · ne

3 ·m2
e · c3

·
∫ ∞

0

f(v)
v

dv ·
∫ p2

p1

dp

p
(2.26)
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here ∫ ∞

0

f(v)
v

dv =
〈

1
v

〉
=
√

2 ·me

π · kB · Te
Te ≈ 104 K (2.27)∫ p2

p1

dp

p
= ln

p2

p1
= gff “Gaunt factor” (2.28)

εν =
8 · e6 · Z2 · ni · ne

3 ·m3/2
e · c3

·
√

2
π · kB · Te

· gff (2.29)

Limits p1, p2 difficult to estimate;
lower bound

p1: maximum deflection angle. Consider
χmax = 90◦ then, at r0 we have the closest
distance and with ze2

r0
≈ mev2

2

p >
2 · Ze2

mev2
=

2Ze2

3kBT
(2.30)

upper bound
p2: minmum deflection angle. Significant

radiation only with frequencies correspond-
ing to the inverse collision time:

2πν =
1
τcoll

=
〈v〉
p2

⇒ P < p2 =
〈v〉
2πν

=
1

2πν
·
√

8kBT

meπ

(2.31)

Thus, the Gaunt factor becomes

gff = 12.5 + ln

[
Z−1 ·

(
Te

104 K

)1.5

·
( ν

GHz

)−1
]

= 10 · · · 17

(2.32)

Now utilize Kirchhoff’s law to obtain ab-
sorption coefficient:

Bν(T ) =
εν
κν

=
2hν3

c2
·
(
e
− hν

kBTe − 1
)−1

(2.33)

≈ 2ν2kBTe

c2
for

hν

kBTe
� 1 (2.34)

κν =

√
2
π
·

4e6Z2ninegff

3c(mekBTe)3/2ν2
(2.35)

or numerically with the values inserted in c.g.s. units

κν = 9.77 · 10−3 · ni · ne · ν−2 · T−3/2 · gff (2.36)
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optical depth:

τν =
∫ s0

0
κνds (2.37)

= 8.77 · 10−3 · ν−2 · T−3/2
e · gff ·

∫ s0

0
ni · neds (2.38)

in general the plasma is neutral (zero net charge over the whole volume), i.e. ni = ne; we
define

EM =
∫ s0

0
n2

eds (2.39)

as the emission measure which has units of pc cm−6

τν = 3.01 · 10−3 ·
(

EM

106 pc cm−6

)
·
( ν

GHz

)−2
·
(

Te

104 K

)−1.5

· gff (2.40)

e.g. Orion nebula: EM ≈ 106 pc cm−6 ⇒ τ ' 1 at ν = 0.6 GHz
Radiative transfer:

Iν = Bν(Te) ·
(
1− e

τν
)

(2.41)

Consider optically thick and thin case:

τν � 1 : Iν = Bν(Te) → Planck’s law (“featureless”) (2.42)

τν � 1 : Iν = τν ·Bν(Te) ≈
2ν2kBTe

c2
· τν (2.43)

= 8.29 · 10−23 ·
(

EM

106 pc cm−6

)(
Te

104 K

)−0.5

gff erg s−1 cm−2 Hz−1 sr−1

(2.44)

Figure 2.2: Intensity and brightness tem-
perature for different emission measures

In radio astronomy, the term “brightness
temperature” is commonly used; defined via
Rayleigh-Jeans approximation.

Iν :=
2kBν

2

c2
· Tν often: Tb (2.45)

Tν =
c2

2kBν2
· Iν (2.46)

τν � 1 : Iν = Bν ⇒ Tν = Te (2.47)
τν � 1 : Iν = τν ·Bν ⇒ Tν = τν · Te (2.48)

Iν ∝ ν2

Tν = Te

}
ν � 1 (2.49)

Iν ∝ ν−0.1

Tν ∝ ν−2.1

}
ν � 1 (2.50)
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measuring Tν or Iν over a sufficient freqency range
allows to determine the emission measure, which
is the dominant factor in the optical depth ⇒
〈n2

e〉1/2.
Apart from the characteristic continuum spectrum described above, thermal free-free ra-

diation is unpolarized, since the trajectories of the electrons are randomly oriented.

2.3 Synchrotron radiation

2.3.1 Radiation from a single electron

dP (t)
dΩ

=
e2

4πc
· |~n× [(~n− ~β)× ~̇β]|2

(1− ~n · ~β)5
(2.51)

The non-relativistic case was treated in the previous chapter. In the relativistic cas we
distinguish the

� linear accelerator, ~̇β ‖ ~β ( ~E-field)

� cyclotron, ~̇β ⊥ ~β ( ~B-field)

We briefly consider the linear accelerator (acceleration in electric field)

θ = ](~n, ~β) or (~n, ~̇β) (2.52)

(~n− ~β)× ~̇β = ~n× ~̇β since ~β × ~̇β = ~0 (2.53)

= β̇ · cos θ · ~n− ~̇β (2.54)

|~n · ~̇β · cos θ − ~̇β|2 = ~̇β2 · cos2 θ + ~̇β2 − 2~n · ~̇β · cos θ (2.55)

= ~̇β2 · (1− cos2 θ) = ~̇β · sin2 θ (2.56)

dP (t)
dΩ

=
e2 · v̇2

4πc3
· sin2 θ

(1− β · cos θ)5
(2.57)

P (t) =
2
3
· e

2 · v̇2

4πc3
· γ6 γ =

1√
1− β2

(2.58)

maximum radiation at

θmax =
1
2γ

(2.59)

cos θmax =
1
3β

·
(√

1 + 15β − 1
)

(2.60)

dP (t)
dΩ

(θmax) ∝ γ8 (2.61)

e.g.: E = 1 GeV, γ = E
m0c2

, m0c
2 = 511 keV ⇒ γ = 2000 ⇒ θmax ≈ 1′
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transverse accelerator is the more important process in as-
trophysics:

θ = ](~n, ~β), φ′ = ](~n, ~̇β) (2.62)
φ = angle measured along a circle ⊥ ~v (2.63)

θ = angle measured in the (~v, ~̇v)-plane (2.64)

assume that particles move in the interstellar magnetic field →
Lorentz force. With ~β ⊥ ~̇β:

dP (t)
dΩ

=
e2 · v̇2

4πc3
·

[
1− sin2 θ cos2 φ

γ2(1−β·cos θ)2

]
(1− β · cos θ)3

(2.65)

Figure 2.3: Sketches of an accelerated electron
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Relativistic motion → relativistic abberation (strong dis-
tortion of radiation pattern): relativistic beaming ; width of radiation pattern: main lobe has
width of 1/γ at half maximum!

Proof: easy for zero-points, since

dP (t)
dΩ

= 0 implies 1− sin2 θ0 cos2 φ
γ2 · (1− β · cos θ0)2

= 0 (2.66)

go into φ′ = 0◦-plane

⇒ γ2 · (1− β · cos θ0)2 = sin2 θ0 (2.67)

need to consider small angles only, i.e.

sin θ0 ≈ θ0

cos θ0 ≈ 1− θ2
0
2

}
γ ≈ θ0

1− β ·
(
1− θ2

0
2

) (2.68)

=
2
θ0

(β ≈ 1) (2.69)

half-power width: θHP = 1
2θ0

θHP ≈
1
γ

=
m0c

2

E2
(2.70)

E.g.: E = 1 GeV ⇒ γ = 2000 ⇒ θHP = 1′.7
Apart from relativistic aberration, the time evolution as seen in the observer’s frame of

reference will come into play. Before we look at that, we work out the so-called Larmor circle;
equation of motion:

m~̇v = m · (~v × ~ωL) = −e
c
· (~v × ~B) Lorentz force (2.71)

ωL = Larmor frequency (2.72)

χ = 90◦ ⇒ m · ω2
L · rL = m · v

2

rL
=
e

c
· v ·B (2.73)

⇒ m
v

rL
=
e ·B
c

(2.74)

or ωL =
e ·B
m · c

Larmor frequency (2.75)

Note: m = m0 · γ, since γ = E
m0·c2 , i.e. E = mc2 = γ ·m0 · c2

ωL =
e ·B

γ ·m0 · c
(2.76)

in the relativistic case, the Larmor frequency is decreased by a factor γ! The Larmor radius
is easily obtained via

rL =
v

ωL
=
m0 · v · c
e ·B

· γ ≈ m0 · c2

c ·B
γ =

E

e ·B
(2.77)



14 CHAPTER 2. CONTINUUM RADIATION PROCESSES

or in general (χ 6= 90◦)

rL =
E · sinχ
e ·B

Larmor radius (2.78)

Table 2.1: Some examples for B = 10 µG:

E [eV] rL νL [Hz] γ

109 3.3 · 106 km 1.4 · 10−2 2000
4.5 · 1010 1.5 · 108 km 3.1 · 10−4 9 · 104

1020 10 kpc ! 1.4 · 10−13 2 · 1014

Note: νL = 28Hz for γ = 1, B = 10µG
How, then, can we detect synchrotron radiation in the radio regime? ⇒ need to calculate

the time dependence of the radiation as seen by the observer. Duration of pulse:

∆t =
rL · θHP

v
≈ rL · θHP

c
(β ≈ 1) (2.79)

rL ≈
E

e ·B
(χ = 90◦, β ≈ 1) (2.80)

⇒ ∆t =
E · θHP

e ·B · c
=
m0 · c2 · E
E · e ·B · c

(2.81)

so this yields

∆t =
m0 · c
e ·B

(2.82)

which is about 6 ms in a 10 µG field. This corresponds to a frequency of ν = 180 Hz.
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t′ = t + time from A → B, i.e.

t′ = t+
|~r − ~rL(t)|

c
(2.83)

dt′

dt
= 1− 1

c
· ~r − ~rL(t)
|~r − ~rL(t)|

· d~rL
dt

= 1− ~n · ~v
c

= 1− β · cos θHP (2.84)

≈ 1− β ·
√

1− θ2
HP = 1− β ·

√
1− 1

γ2
= 1− β2 =

1
γ2

(2.85)

∆t′ =
∆t
γ2

(2.86)

This means that the frequency spectrum is shifted towards a γ2-times higher range; e.g. E = 1
GeV ⇒ γ = 2000 ⇒ ν ≈ 700 MHz for a 10 µG magnetic field!

A more precise determination of the radiation sprectrum (of a single electron) requires a
Fourier analysis (such as in the non-relativistic case).

We define a critical frequency such that the particles produce significant power up to that
frequency ωc. Various definitions are found in the literature:

ωc = 2πνc
Schwinger

=
3

2 ·∆t′
(2.87)

ωc = 2πνc
Ginzburg

=
1

∆t′
(2.88)

ωc = 2πνc
Jackson=

3
∆t′

(2.89)
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In what follows, we’ll use Schwingers3 definition.

⇒ νc =
3
4π

· eB⊥
m0c

· γ2 (2.90)

B⊥ = B · sinχ (2.91)

E [GeV] γ νL

1 2000 170 MHz
45 9 · 104 340 GHz

1011 2 · 1014 1.7 · 1030

Table 2.2: Some examples for B = 10 µG:

What about protons? The cyclotron radiation energy spectrum observed near earth ex-
hibits ' 100 times more protons than electrons at the same energy. Nevertheless, they do
not contribute significantly to the emission, since

νc =
3
4π

· eB⊥
m0 · c

· γ2 =
3
4π

· eB⊥ · E
2

m3
0 · c5

. (2.92)

Thus, νc depends on the mass of the radiating partikle like m−3

(
mp

me

)−3

= 1.6 · 10−10 ⇒ νc,p

νc,e
= 1.6 · 10−10 (2.93)

Put differently, we can calculate how much more kinetic energy a proton must have in order
to radiate at the same frequency as the electron:

Ep =
(
mp

me

)3/2

· Ee = 8 · 104 (2.94)

Hence, even the ratio of the number densities np/ne ≈ 100 does not help. Fourier analysis
together with equation 2.65 (for small θ and large γ) yields:

dP

dΩ
=

2
π
· e

2 · v̇2

c3
γ6 · 1

(1 + γ2θ2)3
·
[
1− 4γ2θ2 cos2 φ

(1 + γ2θ2)2

]
(2.95)∫ π

0

∫ 2π

0

dP

dΩ
dΩ =

2
3
· e

2 · v̇2

c3
γ4 (2.96)

P (ν) =
√

3c3

m0c2
·B⊥ · F

(
ν

νc

)
(2.97)

where

F

(
ν

νc

)
=

ν

νc
·
∫ ∞

ν/νc

K5/3(x)dx (2.98)

3J. Schwinger: 1949, Phys.Rev.75, 1912-1925
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F
(

ν
νc

)
is the so-called Airy integral of the modified Bessel function K5/3(x). It is well

approximated by Wallis’ approximation4:

F

(
ν

νc

)
= 1.78 ·

(
ν

νc

)0.3

· e−
ν
νc (2.99)

2.3.2 Synchrotron radiation from relativistic electrons with an energy spec-
trum

Need to know energy spectrum, which has been measured in the vicinity of the earth. A
power-law of the following form is found:

N(E)dE = A · E−gdE (2.100)

where A is a constant5 and g = 2.4. As usual, we compute the intensity via the emissivity as
follows:

4π · εν =
∫ E2

E1

P (ν) ·N(E)dE (2.101)

Iν = Sν(T ) · (1− e
−τν ) no background radiation (2.102)

≈ Sν(T ) · τν τν � 1 ;Sν = source function LTE= Bν(T ) (2.103)

Kirchhoff’s law:

Sν(T ) =
εν
κν

⇒ Iν =
∫ s0

0
ενds (2.104)

Hence

Iν =
1
4π

·
∫ s0

0

∫ ∞

0
P (ν) ·N(E) · dE · ds W m−2 Hz−1 sr−1 (2.105)

For the sake of simplicity, we assume that neither P (ν) or N(E) are depending on s, i.e.
dP/ds = dN/ds = 0. Then

Iν =
s0
4π

·
√

3 · e3

m0 · c2
·B⊥ ·A ·

∫ ∞

0
F

(
ν

νc

)
· E−gdE (2.106)

Wallis approximation delivers

Iν =
s0
4π

·
√

3e3

m0c2
·B⊥ ·A · 1.78 ·

∫ ∞

0

(
ν

ν0

)0.3

· e−
ν
νc · E−gdE (2.107)

Define

C := 1.78 ·
√

3e3

4πm0c2
= 3.32 · 10−23 esu3 erg−1 (2.108)

νc =
3
4π

· eB⊥
m3

0c
5
· E2 := η ·B⊥ · E2 where η = 6.26 · 1018 s4 g−5/2 cm−1/2 (2.109)

4G. Wallis; 1959 in “Paris Symp. on Radio Astronomy”, ed. R. N. Bracewell, p. 595-597
5A refers to the local conditions. It contains the local number density of relativistic particles per energy

interval.
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substitution:

x =
(
η ·B
ν

)1/2

· E ⇒ dE =
(

ν

η · B

)1/2

· dx (2.110)

Iν = s0 · C ·A · η
g−1
2 ·B

g+1
2

⊥ · ν−
g−1
2 ·

∫ ∞

0
x−(g+0.6) · e−

1
x2 dx (2.111)

It conveniently turns out that g ≈ 2.46 so that the integral has a trivial soulution. With
1
x2

= u i.e. − 2
x3
dx = du (2.112)

it follows that∫ ∞

0
x−3 · e−

1
x2 dx =

1
2

∫ ∞

0
e
−u

du =
1
2

(2.113)

With g ≈ 2.4 we arrive at

Iν = 2.4·10−10·
( s0

cm

)( A

erg1.4 cm−3

)(
B⊥
G

)1.7 ( ν

Hz

)−0.7
erg s−1 cm−2 Hz−1 sr−1 (2.114)

Close to the earth A = 8.2 · 10−17 erg1.4 cm−3. If this constant would hold over a line of sight
of 10 kpc, then with B = 10 µG we would expect

Iν = 10−18 erg s−1 cm−2 Hz−1 sr−1 at ν = 10GHz (2.115)

In general, with

N(E)dE ∝ E−gdE (2.116)

for the synchrotron intensity we arrive at

Iν ∝ B1+α
⊥ · ν−α (2.117)

where

α =
g − 1

2
≈ 0.7 (typically) (2.118)

Figure 2.4: Synchrotron radiation power

Note: The factor of 1/2 arises from E ∝
ν1/2. What’s happening in computing Iν is
that for each e− the radiation spectrum P (ν)
(of the single particle) is multiplied succes-
sively by the particle density for each energy.
The integration over the whole energy range
yields the frequency spectrum. In the log-log
plot this means that we have to add (loga-
rithmically) the “weighting functions”, given
by N(E). If the energy spectrum has a cut-off
at some energy Emax, the spectrum will fall
off exponentially beyond the corresponding
frequency

νc =
3
4π

· e ·B⊥
m0 · c

· γ2
max (2.119)

6This value is valid for the Milky Way, external galaxies and radio galaxies.
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2.3.3 Polarization properties

Relativistic particles radiate within a nar-
row beam width of θHP = γ−1. Considering
theier helical motion around the magnetic
field, the radiation is emitted into a veloc-
ity cone, which is the cone described by the
velocity vector ~v; hence the opening angle of
the cone is twice the pitch angle χ. The cone
axis is parallel to the ~B-field and ~v precesses
at relativistic gyrofrequency about this direction.

Figure 2.5: Polarization of synchrotron radiation

In the non-relativistic case, looking along the magnetic field lines we would measure cir-
cular polarization, or, if viewing at some angle with respect to ~B, elliptical polarization. The
fundamental difference in case of relativistic particles is that significant radiation is only mea-
sured if the trajectory of the electrons lies within the very narrow angle 1/γ of the line of
sight.

The details are rather complicated. The full algebra can be found in Longair (1994)7.
The best way to understand how a single particle produces elliptical polarization and how
an ensemble of particles with a pitch-angle distribution produces net linear polarization is
by looking at 3-D velocity cones (paper models). In the case of non- or mildly relativistic
particles the radiation pattern would be broad and we would observe the (rotating) ~E-vector
over the full gyro-circle around the ~B-field. If the particles are highly relativistic, then we

7M. S. Longair: High Energy Astrophysics, Vol. 2, Chapt. 18, Cambridge University Press, 1994
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see the light pulse of width 1/γ only for a very short time, and we see a light pulse only from
particles with one specific pitch angle. We record the pulse only over a very small fraction
of the velocity cone. This automatically implies that the polarization is essentially linear.
However, during the finite time that we recive the pulse, it undergoes a slight rotation, giving
rise to small amount of elliptical polarization. How can we then understand that the particle
ensemble with a random pitch-angle distribution produces net linear polarization?

In order to “see” many particles with different pitch-angles at the same time, we to
introduce irregularities of the magnetic field. Otherwise, for a given line of sight we would
see one and only one particular velocity cone.

Figure 2.6: Velocity vector

Since the ~E-vector traces a circle if the
~B-vector is exactly along the line of sight,
we would expect circular polarization in the
first place. This is actually observed in cy-
clotron radiation (non- or mildly relativistic
electrons, e.g. radiation from the active sun),
because in that case the radiation pattern is
broad enough that the electron is seen over
the full cycle. This changes, however, funda-
mentally if the particles are highly relativis-
tic. In that case, as we have seen above, we
observe a short pulse only if the narrow (1/γ)
beam sweeps across the line of sight. The re-
sult is that we record the ~E-vector turning
over a small segment of the circle or, in case
of the ~B-field inclined with respect to the
line of sight, of an ellipse. We hence would
measure elliptical polarization from particles
with a given pitch angle, the dominant po-
larization being, however, linear, with the ~E-
vector perpendicular to the ~B-field.

Illustration 2.6 shows that, as seen from
the observer, the velocity vector turns right if the velocity cone is viewed such that the line
of sight lies just inside the maximum radiation pattern, while it turns left if viewed from just
outside. Hence, the corresponding elliptical polarization produced during the short moment
that the radiation pattern sweeps across our line of sight is correspondingly right- and left-
handed. Since in the presence of a tangled magnetic field and a distribution of pitch-angles
we will see an equal number of particles with opposite elliptical polarization. It will cancel
nearly perfectly and we will be left with pure linear polarization of the ~E-vector measured to
be perpendicular to the ~B-field.

Precise calculation of degree of polarization from Fourier analysis of P⊥(t) and P‖(t)
yielding

P⊥(ν) =
√

3 · e3 ·B⊥
m0 · c2

· [F (x) +G(x)] (2.120)

P‖(ν) =
√

3 · e3 ·B⊥
m0 · c2

· [F (x)−G(x)] (2.121)
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where

F (x) = x ·
∫ ∞

x
K5/3(z)dz (as before) (2.122)

G(x) = x ·K5/3 (2.123)

and x = ν/νc. The degree ofpolarization for a single energy is

Π(ν) =
P⊥(ν)− P‖(ν)
P⊥(ν) + P‖(ν)

(2.124)

Integrating over a power-law energy spectrum, i.e. N(E)dE ∝ E−gdE, yields

Π =
g + 1
g + 7/3

=
2α+ 2

2α+ 10/3
=

α+ 1
α+ 5/3

(2.125)

With g = 2.4, i.e. α = 0.7, we expect a maximum degree of linear polarization of a syn-
chrotron source of Π = 72%. This assumes that the magnetic field is absoulutely uni-
form and that there are no depolarizing effects such as beam or Faraday depolarization.

Figure 2.7: Power of polarized radiation

2.3.4 Losses and particle lifetimes

P =
2
3
· e

2 · v̇2

c3
·
(

E

m0 · c2

)4

for synchrotron radiation

(2.126)

v̇ =
v2

rL
= ωL · v (2.127)

ωL =
e ·B
m0 · c

· 1
γ

(2.128)

v̇ =
v · e ·B
m0 · c

· m0 · c2

E
(2.129)

and thus (v ≈ c)

P =
2
3
· e4

m4
0 · c7

·
(
B

G

)2( E

erg

)2

(2.130)

Since

P
!= −dE

dt
(2.131)

it follows that

dE

dt
= −2.37 · 10−3 ·

(
B

G

)2( E

erg

)2

erg s−1 (2.132)

= −1.48 · 10−3 ·
(
B

µG

)2( E

eV

)2

eV s−1 (2.133)

dE

E2
= −a ·B2 · dt a = 2.37 · 10−3, [E] = erg (2.134)
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1
E0

− 1
E

= a ·B2 · (t− t0) (2.135)

Assume that the e− had energy E0 at t0 = 0. The half-lifetime t1/2 is defined as the time
after which the particle hast lost half its energy, i.e. E(t1/2) = E0/2. With

E(t) =
1

1
E0

+ a ·B2 · t
=

E0

1 + a ·B2 · E0 · t
(2.136)

E0

2
=

E0

1 + a ·B2 · E0 · t1/2
(2.137)

or

t1/2 =
1
a
·B−2 · E−1

0 (2.138)

Inserting a and expressing B in µG and E in GeV, we arrive at

t1/2 = 8.24 · 109 ·
(
B

µG

)−2( E

GeV

)−1

years (2.139)

Assume B = 10 µG (e.g. in galaxies)

E [GeV] t1/2 [years]

1 8 · 107

10 8 · 106

100 8 · 105

Evolution of a radio source: Once the energy supply has been switched off, the energy
spectrum will have a cutoff that gradually migrates towards lower energies. As a result, the
synchrotron radiation sprechtrum exhibits a corresponding exponential decline beyond the
cut-off frequency νc, which we obtain from

νc =
3
4π

· e ·B · E
2
c

m3
0 · c5

(2.140)

This cutoff frequency νc beyond which the source is rendered undetectable tells us something
about the age of the source. Stricly speaking, this is rather the duration of the remnant
phase, but it is frequently used as the source age synonymously.

tsource = 5.83 · 108 ·
(
B

µG

)−3/2 ( νc

GHz

)−1/2
years (2.141)

2.4 Inverse-Compton radiation

Compton scattering: photon transfers energy and momentum to an electron (bound to an
atom). If free electrons have sufficiently high kinetic energy, mc2 � hν, the reverse may
happen, i.e. net energy will be transferred from the electron to the photon.

Relativistic electrons in photon field (e.g. FIR radiation from galaxies or CMB) my thus
“boost” such photons to X-ray (or even γ-ray) regime. Derivation of radiated power is very
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similar to that of synchroton radiation. We only quote the result here (with σT being the
Thomson cross-section):∫

dPIC

dΩ
dΩ = PIC =

4
3
· σT · c · γ2 · β2 · urad (2.142)

where

urad =
4σ
c
· T 4 σ being the Stefan-Boltzmann constant (2.143)

is the energy densitiy of the radiation field. We can express the radiated synchrotron power
in an analogous form.

Psyn =
2 · e2

3 · c3
· v̇2
⊥ · γ4 (2.144)

where

v̇⊥ =
e · v⊥ ·B
γ ·m0 · c

(2.145)

Hence

Psyn =
2 · e4

3 ·m2
0 · c3

· β2
⊥ · γ2 ·B2 (2.146)

Need to average over all β2
⊥; with β⊥ = β · sinχ

〈β2
⊥〉 =

β2

4π
·
∫ 2π

0

∫ π

0
sinχdΩ =

β2

4π
·
∫ 2π

0

∫ π

0
sin3 χdχdψ (2.147)

=
2
3
β2 (2.148)

Psyn =
4 · e4

9 ·m2
0 · c3

· β2 · γ2 ·B2 =
32 · π · e4

9 ·m2
0 · c3

· β2 · γ2 · B
2

8π
(2.149)

=
4
3
σT · c · β2 · γ2 · umag (2.150)

where

σT =
8π
3
r2e = 6.65 · 10−25 cm2 Thomson cross section (2.151)

re =
e2

m0 · c2
classical electron radius (2.152)

Interesting: Assume synchrotron source (e.g. radio galaxy) embedded in CMB, T0 = 2.728
K. Now calculate ratio

Psyn

PIC

!=
umag

urad
=

magnetic energy density
radiation energy density

(2.153)

=
B2

8π
· c
4σ

· T−4 (2.154)
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where

T = T0 · (1 + z) (2.155)

We can calculate from this an “equivalent magnetic field of the CMB”. i.e.

B2
eq

8π
=

4σ
c
· T 4

0 · (1 + z)4 (2.156)

Beq =

√
32 · π · σ

c
· T 2

0 · (1 + z)2 = 3.51 · (1 + z)2 µG (2.157)

Example: 3C294 (Erlund et al. 2006); exhibits extended Inverse-Compton emission. z =
1.779 ⇒ Beq ≈ 27 µG! Synchrotron-cooled relativisitc electrons still produce IC at X-rays ⇒
allows to calculate total energy of relativistic plasma deposited by central AGN.

t1/2 = 6.62 · 1010 ·
(
T

K

)−4( E0

GeV

)−1

years (2.158)

2.5 Examples
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(a) λ = 3 cm

(b) λ = 13 cm

Figure 2.8: The Large Magellanic Cloud at two different wavelenghts
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Figure 2.9: The galaxy cluster Hydra A in the radio regime



Chapter 3

Neutral Gas

3.1 Absorption lines

Absorption coefficient

κν =
c2 · nl · gu

8π · ν2 · gl
·Aul ·

[
1− exp

(
− hν0

kB · Tex

)]
· φul(ν) (3.1)

nl = number density of particles in lower state
gu = statistical weight of upper state
gl = statistical weight of lower state

Aul = probability for spontaneous emission
ν0 = emission frequency
Tex = excitation temperature

φul(ν) = normalized spectral distribution (“profile shape”)

Interstellar absorption lines much narrower than stellar ones.
Visible, UV, NIR: atoms (Na, K, Ca), ions (Ca+, Ti+), molecules (CN, CH, CH+, C2,

OH)
FUV : Lyman series of H; molecules, in particular H2 (HST, FUSE)
Radio: Hi, OH against strong (mostly synchrotron) continuum sources

Figure 3.1: Definition of the equivalent width

In what follows we work out how one can
determine column densities from absorption
lines. Equivalent width of a line defined by

W =
∫ ∞

0

IC − Iλ
IC

dλ (3.2)

where IC is the intensity of the stellar con-
tinuum on either side of the line; given in
units of wavelength. With only absorption
radiative transfer reads

Iλ = I0,λ · e
−τλ (3.3)

27
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where

τν =
∫ s0

0
κνds (3.4)

is the optical depth. Hence

Wλ =
∫

(1− e
−τν )dλ =

∫
(1− e

−τν )
dν

c
· λ (3.5)

For small optical depth

Wλ =
∫
τνdλ =

∫
τνλ

2dν

c
(3.6)

Let us assume that hν � kBTex (always valid in FIR and higher frequency regimes):

κν =
c2 · nl · gu

8π · ν2 · gl
·Aul · φul(ν) (3.7)

Integration over the line-of-sight will convert number density nl into column density Nl

κν =
c2 ·Nl · gu

8π · ν2 · gl
·Aul · φul(ν) (3.8)

One often uses the oscillator strength

f =
me · c3

8π2 · e2 · ν2
·Aul ·

gu

gl
⇒ τν =

π · e2 ·Nl

me · c
· φul(ν) · f (3.9)

so that

Wλ =
∫ ∞

0

[
1− exp

(
− πe2

mec
·Nl · f · φul(ν)

)]
λ2dν

c
(3.10)

In all of the above it was assumed that various quantities do not vary along the line-of-
sight.

3.1.1 Shape of line profile

Shape of line profile φul(ν) depends on intrinsic (natural) line profile and broadening effects
(Doppler and pressure broadening). Natural line profile is given by the Lorentz curve

L(ν) =
1
π
· γ/2
[2π(ν − ν0)2] + (γ/2)2

(3.11)

The lifetime τ of the transition is the reciprocal of the damping constant γ. The function is
normalized such that∫ ∞

0
L(ν)dν = 1 (3.12)

Individual atoms move about according to the temperature of the gas. This gives rise to
the so called Doppler profile (∆ν = Doppler shift, ∆νD = Doppler width)

D(ν) =
1√

π∆νD
· e−

(
∆ν

∆νD

)2

(3.13)
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which results form translating Maxwell-Boltzmann velocity distribution to frequency. Real
line profile is the convolution of L(ν) and D(ν):

φ(ν) =
∫ +∞

−∞
L(ν − ν ′) ·D(ν ′)dν ′ (3.14)

the so called Voight profile. It requires to calculate the integral

φ(ν) =
α

2 · π5/2 ·∆νD
·
∫ +∞

−∞

e
−y2

(z − y)2 + α2
dy (3.15)

where

α =
γ/2

2π ·∆νD
, z =

ν − ν0

∆νD
, y =

∆ν
∆νD

(3.16)

Common practice: Use of dimensionless equivalent width, i.e. (referred to centre fre-
quency, wavelenght or velocity)

W =
Wλ

λ0
=
Wν

ν0
=
Wv

c
(3.17)

Now consider three cases concerning opacity:

1. optically thin case, τ � 1, damping effects neglible

W =
πe2

mec2
·Nl · λ · f (3.18)

Measured equivalent width directly proportional to column density.

2. intermediate optical depth No analytic solution of integral forWλ exists. Approximation
yields

W ∝ log(Nl · λ · f) (3.19)

3. large optical depth, τ � 1 In this case (Unsöld, 1955)

W ∝
√
Nl · λ · f (3.20)

For still stronger lines absorption in the line wings becomes possible, hence the damping
part of the line profile now dominates the “Doppler core”.

α→ 0 ⇒ H(α, z) → e
−z2

doppler dominated (3.21)

α→∞⇒ H(α, z) → α√
π(z2 + α2)

broad damping wings (3.22)

φ(ν) =
1

∆νD ·
√
π
·H(α, z) (3.23)

H(α, z) =
α

π
·
∫ +∞

−∞

e
−y2

(z − y)2 + α2
dy (3.24)
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3.1.2 Curve of growth

Figure 3.2: Curve of growth

At low optical depth, damp-
ing effects are small compared
to Doppler broadening; shape of
line profile is approximatly that
of Doppler function. Equivalent
width is proportional to column
density; for intermediate column
densities the equivalent width de-
pends only litte on column den-
sity ⇒ “Doppler plateau”; for very
large column densities, the equiv-
alent width is governed by the
damping-part of the line profile.

Example: curve of growth
for different absorption lines (ele-
ments) observed towards the same
cloud; if their Doppler boraden-
ing is the same, the growth curve
is a single line up to the end of
the Doppler plateau; they split in
the damping regime, owing to dif-
ferent trasition probabilities, hence
damping constants.

Figure 3.3: Observed curve of growth

In the general ISM it is the Doppler broadening that mostly dominates emission and ab-
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sorption lines. Dampings wings are seen in stellar absorption spectra (collisional broadening).
Outside of stars broad wings are seen in the absorption lines of “Damped Lyman α sysyems”
(DLA).

ISM: most absorption lines lie in UV range

optical � D1 and D2 doublet of neutral Na (5889 - 5895 Å) but always saturated → better
use UV lines of Na at 3302.4 Åand 3303.0 Å

� H and K doublet of Ca+ at 3933 Åand 3968 Å

� neutral Ca at 4226 Å

UV a host of lines, mostly saturated → column densities difficult to derive

Main goal: determination of abundances; referred to strong Ly α at 1215.67 Å; almost
always damping in part of cog → column density can be derived.

Difficulty with other elemtents: column density can only be derived if all possible ioniza-
tion states are measured; O and N and noble gases are not ionized in “neutral medium”

� one problem in determination of abundances: heavy elements may be depleted, owing
to condensation onto dust grains.

� another method of abundance determination is to use emission lines from Hii regions;
these are close to solar, except for Fe, which is underabundant (most likely due to
depletion onto dust grains)

� cosmological significance: dtermination of primeordial He abundance; we expect Y =
0.25 (by mass and 0.08 by number) abundance of N and O measured in low-metallicity
galaxies (dwarf galaxies); measure Y as a function of N and/or O and extrapolate to
zero N and/or O; the ordinate should then indicate primordial He abundance.

� results: Ygas = 0.245± 0.006, Ystars = 0.232± 0.009, 〈Y 〉Prim. = 0.239, very close to
prediction!

We shall encounter another cosmological application of absorption lines, viz. of molecules, in
a cosmological context.
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Figure 3.4: Determination of primordial abundance of H

3.2 Neutral atomic hydrogen

3.2.1 Transition

In the cold ISM, atomic hydrogen is neutral and in its ground state 12S1/2. Hyperfine splitting
produces two energy levels of trhis ground state, owing to the interaction of the proton and
electron spins. Description n2S+1LJ

S = total spin quantum number
L = total orbital angular momentum quantum number
J = total angular momentum (for the electrons) quatum number = L+ S

I = nuclear spin quantum number
F = total angular momentum (for the atom) quantum number = I + J

n = electronic quantum number

here: n = 1, S = 1/2, L = 0, I = 1/2, J = 1/2 ⇒ F = 0, 1
The probability for a spontaneous transition from the higher state F = 1 to the lower

state F = 0 is extremely low:

A10 = 2.86888 · 10−15 s−1 magnetic dipole radiation (3.25)

i.e. this would occur once everey 11.1 million years on average for a given H atom. However,
in the ISM any given hydrogen atom experiences a collision with another one every 400 years,
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which can be calculated as follows

τcoll. ≈ 4 · 1011 ·
(
T

K

)−1/2

·
( nHi

cm−3

)−1
s (3.26)

During this collision, hydrogen atoms exchange their electrons, this being the chief mode of
the hyperfine transition. If the spin orientation of the exchanged e− changes, there will be a
corresponding change in energy. Hence, collisions can result in no change, excitation, or in
de-excitation. Comparing the above numbers it is clear that the relative population of the
HFS levels will be governed by collisions. This eventually leads to an equilibrium stat with a
ratio of aligned-to-opposed spins of 3:1, as

n1

n0
=
g1
g0
· e−

hν10
kBTsp and g = 2F + 1 (3.27)

(hν10 � kBTsp) Tsp is called “spin temperature”. The energy difference corresponds to a
frequency of

ν10 = 1.420405751786(30) GHz (3.28)

The radiation is commonly referred to as the “21 cm emission of neutral hydrogen” or the
“Hi line”. The fact that there is such a vast number of Hi atoms along the line-of-sight
means that the Hi line emission can be easily measured. The prediction that the line could
be detected was made by van de Hulst in 1944 and was detected in 1951 by three groups:
Euwen & Purcell, Muller & Oort and Christiansen et al..

Example: flux density of Hi line within the beam of the 100 m telescope from region with
nHi = 1 cm−3 with size L = 100 pc which yields a column density of NHi = 3 · 1020 cm−2.
Monochromatic power:

Pν =
Ṅ · hν
ν

· Ωmb ·D2 D = distance (3.29)

Ωmb = 1.133 ·HPBW2 = 7.8 · 106−6 sr HPBW = 70◦ · λ
D

= 9′ (3.30)

flux density

Sν =
Pν

4π ·D2
= Ṅ · h · Ωmb

4π
= nHi · L ·

h

4π
· Ωmb

τcoll
(3.31)

photon flux

Ṅ = nHi · τ−1
coll · L (3.32)

⇒ Ṅ = 2.4 · 1010 photons cm−2 s−1 (3.33)

and

Sν ≈ 10−22 erg s−1 cm−2 Hz−1 = 10 Jy (3.34)

...easily detectable!
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3.2.2 Determination of NH and Tsp

Because of large number of hydrogen atoms along the line-of-sight we do not know a priori
whether the Hi line radiation is optically thin or not. Hence, we have to go through the
standard radiative transfer calculation. From Chapter ?? we have

dIν
ds

=
1
4π

· n1 ·A10 · hν10 · f(ν) +
Iν
c
· hν10 · f(ν) · (B10 · n1 −B01 · n0) (3.35)

where we identify the absorption coefficient with

κν = −hν10

c
· (B10 · n1 −B01 · n0) · f(ν) (3.36)

The optical depth is

τν(s) =
∫ s

0
κν(s′)ds′ (3.37)

Relate intensity Iν to brightness temperature Tb(ν) via Rayleigh-Jeans approximation:

Iν =
2kB · ν2

c2
· Tν (3.38)

The spin temperature is defined via the Boltzmann statistics of the population of the HFS
levels:

n1

n0
=
g1
g0
· e−

hν10
kBTsp ≈ g1

g0
·
(

1− hν10

kBTsp

)
=:

g1
g0
·
(

1− T10

Tsp

)
(3.39)

T10 =
hν10

kB
= 0.068 K � Tsp (3.40)

We furthermore use the relations between the Einstein coefficients

g0 ·B01 = g1 ·B10 and A10 =
8π · h · ν3

10

c3
·B10 (3.41)

With the above we derive

κν =
hν10

c
·B01 · n0 ·

(
1− B10

B01
· n1

n0

)
· f(ν) (3.42)

=
hν10

c
· g1
g0
·B01 · n0 ·

(
1− g0

g1
· n1

n0

)
· f(ν) (3.43)

=
3c2 ·A10 · n0

8π · ν2
10

·
(

1− e
− hν10

kBTsp

)
· f(ν) (3.44)

≈ 3c2 ·A10 · n0

8π · ν2
10

· hν10

kBTsp
· f(ν) (3.45)

Since

nHi = n0 + n1 = n0 + 3n0 = 4n0 (3.46)
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we finally obtain

κν =
3 · h · c2

32π
· A10

ν10
· nHi

kBTsp
· f(ν) (3.47)

translate f(ν) to f(v):

f(ν)dν = f(v)dv (3.48)

f(ν) = f(v) · dv
dν

(3.49)

v

c
=
ν10 − ν

ν10
⇒ dv

dν
= −

(v10
c

)−1
(3.50)

and with

dτν = dκνds (3.51)

we have

dτ(v) = 5.4728 · 10−19 ·
( nHi

cm−3

)
·
(
Tsp

K

)−1

·
(

f(v)
km−1 s

)
·
(
ds

cm

)
(3.52)

Integrating over all velocities (= frequencies) on the left side and over the whole line-of-sight
on the right, can proceed to arrive at the total Hi column density:∫ +∞

−∞
τ(v)

(
dv

km s−1

)
= 5.47 · 10−19 ·

(
Tsp

K

)−1

·
∫ s0

0

(
nH(s)
cm−3

)(
ds

cm

)
(3.53)

or, defining the column density as

NH =
∫ s0

0
nH(s)ds , or here NH(v)

∫ s0

0
nH(s, v)ds (3.54)

we derive this column densitiy by integrating the optical depth over velocity(
NHi

cm−2

)
= 1.823 · 1018 ·

(
Tsp

K

)
·
∫ +∞

−∞
τ(v)

(
dv

km s−1

)
(3.55)

The frequency or velocity dependence of optical depth is

dτ(v) = c · nHi · T−1
sp · f(v)ds (3.56)

with c = 5.47 · 10−19 cm2 K km s−1; from radiative transfer we have

Tb(v) = Tsp ·
[
1− e

−τ(v)
]

+ Tc · e
−τ(v) (3.57)

where Tc is the brightness temperature of a background source. For τ(v) � 1 we simplify
this to

Tb(v) = τ(v) · Tsp (3.58)
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Then Tb(v) is the brightness temperature measured in each velocity interval dv. Inserting
numbers for c we find

NHi = 1.823 · 1018 ·
∫ ∞

0

(
Tb(v)

K

)
·
(

dv

km s−1

)
atoms cm−2 (3.59)

In the most general case, the radiative transfer calculation would result in a an observed
brightness temperature of

Tb(v) = Tbg(v) · e
−τ(v) + Tsp ·

[
1− e

−τ(v)
]

(3.60)

where Tbg(v) is the brightness temperature incident of the far side of an Hi cloud. As we
are only interested in the Hi emission (and wish to get rid of the background continuum), we
usually measure the difference between the two components

∆Tb(v) = Tb(v)− Tbg = (Tsp − Tbg) ·
[
1− e

−τ(v)
]

(3.61)

This is accomplished either by on-off measurements, also called position switching, or by
frequency-switching. In order to gain some physical feeling for the above equation, let us
consider the two extreme cases of τ � 1 and τ � 1 for a single cloud and without any
background radiation.

� τ(v) � 1
In this case, with Tbg = 0, we have

Tb(v) = Tsp · τ(v) = c ·NHi(v) (3.62)

i.e. the measured brightness temperature is proportional to the column density of Hi per
unit velocity. This means that essentially all of the spontaneously emitted 21 cm photons
escape the cloud without being absorbed. The emission is pracically independent of
Tsp, since T0 = hν10/kB is much smaller than any reasonable Tsp. Thus the number of
photons leaving the cloud tells us directly what the Hi column density is.

� τ(v) � 1
In this case, we have (with Tbg = 0)

Tb = Tsp (3.63)

i.e. we directly measure the spin temperature. Any 21 cm photons emitted some where
within the cloud are intantly absorbed by foreground Hi atoms. Only photons with
τ . 1 emitted from the front surface (facing us) leave the cloud. Hence, the observed
brightness temperature is independent of the column density and depends only on the
cloud temperature (analogy to black body radiation in case of thermal continuum).

Measuring ∆Tb(v) implies that we see emission or absorption, depending on whether Tsp > Tbg

or Tsp < Tbg.
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Figure 3.5: Scematic of position switching

If the 3 K CMB were the only excitation mechanism for the 21 cm line, the we would be
faced with the special case Tsp = T3 K = 2.728 K. The neutral hydrogen would then remain
ivisible except in the direction of strong radio continuum sources, where Tbg would exceed the
3 K background. Fortunatly, there are two other excitation mechanisms at work: collisions
and Ly-α radiation.

Tb,on = Tbg · e
−τon + Tsp,on ·

(
1− e

−τon
)

(3.64)

With frequency switching, we measure the above and, sufficiently far off the line, we measure
the pure continuum of the background source. Substracting them, we obtain

∆Tb = Tb,on − Tbg = (Tsp,on − Tbg) ·
(
1− e

−τon
)

(3.65)

The pure line emission can be estimated using several off-spectra that still see Hi emission
from the cloud:

Tb.Hi ≈ 〈Tb,off〉 = 〈Tsp,off〉 ·
(

1− e
−〈τoff〉

)
(3.66)

Generally, we have 〈τoff〉 6= τon and 〈Tsp,off〉 6= Tsp,on. If, however, the two conditions are
nearly fulfilled, then we can derive Tsp and/or τon.

� 〈Tsp,off〉 = Tb,Hi

This is nearly fulfilled if the antenna beam is small compared to the angular dimension
of the Hi cloud (denoted 1 in the figure). Then, from equation 3.65 it follows that

〈Tsp,off〉 −∆Tb

Tbg
=
Tb,Hi −∆Tb

Tbg
(3.67)

=
Tsp,off ·

(
1− e

−τon
)
− (Tsp,on − Tbg) ·

(
1− e

−τon
)

Tbg
(3.68)

= 1− e
−τon (3.69)
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If τon � 1

τon =
〈Tsp,off〉 −∆Tb

Tbg
(3.70)

otherwise

τon = − ln
(

1−
Tb,Hi −∆Tb

Tbg

)
(3.71)

� 〈Tsp,off〉 = Tsp,on , 〈τoff〉 = τon

We have seen that

κν ∝ T−1
sp ,i.e. τν ∝ T−1

sp (3.72)

and

∆Tb(v) = (Tsp − Tbg) ·
[
1− e

−τ(v)
]

(3.73)

That means, if Tsp is large we have emission and if Tsp is small we have absorption, i.e. cold
gas clouds are seen in absorption and warm (hot) gas is seen in emission.

Observations indicate that Tsp is in between 10 K and 5000 K, and the number density
nHi is between 0.2 cm−3 and 10 cm−3. With pressure balance holding, i.e.

P1 = n1 · kB · T1 = P2 = n2 · kB · T2 (3.74)

e.g. n1 = 10 cm−3, n2 = 0.2 cm−3, T1 = 50 K, T2 = 2500 K

Frames of reference for v:

heliocentric corrects for earth rotation and motion about the sun → vrel

local standard of rest corrects in addition for peculiar motion of the sun with respect to
surrounding nearby stars, as measured from their proper motions; the sun moves at
20 km s−1 towards α1900 = 18h, δ1900 = 30◦ ⇒ vLSR

3.3 Constituents of the diffuse ISM

Gas, dust, relativistic plasma; for the gas we know 5 components (see Wolfire et al., 1996,
Ap. J. 443, 152)

MM CNM WNM WIM HiM

n
[
cm−3

]
102 · · · 105 4 · · · 80 0.1 · · · 0.6 ' 0.2 10−3 · · · 10−2

T [K] 10 · · · 50 50 · · · 200 5500 · · · 8500 ' 8000 105 · · · 107

h [pc] ' 70 ' 140 ' 400 ' 900 = 1000
fvol < 1% ' 2 · · · 4% ' 30% ' 20% ' 50%
fmass ' 20% ' 40% ' 30% ' 10% ' 1%
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MM molecular medium

CNM cold neutral medium

WNM warm neutral medium

WIM warm ionized medium

HiM hot ionized medium

CNM resident in relatively dense clouds, occupying a significant fraction of the interstellar
volume. High density implies high cooling rates ⇒ a lot of energy is needed to keep
the temperature: L ≈ 1042 erg s−1. Produces narrow (〈σv〉 ≈ 1.7 km s−1) features
in emission spectrum, which can be readily identified as narrow ones in absorption1;
termed “Hi clouds”; they turn out, however, to be filamentary and sheet-like, rather
than spherical; don’t show up on every line-of-sight, in contrast to WNM

WNM roughly 30% of total Hi; low volume density, but non-negligible filling factor; low
density ⇒ low cooling rates, so total power required to heat is comperatively small;
distribution derived from Hi emission; Mebold (1972) decomposed ' 1200 spectra into
narrow (σv . 5 km s−1) and broad (5 km s−1 < σv < 17 km s−1) gaussian components,
showing ominpresence of broad components.

Neutral hydrogen distributed in a flaring
disk, according to the gravitational poten-
tial. The scale heights for the CNM and
WNM are hCNM ≈ 140 pc and hWNM ≈ 400
pc. Radial distribution frequently exhibits
a central depression, reaches maximum at
about 8 · · · 10 kpc, beyond which it declines
below the (current) detection threshold, i.e.
NHi . 1019 cm−2.

N.B.: at column densities . 1021 cm−2

star formation is strongly suppressed (shield-
ing against UV radiation that dissociates
molecules; Jeans instabilities).

Kinematically, one distinguishes between:

� low-velocity gas, LVCs = low-velocity clouds

� intermediate-velocity gas, IVCs = intermediate-velocity clouds

� high-velocity gas, HVCs = high velocity clouds

LVCs follow normal galactic rotation and are located within the gaseous disk
1Since τ ∝ T−1

sp
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IVCs have velocities between LVCs and HVCs (see below), with metallicities close, |z| . 1
kpc.

HVCs have |∆v| = |vHVC − vrot| > 50 km s−1; more distant than IVCs, but few reliable
distance determinations only; e.g.
“complex A”: D = 2.5 · · · 7 kpc → MHi = 105 · · · 2 · 106 M�
“Magellanic Stream”: MHi ≈ 108 M�(for D = 50 kpc)

Origin: LVCs disk clouds; IVCs galactic fountains “raining back” onto disk; LVCs ?? former
fountains ? but low metals or: tidal debris from infalling [ler. gals.], gas from outer disk

Data cubes. Mapping Hi line with a radio telescope results in so-called data cube, with
brightness temperature Tb = Tb(ξ, η, v). The arrangement is usually such that a map of Tb is
computed for each velocity channel. From this, the so-called moment maps are calculated:

NHi(ξ, η) = C ·
∫
Tb(ξ, η) dv moment 0 or column density (3.75)

〈v(ξ, η)〉 =
∫
Tb(ξ, η) v(ξ, η) dv∫

Tb(ξ, η) dv
moment 1 or velocity field (3.76)

〈σ(ξ, η)〉 =
∫
Tb(ξ, η) v2(ξ, η) dv∫

Tb(ξ, η) dv
moment 2 or velocity dispersion (3.77)

Hi in galaxies. ellipticals generally lack neutral gas; dwarf irregular and spiral galaxies
invariably possess disks of neutral gas; relative amount of Hi

MHi

Mrot
= 3%︸︷︷︸

massive spirals

· · · 20%︸︷︷︸
gas-rich dwarfs

but mostly dark matter! (3.78)

3.4 Examples
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Figure 3.6: The Milky Way in neutral hydrogen
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Figure 3.7: NGC6946 in the optical and neutral hydrogen
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Figure 3.8: NGC3741 in the optical with a neutral hydrogen map superimposed
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Chapter 4

Molecular Gas

Molecules known to exist prior to invention of radio astronomy: electronic transitions of
CH, CH+, CN in optical regime, against bright stars (1937). However, there is a wealth of
molecular lines in the radio regime, in particular in the mm/submm domain.

1963 OH, absorption, Weinreb et al.
1968 NH3, emission and absorption, 23.6 GHz, Cheang et al.
1969 H2O, maiser emission, 22 GHz
1969 H2CO, absorption against 3 K background, Palmer et al.; emission Snyder et al.
1970 CO, 115 GHz

after 1970 discovery of a multitude of molecules, owing to development of mm astrononmy

significance of molecular gas

� chemical evolution, isotopes; after decoupling of solar system from ISM → more nucle-
osynthesis → isotope ratios in solar system compared to ISM yield information about
chemical evolution of ISM thereafter (5 · 109 years back)

� molecules are of cardinal importance for chemical evolution (in particular ions)

� molecules act as efficient coolants → star formation (Hi is a slow coolant)

... countably ifinite number of transitions

4.1 Model for diatomic molecules

symmetries of atoms get lost upon formation of molecules; however, ther quantum mechanical
properties may be simplified such as to treat the motions of their electrons and nuclei separatly.
Consider a diatomic molecule AB with charges ZA · e and ZB · e at ~rA, ~rB respectively, and
N = ZA+ZB electrons located at ~ri, (i = 1 · · ·N). Since mean separations are large compared
to the particle sizes we a dealing with a system of point masses.

~r = ~rA − ~rB = ~rAB (4.1)

system forms stable configuration at some minimum energy, given by radius ~r = ~re. The
energies E and relative particle densitiy ΨΨ∗, under the motion of nuclei and e− under the

45
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influence of coulomb forces are given by the Schrödinger equation

HΨ(~rA, ~rB, ~ri) = EΨ(~rA, ~rB, ~ri) (4.2)

with

H = Hkin +Hpot (4.3)

where

Hkin =
~p2

A

2mA
+

~p2
B

2mB
+
∑

i

~p2
i

2me
(4.4)

Hpot =
ZAZBe

2

~rAB
+

N∑
i>j

N∑
j=1

e2

rij
−

N∑
i=1

e2 ·
(
ZA

rAi
+
ZB

rBi

)
(4.5)

(a) Model (b) Potential

Figure 4.1: Model and Potential of a diatomic molecule

Exact solution of above Schrödinger equation is not possible, hence one resorts to so
called Born-Oppenheimer approximation: Since mA,B � me, the motion of the nuclei can be
neglected, so for the time being one assumes them to be fixed (they have zero kinetic energy);
the the Schrödinger equation reads(∑

i

~p2
i

2me
+Hcoul.

)
Ψel(~r, ~ri) = EelΨel(~r, ~ri) (4.6)

where the superscript “el” stands for electrons; this equation now describes the motion of the
electrons in the electric field of two arbitrarily fixed nuclei. Eigenvalue Eel is the electron
energy, and the transitions of a molecule are now subdevided into

� electronic transitions; typical energies of a few eV (optical, UV)

� vibrational transtions; typical energies 0.01 · · · 0.1 eV (infrared)

� rotational transitions; typical energies 10−3 eV (radio)
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dissociation energy

Ediss. = E(∞)− E(re) (4.7)

diatomic molecules: “Morse potential”

E(r) = Ediss. · {1− exp[−a(r − re)]}2 (4.8)

Harmonic approximation:

E(r) = a2 · Ediss. · (r − re)2 (4.9)

(identical for small r − re)

4.1.1 Rotational spectra of diatomic molecules

effective radius of molecule ∼ 105 times that of an atom ⇒ moment of inertia ∼ 1010 times
that of an atom with the same mass; hence need to consider rotational energy of the form

H = Hrot =
1
2
Θe · ~ω2 =

1
2Θe

~J2 (4.10)

with ω the angular frequency, Θe the moment of inertia and ~J the spin or angular momentum.
Schrödinger equation

HrotΨrot(ϑ, ϕ) = ErotΨrot(ϑ, ϕ) =
1

2Θe

~J2 ·Ψrot(ϑ, ϕ) (4.11)

with eigenvalues (rotational energy)

Erot = E(J) =
~2

2Θe
· J(J + 1) (4.12)

where J is now the quatum number of angular momentum with integer values J = 0, 1, . . . .

Θe = mA · r2A +mB · r2B = m · r2e (4.13)

m =
mA ·mB

mA +mB
reduced mass (4.14)

It is common practice to convert energies to wave numbers

E(J)
hc

=
hν

hc
=
ν

c
= ν̃ (4.15)

which, according to 4.12 is

F (J) = Be · J(J + 1) (4.16)

where

Be =
~

4πc ·Θe
=

h

8π2 ·m · r2e
(4.17)
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is the rotational constant. This is correct only for absolutely rigid molecule; for slightly elastic
molecule,re will increase whith rotational energy because of centrifugal stretching. Since Θe is
in the denominator, increasing r implies decreasing Erot; we can account for the by regarding
equation 4.12 as the linear term of a Taylor expansion, the 2nd term of wich must be negative,
i.e.

E(J) =
~2

2Θe
· J(J + 1)− de · [J(J + 1)]2 ± · · · (4.18)

The stretching constant may then be written as De = de/hc so that now

F (J) = Be · J(J + 1)−De · [J(J + 1)]2 (4.19)

Typically, De/Be ≈ 10−4 · · · 10−3! The deviations from the rotational energies become rapidly
larger with increasing J , such that the obeserving frequency are lower than those calculated
for a rigid rotator.

4.1.2 Vibrational states of diatomic molecules

consinder non-rotating ascillator; bringing molecule out of equlibrium configuration → os-
cillations around equilibrium; mathematically: motion of point mass with reduced mass m
around point r − re = 0 within central potential V ; Schrödinger equation then[

p2

2m
+ V (r)

]
Ψvib(x) = Evib ·Ψvib(x) (4.20)

where

x = r − re

m = reduced mass

p = −i~ d

dx

For x� re we can resort to harmonic approximation

V (r) =
1
2
κx2 =

1
2
mω2x2 (4.21)

where

ω = 2πν =
√
κ

m

κ = elastic constant

resulting eigenvalues are

Evib = E(v) = ~ω
(
v +

1
2

)
(4.22)

with v = 0, 1, 2, . . . being the vibrational quantum number. Again, one can write these in
terms of wave numbers:

E(v)
hc

=
ν

c
·
(
v +

1
2

)
= ν̃

(
v +

1
2

)
= G(v) = ωe ·

(
v +

1
2

)
(4.23)

N.B.: ωe � Be for all molecules, [ωe] = cm−1
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4.1.3 Rotation-vibrational transitions

thermal equilibrium: whenever a vibrational level is excited, there will be exited rotational
levels, too; correct model then: vibrating rotator or rotating oscillator; because ωe � Be, the
vibrational frequency is always much larger than the rotational frequency, which means that
the molecule has vatying r, hence Θe during rotation; furthermore, centrifugal force changes
with r which means that both Be and De depend on v:

Be =
~

4πc · 〈Θe〉
= Be − α

(
v +

1
2

)
+ · · · (4.24)

De = De + β

(
v +

1
2

)
+ · · · (4.25)

the smaller the restoring force of the “spring”, the larger the expansion, owing to larger
centrifugal force.

Figure 4.2: Energy levels of rotation vibrational transi-
tions

electronic transitions yield band
spectra; for there exists for each
electronic transition a large num-
ber of vibrational transitions, and
for each vibrational transition there
are many rotational ones; this leads
to bands in optical spectra

Allowed dipole radiation for ro-
tational transitions only if molecule
possesses a permanent electric
dipole moment; homonuclear di-
atomic molecules such as H2, O2,
N2 do not possess such a perma-
nent dipole moment, hence they
will not produce such lines, nei-
ther in emission nor in absorption;
for diatomic molecules with differ-
ent atomic species the dipole ra-
diation is emitted in the plane of
rotation (classical picture); quan-
tum theory tells us that this radi-
ation is restricted to discrete fre-
quencies, corresponding to ∆J =
±1.

rotational quantum numbers J = 0, 1, 2, . . . ; ∆J = ±1
vibrational quantum numbers v = 0, 1, 2, . . . ; ∆v = 0, 1, 2, . . .
projection of angular momentum K = 0, 1, 2, . . . ; ∆K = 0
electronic transitions Λ = 0, 1, 2, . . . ; ∆Λ = 0
electronic spin transitions Σ = −S,−S + 1, . . . ,+S; ∆Σ = 0
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4.1.4 Symmetric and asymmetric top molecules

Rotation of rigid molecule with arbitrary shape can be considered as superposition of three
free rotations about three principle axes of an inertial ellipsoid;

all 3 axes different asymmetric top H2CO
2 axes equal symmetric top NH3

all 3 axes equal spherical top CH4

Proper Hamilton operator must be solved in Schrödinger equation and eigenvalues be de-
termined to compute the angular parts of the wave function; Hamilton operator for description
of rotational energy then reads

H = E =
1
2
(
Θ1ω

2
1 + Θ2ω

2
2 + Θ3ω

2
3

)
=

J2
1

2Θ1
+

J2
2

2Θ2
+

J2
3

2Θ3
(4.26)

In the case of the symmetric top the inertial ellipsoid is a rotational ellipsoid with

Θ1 = Θ2 = Θ⊥

Θ3 = Θ‖

Θ⊥ > Θ‖

Figure 4.3: Vector diagram of a symmetric top molecule

classical motion of such is il-
lustrated in figure 4.3; vector dia-
gramme; assume the body has been
set in motion such that ~J is oblique
to figure axis 3, this means that the
figure axis nutates about the fixed
direction of ~J ; at the same time, the
molecule rotates about the figure
axis with constant J3; then ~J2 and
J3 are quantized, i.e. they commu-
tate [

~J2, J3

]
= 0 (4.27)

The Hamilton operator takes the
form

H =
1

2Θ⊥

(
J2

1 + J2
2

)
+

1
2Θ‖

J2
3

(4.28)

with eigenvalues

E(J,K) =
~2

2Θ‖
· J(J + 1) +

~2

2

(
1

Θ‖
− 1

Θ⊥

)
·K2

(4.29)
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thus defining the two quantum
numbers

J = 0, 1, 2, . . .
K = 0, 1, 2, . . .

quantum number K defines γK = ^
(
~J, J3

)
, i.e.

cos γK =
〈J3〉
〈| ~J |〉

=
K√

J(J + 1)
(4.30)

which is half the opening angle of the nutation cone. Eigenvalues E(J,K) depend on |K|,
which means there is degeneracy (±K). In case there is a preferred axis (z-axis), e.g. in case
of external magnetic field, ~J precesses about z-axis and the angle γM = ^

(
~J, J3

)
can only

take discrete values (2J + 1):

cos γM =
〈J3〉
〈| ~J |〉

=
M√

J(J + 1)
(4.31)

where M = 0,±1,±2, . . . ,±J . Without an external magnetic field there is a 2 · (2J + 1)-fold
degeneracy (2J + 1-fold for K = 0).

� linear molecule: Θ‖ → 0, i.e. 1/2Θ‖ → ∞, which means that KA must vanish. In this
case, finite energies only feasible if generally K = 0.

E(J) =
~2

2Θ⊥
· J(J + 1) (4.32)

(see rigid rotator); each eigenvalue is (2J + 1)-fold degnerate

� spherical top: Θ‖ = Θ⊥, also yields

E(J) =
~2

2Θ⊥
· J(J + 1) (4.33)

but now with (2J + 1)2-fold degeneracy ((2J + 1)-fold each for K and M).

� asymmetric top: there is no more figure axis with constant spin, i.e. only ~J is quantized
which means that only J and M are quantum numbers; eigenvalues difficult to obtain,
which is why we assume small asymmetry Θ2 = Θ1 + ∆Θ, and then start out from
E(J,K) as given above and consider ∆Θ as small deformation for which we can use
perturbation theory; in this case, K is not a good quantum number anymore and ±K
degeneracy disappears; then the energy values fall close to each other in pairs, the levels
are split into pairs K3, K1 (also denoted Ka,Kc).
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4.1.5 H2, molecular hydrogen

by far the most abundant molecule in interstellar space; discovered in FUV (rocket, Carruthers
1970); owing to its perfect symmetry, it lacks an electric dipole moment; quadrupolar radiation
with ∆J = 2 (J = 2 → 0) is possible but of course very weak, and its energy corresponds to
509 K, which is not representative for the bulk of the ISM. De ≈ 11.5− 12 eV; dissociation:
no direct excitation out of electronic ground state; must be excited to Lyman or Werner
bands from which it can fall back into ground state (flourescence) or dissociate. Intensity of
transitions

Iul =
hν

4π
· x(u) ·NH2 ·Aul (4.34)

where Aul is the Einstein coefficient for spontaneous emission and x(u) is the fraction of
molecules in the upper level, NH2 column density. At LTE, x(u) is given by

x(J) =
(2J + 1) · gJ · e

− hν
kBTK

Q(TK)
(4.35)

where Q(TK) is the partition function

Q(TK) =
∑
J

(2J + 1) · gJ · exp
(
− hνJ

kBTK

)
(4.36)

statistical weight gJ = 1 for para (even J) nad. spins ↑↓ or gJ = 3 for ortho (odd J) nad.
spins ↑↑, e.g. S(0) line: v = 0 → 0, J = 2 → 0, λ = 28.2 µm, (A20 = 2.95 · 10−11) has been
observed with ISO in war regions of the ISM

We shall see later now one may use the CO line to infer the H2 column density from
its (the CO) intensity, using empirical relations. Another possibility is the so-called LVG
approximation (Large Velocity Gradient), which will be also tuched upon later.

4.1.6 CO (carbon monoxide)

second most abundant molecule in the ISM. Important: owing to its high abundance, it
experiences frequent collisions with H2 and can therefor be used as an indirect tracer of total
molecular gas. CO important: owing to its high abundance, it experiences frequent collisions
with H2 and can be used as indirect tracer of total molecular gas.

Molecule Transition Aul νul / GHz
12CO 1 → 0 7.4 · 10−8 111.271203
12CO 2 → 1 7.1 · 10−7 230.538001
13CO 1 → 0 6.5 · 10−8 110.201370
13CO 2 → 1 6.2 · 10−7 220.398714
C18O 1 → 0 6.5 · 10−8 109.782182
C18O 2 → 1 6.2 · 10−7 219.560319

ν(J+1 → J) = 2Be · c · (J+1) = 2 ·B · (J+1), B = Be · c, no K quantization (it is linear)

B(12CO) = 57.6356 GHz

B(13CO) = 55.1007 GHz because of slightly larger ΘE
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X(CO) ≈ 10−4 relative to H2; 13CO/12CO ≈ 1/60; CO is very stable; De = 11.09 eV,
dissociation only at 912 Å < λ < 1118 Å, discovered 1970 by Wilson et al.

4.1.7 NH3 (ammonia)

ammonia is the “interstellar thermometer”; has J and K quantization (symmetric rotator)
different spins of H atoms, ortho and para
ortho: all spins parallel, K = 3n
para: not all spins parallel, K = 3n+ 1 (n integer)

inversion: all levels except K = 0 are split; selection rules for electric dipole transitions
are ∆K = 0,∆J = 0,±1

� transitions between different K-numbers are forbidden

� lowest levels of each K (i.e. those with J = K) are metastable

� metastable states are entirely defined by collisions, population hence function of tem-
perature

ncrit. ≈ 107 cm−3, for inversion transitions ncrit. ≈ 103 · · · 104 cm−3; NH3 probes a large
range of densities

hyperfine transition: inversion transitions are further split F = J + I, J + I − 1, . . . , J − I

ν(J,K) inversion

ν(1, 1) = 23.694 GHz
ν(2, 2) = 23.722 GHz
ν(3, 3) = 23.870 GHz
ν(4, 4) = 24.139 GHz

discovered in 1968 by Cheung et al.

4.1.8 H2CO (formaldehyde)

prolate symmetric top, with dipole moment along a-axis (#3); quantum numbers are here
J,K3,K1; para: even K3; ortho: odd K3

energy-level diagramme: JKa,Kc (manifests complex physics)

radio regime: transitions with

∆J = 0 ν(111 → 110) = 4.830 GHz
∆Ka = 0 ν(212 → 211) = 14.488 GHz
∆Kc = 1 ν(313 → 212) = 28.975 GHz

∆J = 1: mm regime; Ka projection of total spin onto a-axis, Kc projection of total spin onto
c-axis; discovery by Snyder et al. in 1969 at λ = 6 cm (111 → 110)
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4.2 Relation between line intensity and column density

Spontaneous transition between upper (u) and lower (l) level given by Einstein coefficient
Aul

1:

Aul =
64π4

3hc3
· ν3 · |µul|2 = 1.165 · 10−11 ·

( ν

GHz

)3
·
∣∣∣∣( µul

Debye

)∣∣∣∣2 s−1 (4.37)

general relation for any transition. |µul|2 contains a term that depends on integral over
angular part of wave functions of final and initial states; radial part contained in the value
of µ; dipole transitions between two rotational levels of linear molecule can be absorption or
emission; with |µul|2 = |µJ |2 the dipole moment reads

|µJ |2 = µ2 · J + 1
2J + 1

J → J + 1 i.e. absorption (4.38)

|µJ |2 = µ2 · J + 1
2J + 3

J + 1 → J i.e. emission (4.39)

µ is the permanent electric dipole moment of the molecule. Inserting |µJ |2 for emission into
equation for Aul we obtain transition probability for dipole emission between to energy levels
of a linear molecule:

AJ+1,J = 1.165 · 10−11 ·
(

µ

Debye

)2

·
( ν

GHz

)3
· J + 1
2J + 3

s−1 (4.40)

LTE: energy levels populated according to Boltzmann distribution at temperature Tex:

κν =
c2

8π
· 1
ν4

ul

· gu

gl
· nl ·Aul ·

(
1− e

− hνul
kBTex

)
· φul(ν) (4.41)

general relation between line optical depth, column density of level l and excitation temper-
ature can be calculated now.

Now, as before in the case of Hi integrate over frequency (velocity) and along path (line
of sight):∫ s0

0

∫ +∞

−∞
κν dν ds =

c2

8π
· Aul

ν2
ul

·
(

1− e
− hνul

kBTex

)
·
∫ s0

0
nl ·

∫ +∞

−∞
φul(ν) dν ds (4.42)∫ +∞

−∞
φul(ν) dν = 1 by normalization (4.43)∫ s0

0
nl ds = Nl column density (4.44)∫ s0

0
κν ds = τν (4.45)

dν

dv
=
ν0

c
because

ν − ν0

ν0
=
v

c
(4.46)

Hence∫ +∞

−∞
τν =

c3

8π · ν3
ul

· gu

gl
·Nl ·Aul ·

(
1− e

− hνul
kBTex

)
(4.47)

11 Debye = 10−19 esu = 10−18 cm5/2 g1/2 s−1
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so that the column density is

Nl = 93.5· gl

gu
·
(
Aul

s−1

)−1

·
( νul

GHz

)3
· 1

1− exp
[
−0.048 ·

(
ν

GHz

)
·
(

Tex
K

)−1
] ·∫ +∞

−∞
τ

(
dv

km s−1

)
cm−2

(4.48)

In the low-frequency regime (dm, cm wavelengths) the Rayleigh-Jeans approximation holds:

Nl = 1948 · gl

gu
·
(
Aul

s−1

)−1

·
( νul

GHz

)2
·
(
Tex

K

)
·
∫ +∞

−∞
τ

(
dv

km s−1

)
cm−2 (4.49)

if emission is optically thin, i.e.

Tb = Tex ·
(
1− e

−τ ) ≈ τ · Tex (4.50)

and if the telescope beam is filled with the source, i.e.

Tmb ≈ Tb (4.51)

then the column density does no longer depend of the excitation temperature

Nl = 1948 · gl

gu
·
(
Aul

s−1

)−1

·
( νul

GHz

)2
·
(
Tb

K

)(
dv

km s−1

)
cm−2 (4.52)

excitation does not play a role in determining column densities for optically thin case.

4.2.1 Column density of CO under LTE conditions

CO of caridnal importance

� H2 most abundant molecule

� lacks electric dipole moment

� CO 2nd-most abundant molecule

� connected to H2 via collisions

⇒ diagnostic tool for distribution of general molecular gas
Have to make two measurements, one on the line, one away from it (frequency switching),

to get rid of continuum; at mm wavelengths, the strongest continuum is that from the CMB,
except for clouds located in front of strong extragalactic sources.

Iν = Iν,line ·
(
1− e

−τν
)

+ Iν,bg · e
−τnu line + CMB (4.53)

Iν = Iν,bg only CMB (4.54)

Difference of the two yields line intensity

∆Iν = Iν,line ·
(
1− e

−τν
)

+ Iν,rmbg ·
(
1− e

−τν
)

(4.55)

= (Iν,line − Iν,bg) ·
(
1− e

−τν
)

(4.56)

=

 2hν3/c2

exp
(
− hν

kBTex

)
− 1

− 2hν3/c2

exp
(
− hν

kBTCMB

)
− 1

 · (1− e
−τν

)
(4.57)
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Expressing ∆Iν by a Rayleigh-Jeans brightness temperature Tb(ν) and inserting numerical
values (ν10 = 115.271 GHz), we arive at a simple expression for the excitation temperature if
the line is optically thick (i.e. 1− e

−τν ≈ 1)

Tex = 5.53 ·
[
ln
(

1
Tb/5.53 + 0.151

)
+ 1
]

(4.58)

If the line is optically thin (e.g. rarer isotopomer 13CO), then optical depth can be determined
as

τ13CO = − ln

1− Tb

5.29
·

{[
exp

(
5.29
Tex

)
− 1
]−1

− 0.151

}−1
 (4.59)

with ν10 = 110.201 GHz in this case. Fraction of population in state J for CO (2J + 1
degeneracy):

n(J)
ntot

=
2J + 1
Q

· exp
(
−hB · J(J + 1)

kBTex

)
(4.60)

where

Q =
∞∑

J=0

(2J + 1) · exp
(
−hB · J(J + 1)

kBTex

)
(4.61)

is the partition function. Assuming LTE, one can now calculate total population, hence
column density, using one transition and corresponding N(J). If excitation temperature is
large compared to separation of energy levels, then the above sum can be approximated by
an integral, the value of which is

Q ≈ kBTex

hB
= 2 · kBTex

hν10
(4.62)

because for CO, ν(J + 1 → J) = 2 ·B · (J + 1), i.e. B = 1/2 · ν10. Applying the above to the
J = 0 level, i.e. J = 1 → 0, we can now obtain the column density of (optically thin) 13CO
using equation 4.48 on page 55. Tex can be be obtained by observing optically thick 12CO
and using equation 4.58, while τ13CO is given by equation 4.59, assuming Tex to be the same
for both isotopmers. We then obtain

Ntot(13CO) = 2.43 · 1014 ·
(
Tex

K

) ∫ +∞
−∞ τ13CO ·

(
dv

km s−1

)
1− exp

[
−5.29 ·

(
Tex
K

)−1
] (4.63)

4.2.2 Determination of H2 column densities/masses

H2 most abundant, but radiates in warm/hot regions only (vicinity of stars); not represen-
tative for general ISM; therefore, indirect traces are used: extinction, far-infrared emission,
X-ray absorption, γ-ray, emission, masses of molecular clouds; 2 examples here:
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1. γ-rays; cosmic rays collide with interstellar hydrogen, produce π0, which decay into 2
γ-rays; if distribution of cosmic rays is constant anlog the line-of-sight

Iγ = qγ (NHi + 2 ·NH2) qγ = parameter to be determined (4.64)

towards molecular gas or clouds, we measure

WCO =
∫

line
Tb dv (4.65)

Relating columnn density of H2 and this line integral, we define the NH2 to WCO con-
version factor:

XCO =
NH2

WCO
(4.66)

Oberserving regions without molecular gas one can determine qγ . Then, by observing
γ-ray emission towards molecular gas one can solve

Iγ = qγ · (NHi + 2 ·XCO ·WCO) (4.67)

for XCO. Bloemen et al. (1986) obtained 2.8 · 1020 cm−2 K−1 km−1 s, consistant with
findings from other methods.

2. cloud viral masses; The virial theorem

Ekin = −1
2
· Epot (4.68)

allows to infer total masses of molecular clouds, assuming them to consist of molecular
hydrogen in the first place (the correction must be made, too). This results in a mass
of

M = K ′
1 ·
σ2

v ·R
G

= K1 ·
(

∆v
km s−1

)2

·
(
R

pc

)
M� (4.69)

Observed line width (assuming gaussian velocity distribution):

∆v =
√

8 · ln 2 · σobs (4.70)

σ2
obs =

1
3
· σ2

v (4.71)

∆v2 =
8 · ln 2

3
· σ2

v (4.72)

K1 = 126 ·K ′
1 going from cgs to pc, km s−1 (4.73)

(4.74)

derivation of K ′
1:

Epot = −G ·
∫ M

0

M(r)
r

dM (4.75)

insert

ρ(r) = ρ0 ·
(
r

r0

)−n

(4.76)
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good angular and spectral resolution; determine LCO, σv, R and compute

XCO =
Mvir

mH · LCO · 1.4
(4.77)

This method is supported by the well-established relation between virial mass and CO
luminosity of galactic molecular clouds. Current, most frequently used value
XCO = 1.8 · 1020 cm−2 K−1 km−1 s.

4.2.3 Critical density

In general, radiative transitions cannot be neglected relative to collisions in populating energy
levels; assuming statistical equilibrium of levels populated by radiation and collisions, then
number of upward transitions must equal the downward ones:

nl · (Rlu + Clu) = nu · (Rul + Cul) (4.78)

where Rlu and Rul are probabilities for radiative excitations and de-excitations, respectively;
Clu and Cul the equivalent for all collisions, must be proportional to number densities; as-
suming LTE

nlClu = nuCul (4.79)

and

nu

nl
=
gu

gl
· e−

hν
kBTK (4.80)

i.e.

Clu = Cul ·
gu

gl
· e−

hν
kBTK (4.81)

this expression contains only atomic properties,remains valid in general case, provided LTE
holds; we now recall that the Einstein coefficient for absorption Blu is related to that of
spontaneous emission Aul via

Aul =
2hν3

c2
·Bul (4.82)

and that of stimulated emission Bul to Blu via

glBlu = guBul (4.83)

Probability for upward transition in radiation field with monochromatic energy density uν is

Rlu = Blu ·
cuν

4π
(4.84)

Isotropic radiation (ISM!) implies

cuν

4π
= Iν (4.85)
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this means

Rlu = Blu · Iν upward probability (4.86)
Rul = Aul +Bul · Iν downward probability (4.87)

Hence from equation 4.78 on page 58, we obtain

nu

nl
=
gu

gl
·
Aul · Iν · c2

2hν3 + Cul · exp
(
− hν

kBTK

)
Aul

(
1 + Iν · c2

2hν3

)
+ Cul

(4.88)

Using Rayleigh-Jeans approximation, i.e. Iν ≈ 2ν2kBTb
c2

and exp
(
− hν

kBT

)
≈ 1 − hν

kBT and
Clu
Cul

= gu

gl
· exp

(
− hν

kBTK

)
and defining

T0 =
hν

kB
· Cul

Aul
(4.89)

we can translate the above into

Tex =
T0 + Tb

T0 + TK
· TK (4.90)

� If collisions dominate, T0 is large and Tex ≈ TK (collisional equilibrium or LTE)

� If radiation dominates, T0 is small and Tex ≈ Tb (radiative equilibrium)

The collisional de-excitation probability is

Cul = n · 〈σul · v〉 (4.91)

where n is the number density of the particles responsible for the collisions, v is their velocity
and σ their cross section. There exists a critical density at which collisions and radiation are
equally important; above this threshold, LTE will hold; so the requirement is

nu ·Rul = nu · Cul (4.92)

i.e.

Cul = Rul = Aul +Bul · Iν = Aul

(
1 +

Bul

Aul
· Iν
)

(4.93)

so that

ncrit. =
Aul

〈σul · v〉
·
(

1 + Iν ·
c2

2hν3

)
(4.94)
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Eu ncrit.

Molecule Transition [K] [cm−3]

CO (1 → 0) 5.5 3 · 103

(2 → 1) 16.6 1 · 104

CS (1 → 0) 2.4 1 · 105

(2 → 1) 7.1 7 · 105

HCO+ (1 → 0) 4.3 1.5 · 105

(3 → 2) 25.7 3 · 106

HCN (1 → 0) 4.3 4 · 106

(3 → 2) 25.7 1 · 107

HNC (1 → 0) 4.3 4 · 106

(3 → 2) 26.1 1 · 107

4.3 Structure of molecular clouds

Once, a certain density of the gas is reached, it becomes unstable and self-gravitational (there
are always slight density fluctuations); criterion for instability can be derived as follows (Jeans
1902); consider spherical (∼ homogeneous) mass

M =
4
3
πρR3 (4.95)

Epot =
3
5
G
M2

R
(4.96)

Ekin =
3
2
NtotkBT =

3
2
M

µmu
kBT (4.97)

In viral equilibrium, then

2Ekin

−Epot
= 1 =

3kBT

µmu
M

(
3
5
GM2

R

)−1

(4.98)

Solving for R, we obtain the Jeans radius RJ ; a mass with R < RJ collapses:

RJ =
1
5
GM

µmu

kBT
(4.99)

Then, by the same token, a mass M > MJ will collapse:

MJ = 5.46 ·
(
kBT

µmuG

)3/2

· ρ−1/2 Jeans mass (4.100)

= 1.20 · 10−10 ·
(
T

T

)1.5

µ−1.5

(
ρ

g cm−3

)−0.5

M� (4.101)

= 20 ·
(
T

K

)1.5 ( n

cm−3

)−0.5
M� for µ = 2.7 (He and heavy elements) (4.102)

During contraction, clouds cool via cooling lines, i.e. spectral line emitted following col-
lisional excitation; efficient if sufficient amount of metals around; if these are locked in dust
grains, cooling through molecules becomes important.



4.3. STRUCTURE OF MOLECULAR CLOUDS 61

4.3.1 Non-LTE solution

So-called LVG approach: large velocity gradient; assumes that line broadening is governd by
large scale velocity gradient dv/dr in the observed clouds such that

dv

dr
·Rcl � ∆vth (4.103)

Then emitted photons at one location in the cloud can only interact with nearby molecules
which means that the photons can either leave the cloud unhindered or will be absorbed
there, hence the global radiation transport is reduced to local one; equation of local statistical
equilibrium can be written as

nu

nl
=

〈uν(~r)〉 ·Blu + Clu

Aul + 〈uν(~r)〉 ·Bul + Cul
(4.104)

〈uν(~r)〉 is the mean radiation field (in units of erg s−1 Hz−1 sr−1 cm−3) in the line at current
position ~r. In LVG approximation no assumption about level population, i.e. no LTE, hence
the radiation field enters and must be calculated; kinetic temperature and gas (H2) density
enter into calculations; calculations for, e.g., CO lines then need CO abundance as a parameter
[12CO/H2]

Radiation density and source function S(~r) of the medium linked by convolution

〈uν(~r)〉 =
∫
K(~r − ~r′) · S(~r′) d~r (4.105)

where the convolution kernel K(~r) “contains the physics” of the radiative transfer, i.e. the
radiation field throughout the medium and its propagation.

Source function given by

Sν =
εν
κν

=
2hν3

ul

c2
·
(
gu

gl

nl

nu
− 1
)−1

(4.106)

This is a complex problem since

〈uν(~r)〉 = f(Sν) (4.107)
Sν = f(nu, nl) (4.108)
nu = f(〈uν(~r)〉) (4.109)
nl = f(〈uν(~r)〉) (4.110)

The solution now makes use of LVG assumption. If clouds are assumed to

� be spherical

� be isothermal

� have constant density

then the convolution integral is reduced to (Rolfs & Wilson, Lequex)

〈uν(~r)〉 = [1− β(~r) · Sν(~r)] ·
4π
c

(4.111)
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where β(~r) is the escape probability of a photon at point ~r, i.e. probability that photon
emitted in transition ul at location ~r escapes from the cloud. Some lengthy algebra (Lequeux,
Rolfs & Wilson) yields

β =
1− e

−3τ0

3τ0
(4.112)

where τ0 is the optical depth of the transition at line frequency ν0. Note that lim
τ→0

β = 1 and

lim
τ→∞

β = 1
3τ . Optical depth given by

τ0 =
c3

8π · ν3
0

∣∣dv
dr

∣∣ · nl ·Aul ·
[
1− exp

(
− hν0

kBTex

)]
· gu

gl
(4.113)

Here, just recall that

κν =
c2

8π · ν2
0

· nl ·
gu

gl
·Aul ·

[
1− exp

(
− hν0

kBTex

)]
· φul(ν) (4.114)

and that

τν =
∫

κν dr (4.115)

since φul(ν) ≈ 1
∆ν , where ∆ν is the line width, we have

dv

c
=
dν

ν0
⇒ c

ν0
·
∣∣∣∣drdv

∣∣∣∣ = dv

dν
·
∣∣∣∣drdv

∣∣∣∣ = dr

dν
≈ φul(ν) dr (4.116)

Inserting τ0 into equation 4.111, and equation 4.111 into equation 4.104, we obtain, assuming
that Rayleigh-Jeans approximation holds:

Tb =
TK

1 + kBTK
hν0

· ln
[
1 + Aul

3Culτ0
· (1− exp(−3τ0))

] (4.117)

In practice, dv/dr and (e.g.) [12CO/H2] are fixed parameters, while nH2 and Tkin are
varied. Procedure then:

� measure several transition of (e.g.) Co and its isotopomeres

� calculate line ratios (better to use ratios, absolute values are influenced by “beam-
filling”)

� plot lines of constant line ratios in Tkin - nH2 plane

� carry out least-squares fit to find most likely point in Tkin - nH2 plane

4.4 Examples
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Figure 4.4: The Milky Way in the CO (1 → 0) line
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Figure 4.5: Distribution of H2 in the starburst galaxy M82, derived with different methods



Chapter 5

Hot Gas

5.1 Existence

Hot phase of ISM postulated by Spitzer (1956) in a model to explain the existence of neutral
clouds outside (i.e. above / below) the disk of the Milky Way; inferred from obseravtions of
CaII absorption lines against early-type stars; velocities of these clouds indicated that they
do not participate in galactive rotation, but are directed towards the disk.

It was clear at that time that there is little gas at such distances from the disk; anomalous
velocities of the clouds; must have been existent (stable) for some time; why don’t they
disperse? held together by pressure of a sourrounding hot gas

n1 · kB · T1 = n2 · kB · T2 (5.1)

More precisely: equate vertical grav. force and all pressure components

dP

dz
= ρ · gz (5.2)

where gz is the gravitational acceleration

dP

dz
=

d

dz
(Pth + Ph + Pm + PCR) = ρ · gz (5.3)

Simple hydrostatic model; T = 106 K at 10 kpc distance from the plane. Existence of this
hot gas meanwhile confirmed by numerous observations

� interstellar absorption lines of highly ionized elements

� X-ray emission: thermal/bremsstrahlung and emission lines

5.2 Heating the gas

What are the heating sources?

Stars hottest MS stars have T ≤ 6 · 104 K

65
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PNe up to 1.5 · 105 K, but small lumiosities; heating of solar corona; T ≈ 1 · · · 2 · 106 K,
probably via shock waves running through the gas and by magnetic reconnection

Shocks here: strong shocks, i.e. M � 1, where M is the Mach number which is calculated
by

M =
v

cs
(5.4)

Figure 5.1: Magnetic reconnec-
tion

where v is the shock speed and cs is the speed of sound
of the stationary gas, which can be calculated as follows

cs ≈

√
P0

ρ0
=

√
n · kB · Te

ρ0
(5.5)

For perfect gas (adiabatic index γ = 5/3) and strong shocks

ρ1

ρ0
=
γ + 1
γ − 1

= 4 (5.6)

P1

P0
=

2 · γ ·M2

γ + 1− γ−1
γ+1

(5.7)

T1

T0
=
γ − 1
γ + 1

· P1

P0
= 0.35 ·M2 (5.8)

It is evident that in case of strong shocks the pressure,
temperature and density are substantially uncreased by a
shock.

Magnetic reconnection: a complicated process in which
particles can be efficiently energized, the connection mag-
netic loops acting like giant flings. Reconnection occurs
within very short time interval; strong acceleration of par-
ticles.

Shock waves can be provided by stellar winds and su-
pernovae, e.g. SNII: ESNII ≈ 1051 erg. SN rate e.g. 1 every
100 years; LSNII = 3 · 1041 erg s−1. One third is released
as radiation and two thirds as mechanical energy.

5.3 Observing the hot gas

5.3.1 Absorption lines

Observing hot gas via absorption lines requires elements with sufficiently high ionization po-
tentials that electronic transitions are feasible in the relevant energy range. This implies
the UV (150. . . 10 nm) and (soft) X-ray (0.2. . . 2 keV) regime, which must be observed from
orbitiong observervatiories (e.g. IUE, ROSAT, FUSE, CHANDRA, XMM). Main absorption
lines Civ, Nv, Ovi; can be used for temperature estimates. For instance Ovi has maximum
relative abundance at log T = 5.5, with substantially lower probability to exist at tempera-
tures away from this. Similar arguments hold for Civ and Nv. Thus, absorption lines of these
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ions provide us with very sensitive diagnostics of the temperature of the hot gas (assuming
thermodynamic equilibrium).

Because of n1 · T1 = n2 · T2 (pressure balance), hot gas implies tenuous gas; often difficult
to carry our absorption measurements.

Ion λabs Ion. pot. a b c[
Å
]

[eV] [X/H] [K] frac.

C+3 1548.195 47.9 - 64.5 -3.44 1.0 · 105 0.35
1550.770

N+4 1238.821 77.5 - 97.9 -3.95 1.8 · 105 0.25
1242.804

O+5 1031.926 113.9 - 138.1 -3.07 2.9 · 105 0.25
1037.617

Table 5.1: Absorption lines for several ions. a: solar abundances; b: temperature of gas
in thermodynamical equilibrium at which ion has maximal relative abundance; c: maximal
relative abundance

Transitions are iso-electronic, froming doublets each. Intensity is proportional to emission
measure EM =

∫
n2

e ds.

5.3.2 X-ray emission and absorption

Here: thermal X-ray emission (from hot gas). We distinguish

Optically thin radiation from a plasma exhibits rich line spectrum according to all
elements contained in it; each photon emitted by an atom or ion escapes the plasma (no self
absorption); with increasing temperature, elements are more and more strongly ionized; H- or
He-type spectra result; this line radiation dominates below T ≈ 5 · 106 K. Sources are SNRs,
hot phase of ISM, galaxy halos, clusters.

terminology: transitions down to n = 1 are called the K-series (α, β,. . . ), n = 2 are the
L-series (α, β,. . . )

Thermal bremsstrahlung first seen in X-ray tube; results from decelerated electrons as
they get braked near a nucleus without going into a bound state; dominates line emission
from T ≥ 5 · 106 K, continuum spectrum similar to free-free radiation (see chapter 2), with
an exponential tail towards higher energies:

Iν = 4π
∫
εν · dl (5.9)

εν =
8 · Z2 · e6 · ne · ni

3 ·me · c3
·
√

2π
3kB · Te ·me

· e−
hν

kBTe · gff (Te, ν) (5.10)

gff =
3√
π
· ln
(

9kB · Te

4h · ν

)
(5.11)

flat spectrum for hν � kBTe, exponential decrease beyond that; source emits like optical thin
line radiation
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Recombination radiation free electrons are captured into bound states by ions; the emis-
sivity of this process is about an order of magnitude lower than in the other two; it is neglible
for T ≥ 3 · 107 K.

X-ray absorption in case of the presence of neutral hydrogen between the X-ray source
and the observer, H can be ionized by photons with hν > 13.6 eV. Thus X-ray photons will
be absorbed by neutral gas. The photo-absorption cross section of hydrogen is

σH = 7.9 · 10−18 · gν ·
(νion

ν

)3
gν = Gaunt factor (5.12)

where gν ≈ 0.9 for 900 > λ > 50 Åand gν ≈ 0.5 near λ ≈ 10 Å. Whith line of sight l ≈ 1 · · ·
a few kpc in the Milky Way, one would expect significant X-ray absorption. Such X-ray
shadows have actually been found. X-ray absorption is also seen in external galaxies and is
an important tool to determine the inclination of galaxies.

Figure 5.2: Scematic of a X-ray
shadow

X-ray shadows provide an important tool to mea-
sure the total hydrogen column, hence mass, in re-
gions that have a hot gas component in their back-
ground. Since molecular hydrogen (H2) is diffi-
cult to be measured directly, observations of Hi
plus X-ray absorption can provide information on
the H2 column density. If CO observations are
available for the same region, XCO can be com-
puted in a straigh-forward manner (see chapter
).

Observed data commonly fitted with so-called
Raymond-Smith spectrum, which for given temperature and metallicity accounts for all radi-
ation processes; while fitting the model spectrum, foreground absorption by neutral hydrogen
is also accounted for.

5.4 Cooling of the hot gas

Cooling of the hot gas occurs via line radiation and thermal bremsstrahlung. It is obvious
that the higher the element abundances, the more electrons are contained in it. Thus, the
interaction probabilities increase, an the (increased) number of photons gives rise to corre-
sponding cooling times. The intricate calculations are beyond the scope of this lecture and
we present but qualitative results here. Maximum cooling occurs at T ≈ 105 K. The cooling
time is

τcool =
u

Λ
(5.13)

where

u =
3
2
· n · kB · Te (5.14)

is the energy density and

Λ(T ) = 4π
∫ ∞

0
εν dν (5.15)
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the cooling function. The emission coefficient εν is given by Eqn. (5.11), and hence [Λ] =
erg cm−3 s−1. The above integral then yields1 a dependence Λ(Te) ∝ T

1/2
e . The shortest

cooling time is found below T = 105 K, depending on the metallicity of the plasma. Around
T = 105 K the metal dependence of τcool is strongest, while above T ≈ 107 K the cooling curves
merge. Above this value, line cooling becomes insignificant and cooling by bremsstrahlung
dominates. It is given by

τcool =
u

εeff
≈ 8.5 · 1010 ·

( ne

10−3 cm−3

)−1
·
(

Te

108 K

) 1
2

years (5.16)

The above values, typical for large clusters of galaxies, i.e. the intra-cluster medium, indicate
cooling times in excess of a Hubble time!

5.5 Fountains, outflows and winds

Large amounts of mechanical energy released by OB stars and deposited in ISM; stellar winds
and supernovae:

LSN = νSN · ESN ≈ 1.6. · 1038 ·
(

2 · 105 yr
∆τ

)
·
(

ESN

1051 erg

)
erg s−1 (5.17)

where νSN is the supernova rate (e.g. Milky Way νSN = 0.002 yr−1, M82 νSN = 0.5 yr−1) and
∆τ the duration of the starburst.

That such processes are at work is manifested by yhe numerous holes/bubbles seen in
the Hi disks of galaxies (' 150 in M31, M33; factor 3 less in dwarf galaxies). If total
mechanical energy is sufficiently high breakout of bubbles through the disk; outflow into the
halo (“chimney model”, Norman & Ikenchi, 1989). We expect hot gas rising into the halo,
condensing there and falling back onto the disk: HVCs!

Halo gas is heated to temperatures of 106 · · · 107 K, showing up as large X-ray plumes or
halos.

“Bottom-up” scenario of structure formation (CDM): first, low mass galaxies formed,
undergoing intense starbursts; strong galactic winds, injecting metals into the IGM. IGM has
Z ≈ 0.3 · · · 0.5 Z�; due to early dwarf galaxies? Heating of this gas (cosmological shocks,
cluster merging)? Cooling?

5.6 Hot gas in clusters of galaxies

Probably owing to intense starforming at early epochs, groups and clusters of galaxies contain
large amounts of hot gas. The cooling time of this, with ne ≈ 10−3 · · · 10−2 cm−3, Te ≈
107 · · · 108 K, is too large to cool the plasma significantly within a Hubble time. It can be
assumed that in a relaxed cluster the gas is in hydrostatic equilibrium. We can then use its
observed properties to derive the total mass of the cluster (dark and baryonic). This method,
complementary to gravitational lensing, is commonly used with the advent of modern X-ray
telescopes.

1One makes use of
R∞
0

xn+1 e
−ax

dx = Γ(n+1)

an+1 for a > 0, n > −1
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Speed of sound in cluster gas

cs ≈

√
P

ρ
=

√
nkBT

ρ
(5.18)

sound crossing time through cluster

τcross =
2Rcluster

cs
≈ 7 · 108 yr � τHubble (age of cluster) (5.19)

hydrostatic equilibrium justified, in the spherically symmetric cas, we then have

1
ρ

dP

dr
= −dφ

dr
= −GM(r)

r2
(5.20)

where M(r) is the total cluster mass whithin radius r. Equating (mp proton mass, µ = m/mp)

P =
ρkBT

µmp
(5.21)

we arrive at

M(r) = −kBTr
2

Gµmp
·
(
d ln ρ
dr

+
d lnT
dr

)
(5.22)

Hence, extracting the radial dependence of density and temperature from (X-ray) observa-
tions, we can measure the total (i.e. dark and baryonic) mass and its density as a function
of r.

If the gas were pure hydrogen, we would have µ = 0.5 (electron contributes to pressure
but not to mass). Since we have ' 25% of the (by mass) plus a little contribution of more
heavy elements, the mean molecular mass turns out to be µ = 0.63. Modern X-ray studies
come up with

MCluster = 5 · 1014 · 1015 M� (total mass) (5.23)

of which 60 · · · 85% is dark matter, 10 · · · 30% is hot gas and roughly 5% are stars.
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Ionized Gas

In vicinity of young, massive (O,B) stars, gas is ionized by intense UV radiation; these are
called Hii regions, in line with spectroscopic notation (neutral: i, one electron separated or
strongly ionized: ii, two electrons separated, or doubly ionized: iii and so on)

Hii regions are characterized by thermal free-free radiation and recombination lines. A
big step towards understanding Hii regions was made by Strömgren (1939), who proposed the
the size of Hii regions is determined by the number of ionizing photons from the stars and by
the gas density; assuming balance between ionizations and recombinations, he demonstrated
the dominant role of hydrogen in the physics of such nebulae.

6.1 Saha equation

This equation, worked out by Indian physicist Meghand Saha (1920), allows to calculate the
relative number of ionized and neutral atoms in a plasma, or of relative number of atoms
in different ionization stages; for this we now need two indices characterizing the number
density, viz. nm

i where i denotes the ionization stage (i → i = 0, ii → i = 1 and so on) and
m stands for the excitation stage (Em). Then

ni =
∑

m ni
m total number of atoms of certain element in i-th ionization stage per cm3

n =
∑

i n
i total number of atoms of certain element per cm3

population of energy levels follows Boltzmann formula:

ni
m

ni
1

=
gi
m

gi
1

· e−
Ei

m
kBT (6.1)

summing over all m one obtains ratio of number density of atoms with i-th ionization stage
and excitation energy m to total numern density of atoms with i-th ionization stage:

ni
m

ni
=

gi
m

Qi(T )
· e−

Ei
m

kBT (6.2)

where

Qi(T ) =
∑
m

gi
m · e−

Ei
m

kBT (6.3)
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is the partition function. Now the Saha equation describes equilibrium of reaction atom �
ion + electrons.

It can be considered as extension of Boltzmann equation to regime of continuous states of
positive energy above E∞ = 0. The energy of such state with respect to the ground state is

E = χ0 +
1
2
mev

2 (6.4)

where χ0 is the ionization energy of the neutral atom (13.6 eV for hydrogen); because

χi
m = E1 − Em excitation energy of i-th atom
χi = E1 − E∞ ionization energy of i-th inonization state
χ0 ionization energy of neutral atom
χ1 ionization energy of singly ionized atom

and so forth

quatum theory tells us that continuum of states above E = 0 is subdivided into volumes h3

of phase space; hence, number density of atoms with one seperated electron that finds itself
in phase space volume element x · · ·x+dx, y · · · y+dy, z · · · z+dz, Px · · ·Px +dPx, Py · · ·Py +
dPy, Pz · · ·Pz + dPz, taken per quantum cell (meaning division by h3) is

dn1
1

n0
1

= 2 · g
1
1

g0
1

· e−
1

kBT

[
χ0 + 1

2me
(P 2

x + P 2
y + P 2

z )
]
dx dy dz dPx dPy dPz

h3
(6.5)

The factor of 2 accounts for the spin degeneracy of e− which may take two orientations
in external field. We have restricted ourselves here to ions in the ground state (m = 1;
integration over momentum (−∞· · ·+∞) yields a factor (2πmekBT )2/3:∫ ∞

0
e
− P 2

2mekBT 4πP 2dP = (2πmekBT )2/3 (6.6)

integration over spatial coordinates has to be restricted to volume in which there is one
electron at a time (since there should be only one free e− per ion), hence this yields a factor
n−1

e (the number density of free electrons); then the Saha equation in its final form reads:

n1
1

n0
1

· ne = 2
g1
1

g0
1

· (2πmekBT )2/3

h3
· e−

χ0

kBT (6.7)

6.2 Recombination lines

Ionized atoms in Hii region recombine, leaving them in some excited state n = nu; when H
atom undergoes transition from upper level nu to lower one, nl, it radiates at frequency

νul = c ·R · Z2

(
1
n2

l

− 1
n2

u

)
(6.8)

where Z is the effective charge of the nucleus (or ion, here Z = 1), and R is the Rydberg
constant,

R = R∞ ·
(
1− me

M

)
(6.9)
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where M is the mass of the atom. nl and nu are the principal quantum numbers. For large
M , above equation can be simplyfied by approximation

νul ≈ 2 · c ·R · Z2nu − nl

n3
l

(6.10)

With R∞ = 109738.2cm−1 and nu = 110, nl = 109 this gives a frequency in the radio regime
νul = 5.08 GHz, and for nu = 3, nl = 2 a wavelength in the optical regime λul = 6563 Å,
which is the Hα line. Large values of n are only populated via recombination, hence the
name recombination lines, since decay with step ∆n = 1 has larger transition probability
than ∆n > 1, ∆n = 1 is referred to as “α” (Lyα, Hα, Pα, Brα, H109α, He137α, . . . )

6.3 Absorption coefficient of RRLs1

κL(ν) =
hν

4π
Bulnl

(
1− gl

gu
· nu

nl

)
· φ(ν) (6.11)

=
c2

8πν2
· gu

gl
·Aulnl

(
1− gl

gu
· nu

nl

)
· φ(ν) (6.12)

notation to discern ionization degree and excitation state:

n total number density of H atoms
n0

0 total number density of H atoms, neutral, ground state
n1

0 total number density of H atoms, ionized, ground state
n0

l total number density of H atoms, neutral, excited state El

n0 total number density of H atoms, neutral, all excited states

Consider ratio of neutral atoms with energy El relative to ground state, which is given by
the Boltzmann distribution, i.e.

n0
l

n0
0

=
gl

gu
· e−

El
kBT (6.13)

Referring to all neutral H atoms, this reads

n0
l

n0
=

gl

Q(T )
· e−

El
kBT (6.14)

where

Q(T ) =
∑

l

gl · e
− El

kBT (6.15)

is the partition function. Now calculate ratio of ionized to neutral H atoms (all excitation
states). The Saha equation then reads

n1

n0
· ne = 2

g1
g0
· (2πmekBT )2/3

h3
· e ( − χ1

kBTe
(6.16)

1Radio Recombination Lines
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Here, χ1 is the ionization energy of the atom, Te is the “electron temperature”, describing the
thermal energy of electrons. Designating n1 = ni number density of ions, g1 = 1, gl = 2ℵ2

l ,
where ℵl is the quantum number of the lower state, and nserting equation 6.14 into the Saha
equation 6.16 we obtain

n0
l = ℵ2

l ·
h3

(2πmekBT )2/3
· nine · e

−El−χ1

kBTe (6.17)

Now rewrite term in brackets of κL(ν) using Rayleigh-Jeans approximation

1− gl

gu

nu

nl
= 1− e

− hν
kBTe ≈ hν

kBTe
(6.18)

in the radio regime (e.g. 5 GHz, Te = 104 K ⇒ hν
kBTe

≈ 2.4 · 10−5)

κL(ν) =
c2h

8πν
· 1
kBTe

· gu

gl
·Aul · n0

l · φ(ν) (6.19)

and with oscillator strength flu

Aul =
gl

gu
· 8π2e2

mec3
· ν2flu (6.20)

we obtain

κL(ν) =
πe2

mec
· hν

kBTe
· n0

l · φ(ν) · flu (6.21)

What about φ(ν)? Assume Doppler broadening and gaussian line shape, i.e. φ(ν) is a one-
dimensional Maxwell distribution

φ(v) =
1√

2π · σ
· e−

v2

2σ2 (6.22)

kinetic gas theory:

m

2
〈~v2〉 =

3
2
kBT (6.23)

m

2
〈v2

x〉 =
1
2
kBT 〈v2

x〉 = σ(observed) (6.24)

σ2 =
kBT

m
(6.25)

radio astronomy: FWHM. Write FWHM = ∆v

φ

(
∆v
2

)
=

1√
2πσ

· e−
(∆v/2)2

2σ2 =
1
2
· 1√

2πσ
(6.26)

Solve for ∆v and find

∆v = 2
√

2 ln 2 · σ = 2.355 · σ (6.27)
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i.e. ∆v2 = 8 ln 2 · kBT
m and T = m

8 ln 2kb
·∆v2. Conversion to frequency: Doppler formula

ν = ν0 ·

√
1− v

c

1 + v
c

≈ ν0 ·
(
1− v

c

)
approximation in radio astronomy (6.28)

v = c · ν0 − ν

ν0
(6.29)

dν = −ν0

c
dv and dv = − c

ν0
dν (6.30)

Since

φ(ν)dν = −φ(v)dv (6.31)

we have

φ(ν) = φ(v) · c
ν0

(6.32)

so that

φ(ν) =
1
ν0
·

√
mc2

2πkBT
e
− mc2

2kBT

(
ν0−ν

ν0

)2

(6.33)

FWHM ∆ν:

∆ν = ∆v · ν0

c
=
(

8 ln 2 · kBT

mc2

)1/2

· ν0 (6.34)

and hence finally

φ(ν) =
1

∆ν
·
√

4 ln 2
π

· e−4 ln 2 ·
(

ν0−ν
∆ν

)2
(6.35)

Now, inserting Saha equation for n0
l 6.17 into expression for κL(ν), we obtain

κL(ν) =
πe2h4

mec
· ν0

kBTe

ℵ2
l

(2πmekBT )2/3
· nine · e

−El−χ1

kBTe · flu · φ(ν) (6.36)

l : ℵ, u : ℵ+ ∆ℵ. For large quantum numbers ℵ, i.e. ∆ℵ � ℵ, oscillator strength (with g the
Gaunt factor, quantum-mechanically correct)

fmn =
26

3π
√

3
· 1
2m2

·
(

1
m2

− 1
n2

)−3

· 1
n3
· 1
m3

· g ∝ n

∆n3
(6.37)

can be written as

fℵ,ℵ+∆ℵ = ℵ ·M(ℵ) (6.38)

∆ℵ M(∆ℵ)

1 0.1910
2 0.0263
3 0.0081
4 0.0034
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Since El ≈ Ei, the exponential term becomes unity. Furthermore, we use

ν0 = 6.576 · 1015 ∆ℵ
ℵ3

Hz , ν = ν0 ⇒ φ(ν0) =
1

∆ν

√
4 ln 2
π

(6.39)

κL(ν) =
πe2h4

meckB
· ℵ3 ·M(∆ℵ)
(2πmekBT )2/3

· T−5/2
e · nine ·

1
∆ν

√
4 ln 2
π

· 6.576 · 1015 · ∆ℵ
ℵ3

(6.40)

= 3.26 · 10−12 ·M(∆ℵ)
(
Te

K

)−5/2 ( nine

cm−6

)(∆ν
Hz

)−1

·∆ℵ (6.41)

Hii regions are electrically neutral which means that ni = ne and ni · ne = n2
e. Consider

∆ℵ (α lines)

κL(ν) = 6.22 · 10−16
( ne

cm−6

)2
(
Te

K

)−5/2( ∆ν
kHz

)−1

(6.42)

optical depth

τL =
∫ s0

0
κL(ν) ds = 1.92 · 103

(
Te

K

)−5/2( ∆ν
kHz

)−1

· EM (6.43)

where

EM =
∫ s0

0
n2

e ds =
∫ s0

0

( ne

cm−6

)2
(
ds

pc

)
cm−6 pc (6.44)

is the emission measure. This quantitiy and the electron temperature te was also an ingredient
to the optical depth of the thermal free-free radiation. For small optical depths, τL � 1, we
have TL = τL · Te. Hence

TL = 1.92 · 103

(
Te

K

)−3/2( ∆ν
kHz

)−1( EM

cm−6 pc

)
K (6.45)

For the free-free continuum radiation we found

τC = 8.235 · 10−2 ·
(
Te

K

)−1.35 ( ν

GHz

)−2.1
(

EM

cm−6 pc

)
(6.46)

and

TC = 8.235 · 10−2 ·
(
Te

K

)−0.35 ( ν

GHz

)−2.1
(

EM

cm−6 pc

)
K (6.47)

Dividing the two observed brightness temperatures, viz. TL and TC , and assuming them
to be produced by the same ionized region, we obtain

TL

TC
·
(

∆ν
kHz

)
= 2.33 · 104

(
Te

K

)−1.15 ( ν

GHz

)2.1
· 1
1 + nHe+/nH+

(6.48)

where the last factor accounts for the presence of ionized helium; in general, nHe+/nH+ ≈ 0.1.
Converting the line width from frequency to velocity, we finally arrive at

TL

TC
·
(

∆v
km s−1

)
= 6.978 · 103

(
Te

K

)−1.15 ( ν

GHz

)1.1
· 1
1 + nHe+/nH+

(6.49)



6.4. NON-LTE CONDITIONS 77

Figure 6.1: Recombination lines

This equation is of cardinal importance, as it
reflects the most straightforward and reliable way
to measure the electron temperature in an astro-
physical plasma or Hii region: if we measure both
TL and TC we can solve for the electron temper-
ature Te! This has assumed small optical depth.
The effect of optical depth is easily seen by the
following consideration. Assume that both, line
and continuum are emitted by the same region
with electron temperature Te. At line center, we
then have

TL+C = Te ·
[
1− e

−(τL + τ)
]

(6.50)

away from the line we measure

TC = Te ·
(
1− e

−τC
)

(6.51)

hence for the line alone

TL = TL+C − TC = Te · e
−τC ·

(
1− e

−τL
)

(6.52)

If τC � 1, no recombination lines are seen; the are only visible if τC is small; but this is
nothing but turning the emitting region into a black body as τC is increasing; a black body
does not emit any spectral lines!

6.4 Non-LTE conditions

Diameter of H atoms strongly dependent on principle quantum number n

an =
~2

Z2me2
· n2 (6.53)

Collisions have large effect for such atoms. Hence, the assumption of LTE, which implies
collision-dominated level population, (may) deviate(s) from LTE with decreasing n; we de-
fine a departure coefficient bn, relating true population level nn to population under LTE
conditions, n∗n:

nn = bn · n∗n (6.54)

We have bn < 1 since A coefficient for lower state is larger (An ∝ n−5), atom is smaller which
means that collisions are less effective. Hence, bn → 1 for LTE and

nu

nl
=
bu
bl
· gu

gl
e
− Eul

kBTe (6.55)

The absorption coefficient then reads

κL(ν) =
c2

8πν2
ul

· gu

gl
· nl ·Aul ·

(
1− bu

bl
e
− hνul

kBTe

)
· φul(ν) (6.56)

= κ∗
L(ν) · be · βlu (6.57)
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where

βlu =
1− bu

bl
e
− hνul

kBTe

1− e
− hνul

kBTe

(6.58)

and κ∗
L(ν) is the absorption coefficient derived under LTE conditions. Since hν � kBTe, this

simplifies to

βlu =
[
1− bu

bl

(
1− hνul

kBTe

)]
kBTe

hνul
(6.59)

=
bu
bl
·
[
1− kBTe

hνul
· bu − bl

bu

]
(6.60)

6.5 Strömgren sphere

Massive and hot UV-emitting stars embedded in Hi cloud ionize the sourrounding medium;
assuming balance between ionization and recombination rates, one can calculate the size of
the resulting Hii region. This must depend on the total number of emitted Lyman continuum
photons; a star emits

ṄLyC,Ω =
∫ ∞

ν0

B′(T, ν)
hν

dν photons s−1cm−2sr−1 (6.61)

LyC photons per s and cm2 into solid angle of 1 steradians, where ν0 = 3.29 · 1015 Hz (912
Å, 13.6 eV) and

B′(T, ν) = κ(ν) ·B(T ) (6.62)

κ(ν) corrections function describing the deviation of the stellar spectrum from a black body.
Then the total number of LyC photons emitted by star is

ṄLyC = 4πR2
? · ṄLyC,Ω (6.63)

where R? is the star’s radius. We now assume that the size of the Hii region is determined by
the fact that all emitted LyC photons ionize the hydrogen (they are all absorbed), and that
this ionization is balanced by a corresponding recombination with rate coefficient α(T )

4πR2
? · ṄLyC,Ω =

4
3
πR3

Hii · nenp · α(T ) (6.64)

where RHii is the radius of the Hii region, the Strömgren radius, and α(104 K) = 3.76 ·
10−13 cm3 s−1; hence ne · np · α(T ) = Ṅrec is the number of recombinations per second and
cubic centimeter. Since ne = np, we find

U :=

[
3 ·R2

? · ṄLyC,Ω

α(T )

]1/3

= RHii · n2/3
e (6.65)

where U is the so-called excitation parameter (pc cm−3). E.g. Orion nebula: from free-free

absorption ⇒ EM ⇒ ne (assuming ne = n2
e

1/2
); observed angular diameter + distance ⇒

RHii ⇒ U ⇒ ṄLyC ⇒ number of OB stars.
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Sp T Teff / K log ṄLyC / s−1 U / pc cm−2

O4 52000 50.01 148
O5 50200 49.76 122
O6 48000 49.37 90
...

B0 32200 47.62 24
B1 22600 45.18 3.5
...

G2 5800 44.26 ∼ 0

30 Dor in LMC: 470 pc cm−2, M42 Orion Nebula: 150 pc cm−2

N? =
UHii

U?
(6.66)
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Chapter 7

Chemistry of the ISM

7.1 Gas-phase chemistry

physical conditions → profound implications for possible chemical reactions
low temperatures: exothermal reactions (but with potential barrier “activation barrier”)
higher temperatures: endothermal reactions(e.g. in shocks or photo dissociation regions)
instellar abundances (by number): ∼ 90% hydrogen; ∼ 10% helium; ∼ 0.1% carbon,

oxygen, nitrogen; < 0.01% silicon, iron, calcium,. . . ; ∼ 10−10 dust (silicates, graphites)
140 molecules known in interstellar space to date
Basic processes

� formation processes

– radiative association: X + Y → XY + hν

– grain surface formation X + Yg → XYg → XY

� destruction processes

– photodissociation XY + hν → X + Y

– dissociative recombination XY + + e− → X + Y

� rearrangement processes

– ion-molecule reaction X+ + Y Z → XY + + Z

– charge-transfer reaction X+ + Y Z → X + Y Z+

– neutral-neutral reaction X + Y Z → XY + Z

ion-molecule reactions often lack activation barrier; favored in neutral medium; form
molecules with increasing complexity

� neutral molecules formed by dissociative recombination with free e−

� UV photons dissociate molecules into smaller fragments or photoionize them

� collisional dissociation

81
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7.1.1 Ion-molecule reactions

Reactions of type

A+ +B
K→ C+ +D (7.1)

where K is the reaction rate; its definition is such that

K · nA+ · nB = ṅr (7.2)

is the number of reactions per cm3 and per second, hence [K] = cm3s−1! Ion approaching a
neutral molecule induces electric dipole, which is turn exerts attractive force on the ion ⇒ can
be captured by the molecule. Ion-molecule reactions possible at low temperature, provided
they are exothermal and have no activation barrier. If molecule lacks permanent dipole (e.g.
H2), then long range potential is given by

V (R) = −αq
2

2R4
(7.3)

where α is the polarizability, i.e.

〈~P 〉 = α~E (7.4)

and 〈~P 〉 is the average of the induced dipole moment over all possible orientations of the
molecule. q is the charge of the ion, R the separation between the ion and the molecule.
Assuming that each encounter yields a reaction, one can calculate the reaction rate, called
Langevin rate in this case

KL = 2π
(
αq2

mr

)1/2

(7.5)

where

mr =
mA ·mB

mA +mB
(7.6)

is the reduced mass of the collision partners. Langevin rate is independent of temperature.
If one of the partners is H2, with a polarizability of α = 4.5 · a0 and a0 = 0.528 Å the
Bohr radius, then KL ≈ 2 · 10−9cm3 s−1. This is about two orders of magnitue faster than
neutral-neutral reactions (even disregarding energy barriers generally involved in the latter);
small amount of ionization very effective to drive interstellar chemistry; chemistry primarely
happens in photo-dominated regions (UV radiation leads to ionization).

In the absence of measurements (lab), it is recommended to use Langervin rates for high
temperatures (several 10 K). At low temperatures, rates become sensitive to details of poten-
tial surfaces between neutrals and ions which leads to a temperature dependence.; important
to measure reaction rates to obtain results useful for low-T interstellar chemistry.

If neutral target molecule has permanent dipole moment, long-distance potential reads

V (R, θ) = −αq
2

2R4
− qMD · cos θ

R2
(7.7)

whereMD is the modulus of the permanent dipole moment and θ = ^( ~MD, ion-mol. direction).
Quantum mechanical calculation necessary at low T , because partition function of rotational
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reaction K

H2 + H2 → H+
3 + H 2.1 · 10−9

H+
3 + O → OH+ + H2 8.0 · 10−10

H+
3 + CO → HCO+ + H2 1.7 · 10−9

H+
3 + H2O → H3O+ + H2 1.1 · 10−9

OH+ + H2 → H2O+ + H 6.1 · 10−10

H2O+ + H2 → H3O+ + H 7.7 · 10−10

C+ + OH → CO+ + H 2.7 · 10−9

C+ + H2O → HCO+ + H 2.0 · 10−9

He+ + CO → C+ + O + He 1.6 · 10−9

He+ + O2 → O+ + O + He 1.0 · 10−9

He+ + H2O → OH+ + H + He 3.7 · 10−10

He+ + H2O → H2O+ + He 7.0 · 10−11

He+ + OH → O+ + H + He 1.1 · 10−9

Table 7.1: ion-molecule reactions

levels is affected by the interaction. Theory predicts increase of reaction at low T . Useful
approximation of rate:

K(T ) = K1 ·
[
1− exp

(
−K0

K1

)]
(7.8)

where

K0 = KL ·
(

1 +
M2

D

3αB0

)1/2

(7.9)

K1 ≈ KL + 0.4 · q ·MD ·
(

8π
mr · kBT

)1/2

(7.10)

and B0 is the rotational constant.

7.1.2 Neutral-neutral reaction

Neutral-neutral reactions of atoms or molecules can play role at low T , but they are funda-
mental at higher T , such as reached in shocks, PDRs or strong turbulence; bond breaking
associated with rearrangement of molecules produces activation barrier; reaction rates take
the form:

Kf = Kb e
− Ea

kBT (7.11)

where Ea is the reaction barrier and Kf and Kb are the forward and backward reaction rates,
respectively. In neutral-neutral reactions, attractive force is due to can der Waals forces,

V (r) = −α1α2

R6
· I (7.12)
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where α1 and α2 are the polarizabilities of species involved and I is the harmonic mean

〈a〉n =
n

1
a1

+ 1
a2

+ · · ·+ 1
an

(7.13)

of the ionization potentials. Rate coefficient then (ignoring for the moment activation barrier):

Kf = 13.5 · π ·
(
α1α2

µ
I

) 1
3

· 〈v
1
3 〉 ≈ 4 · 10−11 cm3 s−1 (7.14)

where µ is the reduced mass, and typical values have been assumed (α = 10−24cm3, µ =
3 · 10−24g, I = 13.6 eV, T = 100 K. If reaction barrier is involved, reaction rate has to be

multiplied by the Boltzmann factor e
− Ea

kBT . Even a modest barrier of 1000 K then makes
reaction prohibitive at T = 100 K for diffuse clouds, let alone at 10 K for dense clouds.

examples: free radicals (molecules in which valence bonds are not saturated and whioch
possess one or several single, unpaired electrons):

reaction α β

C + OH → CO + H 1.1 · 10−10 0.5
C + O2 → CO + O 3.3 · 10−11 0.5
O + CH → CO + H 4.0 · 10−11 0.5
O + CH → HCO+ + e− 2.0 · 10−11 0.44

O + CH2 → CO + H2 2.0 · 10−11 0.5

where K = α ·
(

T
300 K

)β
Table 7.2: examples for neutral-neutral reactions

7.1.3 Photo-dissociation

FUV photons permeating diffuse ISM are dominant destruction agent for small molecules.
Typical bonding energies of molecules are 5 eV to 10 eV, which corresponds to a wavelength
λ . 3000 Å. Reaction rate

Kpd =
∫ νH

νpd

4πIISRF(ν)σpd(ν) dν (7.15)

where integration runs from photo dissociation frequency νpd to the hydrogen photo-ionization
frequency νH; IISRF(ν) is the mean photon intensity of the interstellar radiation field and σpd

is the photo dissociation cross section. For homogeneous slabs

Kpd = a · e−b ·AV (7.16)

where a is the unshielded rate and AV is the visual extinction due to dust.
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Table 7.3: some important photo reactions
a b

CH2 → CH + H 5.0 · 10−11 1.7
CH → C + H 2.7 · 10−10 1.3
O2 → O + O 3.3 · 10−10 1.4
OH → O + H 7.6 · 10−10 2.0

H2O → OH + H 5.1 · 10−10 1.8

7.1.4 Dissociative recombination

Involves capture of e− by an ion to from a neutral in excited electronic state that can disso-
ciate. Rate coefficients are typicallay 10−7 cm3 s−1. For large molecules such as PAHs, the
electronic excitation energy of the neutral will quickly transfer to the vibrational manifold;
radiation at IR wavelenghts.

α β

OH+ + e− → O + H 3.8 · 10−8 -0.5
CO+ + e− → C + O 2.0 · 10−7 -0.5

H2O+ + e− → O + H + H 2.0 · 10−7 -0.5
H2O+ + e− → OH + H 6.3 · 10−8 -0.5
HCO+ + e− → CO + H 1.1 · 10−7 -1.0

CH+ + e− → C + H 1.5 · 10−7 -0.4

where K = α ·
(

T
300 K

)β
Table 7.4: examples for dissociative recombinations

7.1.5 Grain-surface chemistry

Interstellar grains provide surface on which accreted species can meet and react and to which
they can transfer excess energy; grain surface chemistry is therefore governed by the accretion
rate.

accretion, diffusion, reaction, ejection

Kac = nH · σd · vH · S(T, Td) = 10−17 ·
(

T

10 K

) 1
2

· nH s−1 (7.17)

where T is the gas temperature and nH the gas density; depletion onto dust grains; τdepl. =
4 ·109 ·n−1 years; which means 4 ·105 years in dense cores which is very rapid on astronomical
time scales.

chemistry on dust grains extremely important, e.g. H2: can only form on grains in order
to transfer excess energy to grains; also possible:
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H + e− → H− + hν
H + H− → H2 + e−

H+ + H → H+
2 + hν

H+
2 + H → H2 + H+

but extremely low possibiliy
evidence for other molecules to form on dust grains: e.g. CO2 detected in inner regions

of molecular clouds; ice mantles covering dust grains.
H atom striking dust grain has probability to stick on it (physiosorpition); S depends on

temperature T of the gas, temperature Td of the dust, binding energy D for adsorption and
upon nature of the grain; average time for H atom sticking on grain with geometrical cross
section

σd = πa2 (7.18)

is

ts =
1

S · nH · 〈vH〉 · σd
(7.19)

where

〈vH〉 =
√

8kBT

πmH
(7.20)

is the mean velocity of the H atoms; adsorbed atom can evaporate within characteristic time
scale

tevap. = ν−1
0 · e

D
kBT (7.21)

where ν0 = 1013 Hz is characteristic vibration frequency of latticq and Td grain temperature;
then “hopping” follows, which is a quantum mechanical process, depending only weakly on
temperature; in favourable temperature range we may assume that each H atom on grain will
form H2 with proper partner

K = 0.5 · nH · 〈nd(a) · πa2〉〈vH〉 · S cm3 s−1 (7.22)

where nd is the number density of dust grains of size a. Integrating over grain-size distribution,
and assuming gas-to-dust ratio similar to that in solar neighbourhood, we obtain

K = 8 · 1017 · S · nH (nH + 2nH2) ·
(

T

100 K

) 1
2

cm3 s−1 (7.23)

other molecules forming on dust grains:
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H + C → CH
H + N → NH
H + O → OH

H + CH → CH2 · · · CH3 · · · CH4

H + NH → NH2 · · · NH3

H + CO → HCO
H + OH → H2O

O + C → CO
O + CO → CO2

OH + OH → H2O + H
HCO + OH → CO + H2O

HCO + HCO → H2 + 2 CO

7.2 Photodissociation regions

abbreviations PDRs (also: photo-dominated regions); regions in which (F)UV field strong
enough to photodissociate molecules;

UV radiation field, definition e.g. Habing (1968)

G0 = 1.3 · 10−4 erg s−1 cm−2 sterad−1 (7.24)

912 Å≤ λ ≤2066 Å, 13.6 eV−E = 6 eV. χ = 1 ⇒ G0 i.e. χ is the ratio of the local radiation
field to G0.

� encompasses most of the ISM, except for inner parts of molecular clouds (too dense)
and Hii regions, wich are treated seperatly

� interface between Hii regions and molecular clouds, where both, density and UV field
are large / strong

� characterized by strong [Cii]λ158 µm and [Oi]λ63 µm lines, strong rotation and vibra-
tion lines of H2, and by strong aromatic band emission in mid-IR

depth into PDR from Hii regions often quantified by visual extinction

AV /E(B − V ) = 3.1

NH/E(B − V ) = 5.8 · 1021cm−2 mag−1

AV = 1 ≡ NH = 1.87 · 1021 cm−2

schematically, stratified structure

� first, H ionized to H+ in Hii region, recombines to atomic H and finally forms H2 at
τUV = 0.6, i.e. AV = 0.2 for density of ∼ 103 cm−3 and radiation field χ = 100

� C++ in Hii region recombines to C+ in outer parts of PDR

� at AV ≈ 1, C+ recombines to C
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� slightly deeper into molecular cloud, CO is formed

� O is present everywhere, outside of Hii region atomic; its abundance decreases slightliy
towards molecular core where CO is formed

� lines of H2, Cii, Oi and CO are very intense in PDRs, since both n and T are high;
these lines are coolants.

cooling important: T decreases from ∼ 104 K in Hii region to few 10s of K at AV ≈ 1.
Dust grains also absorb UV radiation and re-emit in IR continuum and aromatic bands.

� most of energy emitted by young stars in SF regions is converted into these forms;
emission from PDRs dominates line and thermal dust continuum emission from galaxies

� large fraction of [Cii] line emission can also stem from diffuse ISM

7.2.1 Chemistry in PDRs

different from cold (diffuse) ISM and molecular clouds because of high T ; many endothermic
reactions and reactions with activations barriers can occur, as well as reactions with H2 in
excited states, e.g.

O + H∗
2 → OH + H

C+ + H∗
2 → CH+ + H

in which the formation of OH and CH is enhanced as compared to molecular clouds.

7.2.2 Heating

� photo-electric heating by dust grains; H2 formation on dust grains; UV radiation; dust;
ionization in there; free e− don’t have enough energy to ionize or excite other atoms /
molecules / dust particles; interact with free e− and heat up the gas

� chemical heating: electrons released by dissociative recombination of several ions (H+
3 ,

HCO+,. . . ) and by several exothermic reactions with He+, H+
2 , H+

3

� collisional de-excitation of excited levels of H2 after absorption of FUV photons

7.2.3 Cooling

dominated by fine-structure lines and rotational transitions of CO and collisional excitation
of H2; T can be high

� Transitions [Oi]λ 63 µm and 146 µm, [Cii]λ 158 µm, [Oi]λ 6300 Å, [Sii]λ 6730 Å,
[Fei]λ 1.26 µm and 1.64 µm dominate cooling at T > 4000 K

� high-J CO cooling significant in outer layers (large optical depth)

� at high densities, cooling by collisions of atoms and molecules with dust grains

� H2 quadrupole emission
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most recent and most complete modelling of PDRs by Kaufman et al. (1999), considering
plane-parallel sheaths of constant density, in the range n = 100 · · · 107 cm−3, irriated by UV
radiation field of χ = 10−0.5 · · · 106.5

[Cii] line at λ = 158 µm important diagnostic tool (new telescopes); intesity approximately
given by

I(C ii) ∝ N(C+) ·
exp

[
−92 ·

(
T
K

)−1
]

1 + ncr
n

(7.25)

where ncr ≈ 3000cm−3 is the critical density for collisions with neutrals for this line and
N(C+) is the column density of ionized carbon. ncr is similar for CO(1-0), [Ci], [Cii]

Of course, in both cases the intensities per unit volume are proportional to density of
emitting particles, hence the cooling rate

Λ ∝ n2for n < ncr

Λ ∝ nfor n > ncr

heating rate per unit volume increases faster than n so that temperature is higher at higher
densities.

7.2.4 Observations

SOFIA 2.5 meter telescope onboard Boeing 747-SP 41000 ft (12.5 km) altitude; wavelength
range 1 µm · · · 600 µm; operation end 2008 ?

Herschel 3.5 meter telescope, spacecraft; wavelength range 60 µm · · · 600 µm; L2 Lagrange
point of sun-earth system; launch end 2008, 3 years operation
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Figure 7.1: Structure of PDRs



Chapter 8

Star formation

8.1 Cloud structure

For perfect gas

Ekin =
3
2
NkBT =

3
2
· MkBT

µmH
(8.1)

where M is the total mass of the cloud and µ ≈ 2.7 is the molecular mass (accounting for H2,
He and heavy elements). A spherical and homogenous cloud has potential energy

Epot = −3
5
GM2

R
(8.2)

Note: Cloud in equilibrium cannot be isothermal at the same time (and homogeneous), so
that our consideration can only be approximate; however, it will lead to a qualitatively useful
result, with correct order of magnitude. Application of virial theorem, i.e.

Ekin = −1
2
· Epot (8.3)

means

3
2
MkBT

µmH
=

3
10
GM2

R
(8.4)

or

R =

√
15
4π

(
kBT

Gn

) 1
2 1
µmH

= 3.57 ·
(
T

K

) 1
2 ( n

cm−3

)− 1
2 pc (8.5)

wich yields

RJ = 0.08
(

T

10 K

) 1
2 ( n

104 cm−3

)− 1
2 pc (8.6)

This is called the Jeans length: a cloud with R < RJ becomes unstable against gravitation
and will start collapsing. Likewise, we can compute the Jeans mass MJ above which a cloud
becomes “Jeans unstable”:

M =
5
2

√
15
4π

(
kBT

G

) 3
2

· 1
µ2m2

Hn
= 4.46 ·

(
T

K

) 3
2 ( n

cm−3

)− 1
2 M� (8.7)
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which yields

MJ = 2.0
(

T

10 K

) 3
2 ( n

104 cm−3

)− 1
2 M� (8.8)

unstable if M > MJ

Another route towards the concept of Jeans instability is by starting out from the hydro-
dynamic equation describing a uniform, infinitly extended fluid (Jeans, 1902). Let us consider
such an isothermal, infinite, magnetized medium lacking any macroscopic motions:

∂ρ

∂t
+ ~∇ρ · ~v = 0 continuity equation (8.9)

ρ ·
[
∂~v

∂t
+
(
~v · ~∇

)
~v

]
= −~∇P − ρ ~∇φ equation of motion (8.10)

~∇2φ = 4πG · ρ Poisson equation (8.11)

where φ is the gravitational potential. Considering perturbations such that (index “1” for
perturbed, “0” for equilibrium)

v = v1 (8.12)
ρ = ρ0 + ρ1 (8.13)
φ = φ0 + φ1 (8.14)

and assuming a constant speed of sound cs, such that

P

ρ
= c2s =

kBT

µmH
(8.15)

we obtain, afer linearizing the three above equations,

∂v1
∂t

= −~∇φ1 −
c2s
ρ0
· ~∇ρ1 (8.16)

∂ρ1

∂t
= −ρ0 ·

(
~∇ · ~v1

)
(8.17)

~∇2φ1 = 4πGρ1 (8.18)

Taking the divergence of 8.16 to eliminate ~∇~v1 and ~∇2φ1 with 8.17 and 8.18, we find

∂2ρ1

∂t2
= ρ0

~∇2φ1 + c2s ~∇2ρ1 = 4πGρ0 · ρ1 − c2s · ~∇2ρ1 (8.19)

The ansatz of a periodic perturbation

ρ1 = A · e i(kx+ ωt) (8.20)

yields a dispersion relation between the angular frequency ω and the wave number k = 2π/λ:

ω2 = k2c2s − 4πGρ0 (8.21)
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unstable modes have ω2 < 0, i.e. ω imaginary

k < kJ =
(

4πGρ0

c2s

) 1
2

(8.22)

defining the Jeans length

λJ =
2π
kJ

(8.23)

The Jeans mass is included in a cube of side λJ

MJ = ρ ·
(

2π
kJ

)3

(8.24)

Apart from small numerical differences, this result is identical to the more simple approach
taken before.

8.2 Density distribution of spherical cloud in equilibrium

Self-gravitating, isothermal cloud in hydrostatic equilibrium cannot have uniform density as
force on each particle is a function of radius R; for perfect gas, ρ(R) given by

P = ρ
kBT

µmH
equation of state (8.25)

−dP
dR

=
4πGρ
R2

∫ R

0
ρy2 dy equation of hydrostatic equilibrium (8.26)

Differntiating with respect to R we get

1
R2

· d

dR

(
R2

ρ

dP

dR

)
= −4πGρ (8.27)

or, inserting P from equation of state

− 1
R2

d

dR

(
R2

ρ

dρ

dr

)
= −4πGµmH

kBT
· ρ (8.28)

This can be solved by introducing

ρ = λ · e ξ , R = β
1
2λ−

1
2 · ξ λ being an arbitrary constant (8.29)

β =
kBT

4πGµmH
(8.30)

Boundary conditions in the centre are

ρ = ρc (8.31)
dρ

dR
= 0 (8.32)
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choosing λ = ρc

ρ = 0 (8.33)
dρ

dξ
= 0 (8.34)

Problem now entirely determined once T, µ and ρc are chosen. Solution e.g. in Chan-
drasekhars “Introduction to the study of stellar structures”.

Density is found to be approximately

ρ(R) ≈ R−2 (8.35)

except for central regions. Without external pressure, isothermal sphere at equilibrium is
expected to extend out to infinity; with external pressure, radius is finite; in reality, interstellar
clouds are not isothermal because of heating and cooling processes; more realistic clouds must
account for this (e.g. Chiege & Pineau des Forêets (1987))

8.3 Cloud collapse

Dynamical time scale for free fall: how long would it take for a spherical cloud to collapse
assuming that the inner pressure is removed all of a sudden. Start out from gravitational
acceleration at distance r

d2r

dt2
= −GM

r2
(8.36)

integration yields

1
2

(
dr

dt

)2

=
GM

r
+ C1 (8.37)

with integration constant C1. Requiring that velocity at objects initial surface, i.e. r = r0
vanishes, we obtain

dr

dt
= −

[
2GM

(
1
r
− 1
r0

)] 1
2

(8.38)

Here we have chosen the negative root because the cloud is collapsing. Substituating

θ =
r

r0
(8.39)

we have

dθ

dt
= −

[
2
GM

r30

(
1
θ
− 1
)] 1

2

(8.40)

with the substitution

θ = (cos ξ)2 (8.41)
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this becomes

ξ

2
+

1
4

sin 2ξ =
t

2
·
(

2GM
r30

) 1
2

+ C2 (8.42)

The integration constant C2 vanishes if we require r = r0 for t = 0, and ξ = 0, respectively.
The dynamical time scale is now obtained when the sphere reaches zero radius, i.e. θ = 0,
ξ = π/2. Then

tff =
π

2

(
2GM
r30

)− 1
2

=
(
π2r30
8GM

) 1
2

=
(

3π
32Gρ0

) 1
2

(8.43)

This does not depend on radius anymore! Inserting µ = 2.7, we finally arrive at

tff = 3.1 · 107
( n0

cm−3

)− 1
2 yr (8.44)
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