Universität Bonn Summer Term 2009

Physics of the ISM

U. Klein, J. Kerp

Exercises VII

Inclass Problems

1 Masses of molecular cloud

The mass of a spherical molecular cloud assumed in virial equilibrium is given by

$$M_{vir} = k_1' \cdot \frac{\sigma_v^2 R}{G} = k_1 \cdot \left(\frac{\Delta v}{\text{kms}^{-1}}\right)^2 \left(\frac{R}{\text{pc}}\right) , \qquad (1)$$

where

$$k_1' = \frac{5 - 2n}{3 - n} \,, \tag{2}$$

accounts for a radial density distribution

$$\rho(r) \propto r^{-n} \;, \quad n < 3 \tag{3}$$

(a) Derive the above expression (??), noting that the observed line width Δv differs from the (one-dimensional) velocity dispersion σ_{obs} by

$$\Delta v = \sqrt{8 \cdot \ln 2} \cdot \sigma_{obs} \,\,\,\,(4)$$

and that the full (three-dimensional) velocity dispersion is obviously related to the onedimensional one by

$$\sigma_{obs}^2 = \frac{1}{3} \cdot \sigma_v^2 \ . \tag{5}$$

(b) The CO luminosity in the radio-astronomical jargon is

$$L_{CO} = D^2 \cdot \int_{cloud} \int_{-\infty}^{+\infty} T_b \, dv \, d\Omega \quad \text{K km s}^{-1} \, \text{pc}^2, \tag{6}$$

Show that the ratio X_{CO} of the H_2 column density to the observed velocity-integrated CO intensity

$$W_{CO} = \int_{cloud} T_b \ dv \quad \text{K km s}^{-1} \tag{7}$$

is equivalent to the ratio of virial mass to CO luminosity (as defined above) of a cloud, i.e.

$$X_{CO} = \frac{N_{\rm H_2}}{W_{CO}} = \frac{M_{vir}}{L_{CO}} \text{ cm}^{-2} (\text{K km s}^{-1})^{-1}$$
 (8)

if the cloud is virialised and if the brightness temperature is constant across the cloud.

Homework

2 Line frequencies

The $^{12}\mathrm{C}^{16}\mathrm{O}$ molecule has a rotational constant $B_e = 57.6360$ GHz and a stretching constant of $D_e = 0.185$ MHz. The energy levels with rotational quantum number J are given by

$$E(J) = h \cdot \{B_e J(J+1) - D_e [J(J+1)]^2\} , \qquad (9)$$

Calculate the energies in K for the rotational quantum numbers J=1,2,3,4, and the frequencies (in GHz) for the transitions $J=1\rightarrow 0, J=2\rightarrow 1, J=3\rightarrow 1$, and $J=4\rightarrow 3$. These values are precisely known and given in the table below. Compare your results with these "literature values". Are there differences and, if so, think about a reason.

\overline{J}	E(J)	$\nu(J o J - 1)$
	[K]	[GHz]
1	5.532	115.271203
2	16.706	230.538001
3	33.191	345.796000
4	55.317	461.040768