Secular change of the cyclotron line energy in Hercules X-1

Rüdiger Staubert
Institut für Astronomie und Astrophysik, Univ. Tübingen

in collaboration with D. Klochkov, K. Postnov, J. Wilms, N. Shakura, R. Rothschild, F. Fürst, F. Harrison
Outline

• Introduction to Her X-1
• Cyclotron line
• Variability of the cyclotron line energy E_{cyc}
• Secular decay of E_{cyc}: a new phenomenon
• Speculations / Questions
• Summary

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Statements about Her X-1

- Best studied XRBPs (luminous, relat. near, persistent)
- Together with Cen X-3 first detected XRBPs (Uhuru 1972)
- First XRBPs with cyclotron line (CRSF) (Trümper et al. 1976)
- First XRBPs with \(E_{cyc} \) prop. \(L_x \) (Staubert et al. 2007)
- First XRBPs with \(E_{cyc} \) showing secular decay (Staubert et al. 2014)
Accreting binary X-ray pulsar with Roche-lobe overflow

source: J. Trümper
Discovery of the first Cyclotron Line

Balloon-HEXE observation
Texas, 3 May 1976
(Trümper et al. 1977, 1978)

First direct measurement of the field strength of a NS:

\[B \approx 3 \times 10^{12} \text{ Gauss} \]

Today we know ~25 objects with cyclotron lines

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014

Cyclotron Resonant Scattering Feature (CRSF)

\[E_{\text{cyc}} = \frac{n \hbar e/m_e c}{11.6 \text{ keV}} B \]

\[= n \frac{11.6 \text{[keV]}}{B \text{[Gauß]}/10^{12}} \]

\[B_{12} = \frac{(1+z) E_{\text{obs}}}{11.6 \text{ keV}} \]

\[z \] gravitational redshift

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Cyclotron Resonant Scattering Feature (CRSF)

Accretion Mound

Continuum photons trying to escape from the hot mound are resonantly scattered by electrons at the cyclotron energy and are therefore missing in the observed spectrum.

absorption line

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Variability of E_{cyc}

The cyclotron line Energy E_{cyc} varies with:

- pulse phase (not discussed here)
- 35d phase (not discussed here)
- luminosity
- time (secular variation)

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Long-term evolution of E_{cyc}

is the apparent decay of E_{cyc} with time real?

Staubert et al. 2007
A&A 465, L25
Positive correlation of E_{cyc} with L_x

E_{cyc} [keV] = $40 + 0.66 \times (\text{max. ASM cts/s} - 6.8)$

E_{cyc} increases by ~7% for a factor of 2 increase in L_x

R. Staubert 10th INTEGRAL Workshop, Annapolis, Sept 2014
Her X-1: normalized cyclotron line energy vs. time

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Negative correlation of E_{cyc} with L_x

E_{cyc} drops by $\sim7\%$ for a factor of 2 increase in L_x

R. Staubert
6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Two accretion regimes

\[L_X > L_{\text{crit}} \quad \text{height increases for increasing } L_X \]

\[L_X < L_{\text{crit}} \quad \text{height decreases for increasing } L_X \]

\[L_{\text{crit}} \sim 10^{37} \text{ erg/s} \]

Observations:
Klochkov et al. 2011, A&A 532, 126

Theory:
Basic idea for E_{cyc} versus L_x

- **negative correlation for $L_x > L_{\text{crit}}$**
 - deceleration by radiation \Rightarrow height of line-forming region increases with incr. M_{dot}

- **positive correlation for $L_x < L_{\text{crit}}$**
 - deceler. by Coulomb drag \Rightarrow height of line-forming region decreases with incr. M_{dot}
Long-term evolution of E_{cyc}

Her X-1

The apparent decay did continue

Fig. 4
in Staubert et al. 2014
A&A in press
arXiv: 1410.3647

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Positive correlation of E_{cyc} with L_x. update 2014

Fig. 1
in Staubert et al. 2014
A&A in press
arXiv: 1410.3647

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Her X-1: normalized cyclotron line energy vs. time secular variation

Fig. 5 in Staubert et al. 2014 A&A in press arXiv: 1410.3647

mean(<2007) = 40.1 +/- 0.1 keV

difference: >17 sigma

mean(>2007) = 37.6 +/- 0.1 keV

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Her X-1: cyclotron line energy vs. flux and time

fit with two variables

best fit with two variables (Flux and Time): $E_{\text{cyc}} = E_0 + a \cdot (F - F_0) + b \cdot (T - T_0)$

$E_0 = (39.25 \pm 0.07) \text{ keV}$

$a = (0.44 \pm 0.09) \text{ keV/(ASM-cts/s)}$

$b = (-7.22 \pm 0.39) \times 10^{-4} \text{ keV/d}$

$F_0 = 6.8 \text{ ASM-cts/s}$

$T_0 = \text{MJD 53500}$

$b = -5 \text{ keV in 20 yrs}$

Fig. 6 in Staubert et al. 2014
A&A in press
arXiv: 1410.3647

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Physics of the E_{cyc} change with time ??

Ideas (comments /questions):

- Change of the global dipole field of the NS? unlikely
 more likely a local phenomenon:
 - Accretion mound structure changes due to continuous accretion?
 - increase of the height of the accretion mound? dipol: -5 keV means +400 m !?
 model: +few m in height ---> large changes in B_{max}
 - hot spot area is increased, B-field is diluted? (-13% in 20 yrs)
 - B-field is "screened" or "buried"? total mass needed? time scale?

- "Ohmic dissipation" of B-field? on "diffusion" time scale: $t = 4 \pi R^2 \sigma c^2$, needs small R and small sig!
- Thermo-magnetic effects or Hall effect? heating due to accretion?
- ?????

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Basic questions about accretion onto NSs

Assume continuous accretion (e.g. 10^{17} g/sec):
- what happens to the accreted material? does it accumulate?
- is the material "incorporated" into the crust?
- is the accretion mound static - in "equilibrium"?
- can the accretion mound grow or shrink (height/total mass)?
- can the B-field configuration change? (e.g. "ballooning")
- does material "leak out" to the sides at the base of the accretion mound?
- how much total mass can be "stored" in the mound?
 (until the B-field "breaks")
- can the B-field be "screened" or "buried"?
- what is the dynamical evolution of the mound?

Why does Ecyc increase with Lx?
Why does Ecyc decrease with time?

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Long-term behavior of E_{cyc} ??

Her X-1

does E_{cyc} possibly follow a cyclic behavior on long time scales?

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Summary

1) confirmed:
 Positive correlation of E_{cyc} with L_x (co-existing with decay)
2) new:
 Decay of E_{cyc} with time (on time scale of tens of years)
3) future:
 Cyclic behavior of E_{cyc} with time ??

Challenge for theorists:
 Understand physics of B-field change

Challenge for observes:
 Continue to monitor Her X-1
 Find more objects with E_{cyc} time variation

R. Staubert 6th Bonn Workshop on Formation and Evolution of NS, 27 Oct 2014
Thank you for your attention