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What happens to these BHs !

Compact remnants (NS/BH) can receive birth / “natal”
velocity kick due to asymmetry in supernova ejecta
which carries net momentum.

Amount of kick for BH uncertain (in theory &
observation).

Can be observationally inferred from “back-tracing”
orbital motion of Galactic BH X-ray binaries
[e.g.,Willems et al., 2005, ApJ, 625, 324, Repetto et

al.] --- indicate very low to high natal kicks.

Computations of core-collapse supernova also support
a wide range of natal kicks (Janka et al.).

“Electron Capture” mechanism necessarily produces
remnants with small kick velocities.



What happens to these BHs !

® |f retained in significant number (>10%), the BHs never attain
complete equipartition.

® Continual / runaway sinking towards cluster center.

® “Mass stratification” or “Spitzer” instability (otherwise
dynamical friction)— see Lyman Spitzer’s book

® The Spitzer mass-stratification stability criterion:

X < Xmaz = 0.16

M, S mj; = mass of background component
Y= — | — mo = mass of segregated component
My Mx = total mass of componet X

® Highly dense, dynamically isolated sub-cluster purely of BHs
forms in cluster center.
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BH-core phenomena

® BH-BH inspiral via GW emission.
dynamical formation of tight BH-BH binary, inspiral within
or outside cluster

® Heating and expansion of cluster core: delay of

core collapse.
due to K.E. energy deposition of ejected BHs in core

® Formation of BH X-ray binaries.
due to dynamical encounters of BHs with normal stars

® Formation of “dark star clusters”.

due to rapid removal of stars by galactic tidal field close to
galactic center



Dynamical formation of BH-BH binaries

3-body binary formation in dense BH-core:

in close encounter among 3 BHs, two of them get bound while
third escape with the excess K.E.




BH-BH binaries from primordial binaries

Multiple exchange:
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Encounter/collisional hardening

Dynamically formed BH-BH binaries are “hard”:
total binding energy greater than mean stellar K.E.
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Consequence of “negative specific heat” of a
single binary
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binary hardens” ---
encounter/collisional

hardening

(hardening => increase of
binding energy, i.e., shrinking
of semi-major-axis)

Both intruder star &
binary get recoiled
with larger total K.E.

N.B. : soft binary softens,
hence easily dissociated



Encounter/collisional hardening

Statistical effect over many encounters: theoretically predicted &

verified through numerical experiments. [Heggie, D.C, 1975,
MNRAS, 173, 729]

Encounters with hard binaries “super-elastic™:

hard binaries supply K.E. to encountering stellar environment as
they shrink --- energy source.

“Binary burning”: has profound consequences on cluster’s
dynamical evolution; halt’s core collapse.

. : 2 .
Hardening rate @ ~ a” (roughly), rate decreases as binary

shrinks: too close binaries (P < 10° days typically for globular
clusters) behave essentially as single stars.



Rate of collisional hardening for distant ( d >> a)
encounters :

3
eoll =~ —2.36 X 10~ 7 ( <m> ) (B) 2 R Gyr—l

119 (V)

Shull (1979), Heggie & Hut (2003), Banerjee & Ghosh (2006)

Much stronger hardening is possible through close (d ~ a)
encounters!
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The average increase of binding energy per close/strong
encounters, for similar masses, is ~ 40 %, as inferred 7
from numerical scattering experiments.
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€max ~ \/1 — (5/3) COS? 7:0 (610 — O)

E.g.,
a1 — 1 AU,CLQ = 100 AU,62 =0

mo — 1M1 — Mo — 1OM@
= P, ~ 0.4 Myr

(longer than dynamical encounter time in

a dense cluster)

Kozai oscillation formulae
(see Ford et al. 2000, ApJ, 535, 385)
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(see Ford et al. 2000, ApJ, 535, 385)
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Kozai osc. of BH triple / inner BH binary

High inner eccentricity => gravitational-wave radiation

Recall Peters’ formula of orbit-shrinkage via GW

da 64G3 _
% — — 5(}5 mlmg(ml —+ mg)a

de 304G* _ _5
<%> =——r= mima(mi + ma)a *e(1 — e?) 2

Inner orbit in a BH-BH-BH becomes relativistic via
Kozai mechanism
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quicker
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GR precession partially “detunes”
Kozai cycle and delays onset of GW
in-spiral for inner binary

In-spiral still happens as seen in
numerical studies

Simulation with 1PN, 2PN,2.5PN  +
g Peters Formula ----------
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Runaway mass-segregation of BHs

4

Formation of BH core or “dark core”

4

Dynamical binary formation (3-body mechanism)

v

Energy generation via “binary burning”

triples (Kozai

[BH-BH in-spiral in J < [BH-BH in-spiral (ejected)]
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BH-BH mergers in computed clusters (Banerjee et al. 2010, MNRAS, 402, 371)

Model name N Nsim Th (O) or Rs (pC) NBH(O) Nmrg tmrg (Myr) Nese 7zAdLIGO

Isolated clusters

C5K12 5000 10 1.0 12 0 — —

C10K20 10000 10 1.0 20 0 — —

C25K50 25000 10 1.0 50 0 — — 311 — —
C50KS80 45000 1 1.0 80 1 698.3 310 28(£14)
C50K80.1 45000 1 0.5 80 2 217.1, 236.6 321 35(£15)
C50K40.1 45000 1 0.5 40 0 — — 111 7(&£7)
C50K200 50000 1 1.0 200 2 100.8, 467.8 000 14(£10)
C65K110 65000 1 1.0 110 1 314.6 421 35(£15)
C65K110.1 65000 1 0.5 110 0 — — 431 28(£14)
C65K55.1 65000 1 0.5 55 1 160.5 100 14(#£10)
C100KS80 100000 1 1.0 80 2 219.4, 603.2 521 42(+£15)
C100K200 100000 1 1.0 200 0 — — 544 28(£14)

Reflective boundary

R3K180 3000 1 0.4 180 1 1723.9 531 35(£15)
R4K180A 4000 1 0.4 180 1 3008.8 221  21(£12)
R4K180B 4000 1 0.4 180 2 100.2, 1966.5 210 28(%14)
R3K100 3000 1 0.4 100 2 3052.8,3645.9 110 18(+£10)
R4K100A 4000 1 0.4 100 2 104.4, 814.2 331 28(£14)
R4K100B 4000 1 0.4 100 1 1135.3 333 28(£14)
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Most mergers happen within
first few Gyr.



BH-cluster depletion
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Depletion timescale (~ | Gyr) of BH sub-cluster nearly
independent of cluster mass & BH retention fraction



Which clusters are best candidates?

Inferences from N-body computations:

(a) Concentrated star clusters with N > 5.0 x 10* and
significant BH-retention produce dynamical BH-BH binaries
that merge within Hubble time.

(b) Most mergers occur within first few Gyr cluster evolu-
tion (for both in-cluster & escaped BH-binaries).

=> chances of detecting BH-BH GW source would increase
with redshift (thanks to Matt Benacquista for pointing this
out!)

Also, mergers would preferentially happen among the most
massive stellar-mass BHs (i.e., with highest “chirp mass” for
stellar BHs; see Rodriguez et al. 2015)



BH-BH merger detection rate

® Total detection rate of BH-BH mergers from IMCs

4
7?/GVV — gﬂDgpclRmrg

® Considering isolated clusters with full BH retention and power-law IMC
mass function with i im—spiral/starburst galaxies),

Radrico ~ 31(d

® Dynamical BH-BH binaries may constitute dominant contribution to stellar mass
BH-BH merger events in the Universe.

See Banerjee, S., Baumgardt, H. & Kroupa, P, 2010, MNRAS, 402, 371 for
more.



BH-BH merger detection rate

® Total detection rate of BH-BH mergers from IMCs

4
Row = = 7"'ZDS,Ocﬂzmrg

(d4Theoretical estimates of dynamically-induced BH-BH }))-
in-spiral detection rate by LIGO2 ranges from a few -
100 per year.

()
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BH-BH merger events in the Universe.

See Banerjee, S., Baumgardt, H. & Kroupa, P, 2010, MNRAS, 402, 371 for
more.



Effect on cluster’s structure &
evolution




Heating of cluster core

® Close & super-elastic BH-binary---single-BH encounters in BH core
eject BH-binaries & single BHs from core to cluster halo if not escaped

from cluster.

® BHs return towards cluster core due to “Dynamical friction™: retardation
of a massive object moving through a dense background made up of
significantly lower mass particles. Dynamical friction continually shrinks

C.M. orbits of single/binary-BHs.

® |oss of orbital energy of BHs deposited in stellar background. Energy
deposition most efficient in cluster core due to highest stellar density.

® Results in significant core expansion, delays core collapse.



\ Returning BHs sink due to dynamical

K friction which, in turn, deposit energy
. into the stellar background



Heating of cluster core
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Heating of cluster core: effect of metallicity
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Lower Z yields more massive BHs,
hence core expansion stronger.

Also, lower Z tends to produce
more BH-BH mergers:

low Z computation: 3 mergers
within Hubble time, high Z
computation: | merger.
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Cluster core expansion in
similar N-body calculations
by Mackey et al., 2008,
MNRAS, 386, 65 consistent
with observed age-core

radius relation of LMC/SMC
clusters!

Evidence of high BH
retention following

supernovae collapse (low
BH natal kick)?
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Can BH X-ray binaries form in star clusters!?

BH-normal star interaction
essential for X-ray binary
formation.

BH-cluster dynamically isolated
(Spitzer unstable), BHs mostly
interact among themselves.

When nearly depleted, Spitzer
instability ceases (see Spitzer’s
book): BHs encounter
frequently with stars.

A few BHs can easily retain and
interact with stellar members

Multiple BH X-ray binary formation in principle possible at later

stage of dynamical evolution.
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Can BH X-ray binaries form in star clusters!?
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Multiple BH X-ray binary formation in principle possible at later

stage of dynamical evolution.
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Can BH X-ray binaries form in star clusters!?

BH-normal star interaction
essential for X-ray binary
formation.

BH-cluster dynamically isolated
(Spitzer unstable), BHs mostly
interact among themselves.

When nearly depleted, Spitzer
instability ceases (see Spitzer’s
book): BHs encounter
frequently with stars.

A few BHs can easily retain and
interact with stellar members

Multiple BH X-ray binary formation in principle possible at later

stage of dynamical evolution.
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