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Astrophysical
Black Holes




Black holes

Relativist’s definition: a closed ‘null hypersurface’ or an ‘event horizon’
--- a surface through which mass can only move radially inwards.

Necessarily spherically symmetric or axisymmetric --- ‘no-hair
theorem’.

Mathematically well-studied.

But has anyone detected an event horizon & proven any of its
properties! (is it possible?) [Mission “Event Horizon” underway]

All black holes we talk about in astrophysics are only candidates!
--- 2 combination of predicted theoretical properties and observed
data.



Celestial black holes: wide mass-range

o Stellar mass black holes (BH) Mpn < 100Mg
--- end products of massive stars.

® |ntermediate mass black holes (IMBH) (?)
~ 10°My— ~ 10* M — existence still unclear!

formed via runaway merger of stars in clusters, gas accretion
by seed stellar BHs, direct collapse of massive ‘first stars’.

® Supermassive black holes (SMBH) Mgy > 10°M,
galaxies’ central engines, e.g., active galactic nuclei, radio
galaxies: possible formation by matter infall at galaxy center,
galaxy-galaxy mergers



Stellar mass BHs are remnants of Type-Il supernova
explosions of massive stars after their nuclear fuel gets
exhausted.

Central compact object
massive than ~ 3Mg
collapses to BH,
otherwise neutron star

(NS) is formed.

Ambient Interstellar Medium
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Stars > 100M, collapse
directly to a BH

Image credit: nasa.gov



Zero-age main sequence
(ZAMS) mass > 8/,

NS

Mass ~ 1.4M (Chandrasekhar
||m|t) — SMQ

Radius ~ 10 Km

Maximum mass & radius depends
on equation of state (EOS) of
matter at nuclear density

Zero-age main sequence
(ZAMS) mass > 18 M,

BH

mass depends on (a) stellar metallicity 7
(b) nature of stellar wind [(c) supernova
characteristics]

average mass =~ 10My (low7),
maximum measured mass so far

~ 30M,, (IC10 SFR)

Radius = event-horizon =
re + \/7“3 — 4o
2

)

re =2GM/c*, a=J/Mc



Stellar BH mass-function (from theory)
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How stellar BHs can be seen?



How stellar BHs can be seen?

® Accretion of matter onto BHs from binary
stellar companion : inner region of accretion

disk becomes hot enough to emit in X-rays
--- X-ray binaries.

® Accreting BH candidates in X-rays have been
detected in galactic fields and globular

clusters through “Chandra” / “XMM-
Newton’’ observatories.
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Accreting BHs are also bright radio sources: radio
waves produced by synchrotron emission in jets.
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How stellar BHs can be seen?

® Tight (semi-major-axis of few solar radii) BH-BH binaries radiate

gravitational waves (GW) to spiral in and finally merge into single
BH.

® GWs are “ripples” in space-time --- a fundamental prediction of

Einstein’s general theory of relativity. [any varying mass quadruple
moment emits GW]

® Peters’ (1964) orbit-averaged formula for orbital evolution of semi-
major-axis aand eccentricity e :
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How stellar BHs can be seen?

Detection of GW essential for verification of Einstein’s general
theory of relativity.

Detection of GW can determine masses & spins of merging BHs
(see Hughes’ review) --- strong constraints on supernova, stellar &
binary evolution models.

Other astrophysics (from stellar BHs): massive stellar evolution,
stellar binary population, star cluster population in galaxies.

GW yet to be detected --- possible in near future by upcoming

GW missions, e.g.,“Advanced LIGO” & “elLISA” (also “Virgo”,
“Indigo”,“GEO 600”).

GW detection among most important technological challenges.



Laser Interferometer
Gravitational Observatory

(LIGO) at Hanford

[Arm length: 4 Km, currently under
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Stellar mass
black holes in
star clusters




Massive stars (ZAMS mass > 18\ ) evolve in clusters to
produce stellar BHs. BH mass function depends on cluster initial
mass function (IMF) and metallicity.
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What happens to these BHs !

Compact remnants (NS/BH) can receive birth / “natal”
velocity kick due to asymmetry in supernova ejecta
which carries net momentum.

Amount of kick for BH uncertain (in theory &
observation).

Can be observationally inferred from “back-tracing”
orbital motion of Galactic BH X-ray binaries
[e.g.,Willems et al., 2005, ApJ, 625, 324, Repetto et

al.] --- indicate very low to high natal kicks.

Computations of core-collapse supernova also support
a wide range of natal kicks (Janka et al.).

“Electron Capture” mechanism necessarily produces
remnants with small kick velocities.



Dynamical evolution of stellar BH
population in star clusters
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Runaway contraction of the
core of a star cluster due to
gravothermal instability in the
final phase of dynamical
relaxation.

Core-collapse of model cluster
(tidally truncated W, = 3 King
model) without primordial
binaries & no stellar evolution.

Monte-Carlo computation
superposed with corresponding
N-body computation.

From Joshi et al. (2000).



Mass segregation of BHs

Zeit (Millionen Jahre)
400 600

N-body computation with “NBODY6” : N ~ 5 x 104,
rn,(0) = 1 pc, complete BH retention



Mass segregation of BHs
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Dynamical friction caused by “wake” formation behind fast-moving
massive particle due to its “gravitational focussing” effect. The wake

applies retarding force to the particle.
[see Chandrashekhar’s stellar dynamics book for details]

Image from Heggie & Hut’s book






