Stellar-mass black holes in star clusters I

Sambaran Banerjee Argelander-Institut für Astronomie and Helmholtz-Instituts für Strahlen- und Kernphysik, University of Bonn

Contents

- Astrophysical black holes
- Runaway mass segregation (a qualitative discussion)
- Stellar mass black holes in star clusters

Gravitational waves from star clusters Gravitational waves & detection rates from N-body computations Effect on cluster's structure & evolution

References

- Banerjee, S., Baumgardt, H. and Kroupa, P., 2010, MNRAS, 402, 371.
- Banerjee, S. and Kroupa, P., 2011, ApJ, 741, L12.
- Belczynski, K., Bulik, T., Fryer, C.L., Ruiter, A., Valsecchi, F., Vink, J.S. and Hurley, J.R., 2010, ApJ, 714, 1217.
- Benacquista, M.J., 2002, CQG, 19, 1297.
- Chandrasekhar, S., 1942, "Principles of Stellar Dynamics", University of Chicago Press, Chicago. xxxi, 3, 123.
- Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C.J. and Babak, S., 2007, CQG, 24, 113.
- Hughes, S.A., 2009, ARA&A, 2009, 47, 107.
- Hut, P. and Verbunt, F., 1983, Nature, 301, 587.
- Mackey, A.D., Wilkinson, M.I., Davies, M.B. and Gilmore, G.F., 2008, MNRAS, 386, 65.
- O'Leary, R. M., Rasio, F.A., Fregeau, J. M., Ivanova, N. and O'Shaughnessy, R., 2006, ApJ, 637, 937.
- Portegies Zwart, S.F. and van den Heuvel, E.P.J., 2007, Nature, 450, 388.

References (cont)

- Spitzer, L. Jr., 1987, "Dynamical evolution of globular clusters", Princeton Univ. Press
- Merritt., D., 2013, "Dynamics and evolution of galactic nuclei", Princeton Univ. Press
- Breen, P.G. and Heggie, D.C., 2013, MNRAS, 432, 2779
- Morscher, M., Umbreit, S., Farr, W.M. and Rasio, F.A., 2013, ApJ, 763, L15
- Clausen, D., Sigurdsson, S. and Chernoff, D.F., 2013, MNRAS, 428, 3618
- C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C -J. Haster and F.A. Rasio, 2015, PRL, 115, 051101
- Aarseth, S.J., 2012, MNRAS, 422, 841

Astrophysical Black Holes

Black holes

- Relativist's definition: a closed 'null hypersurface' or an 'event horizon'
 --- a surface through which mass can only move radially inwards.
- Necessarily spherically symmetric or axisymmetric --- 'no-hair theorem'.
- Mathematically well-studied.
- But has anyone detected an event horizon & proven any of its properties? (is it possible?) [Mission "Event Horizon" underway]
- All black holes we talk about in astrophysics are only candidates!
 --- a combination of predicted theoretical properties and observed data.

Celestial black holes: wide mass-range

- Stellar mass black holes (BH) $M_{BH} < 100 M_{\odot}$ --- end products of massive stars.
- Intermediate mass black holes (IMBH) (?) $\sim 10^2 M_{\odot} - \sim 10^4 M_{\odot}$ -- existence still unclear! formed via runaway merger of stars in clusters, gas accretion by seed stellar BHs, direct collapse of massive 'first stars'.
- Supermassive black holes (SMBH) $M_{BH} > 10^5 M_{\odot}$ galaxies' central engines, e.g., active galactic nuclei, radio galaxies: possible formation by matter infall at galaxy center, galaxy-galaxy mergers

Stellar mass BHs are remnants of Type-II supernova explosions of massive stars after their nuclear fuel gets exhausted.

Central compact object massive than $\sim 3M_{\odot}$ collapses to BH, otherwise neutron star (NS) is formed.

Stars $\gtrsim 100 M_{\odot}$ collapse directly to a BH

Image credit: nasa.gov

Zero-age main sequence (ZAMS) mass $\geq 18M_{\odot}$

Mass $\approx 1.4 M_{\odot}$ (Chandrasekhar limit) $- \approx 3 M_{\odot}$

Radius ~ 10 Km

Maximum mass & radius depends on equation of state (EOS) of matter at nuclear density mass depends on (a) stellar metallicity Z (b) nature of stellar wind [(c) supernova characteristics]

average mass $\approx 10 M_{\odot}$ (low Z), maximum measured mass so far $\approx 30 M_{\odot}$ (IC10 SFR)

Radius = event-horizon =

$$\frac{r_s + \sqrt{r_s^2 - 4\alpha^2}}{2},$$

$$r_s = 2GM/c^2, \quad \alpha = J/Mc$$

Stellar BH mass-function (from theory)

 Accretion of matter onto BHs from binary stellar companion : inner region of accretion disk becomes hot enough to emit in X-rays ---- X-ray binaries.

 Accreting BH candidates in X-rays have been detected in galactic fields and globular clusters through "Chandra" / "XMM-Newton" observatories.

 Accretion of matter onto BHs from binary stellar companion : inner region of accretion disk becomes hot enough to emit in X-rays ---- X-ray binaries.

 Accreting BH candidates in X-rays have been detected in galactic fields and globular clusters through "Chandra" / "XMM-Newton" observatories.

Accreting BHs are also bright radio sources: radio waves produced by synchrotron emission in jets.

Fig. credit: Jay Strader, MSU

- Tight (semi-major-axis of few solar radii) BH-BH binaries radiate gravitational waves (GW) to spiral in and finally merge into single BH.
- GWs are "ripples" in space-time --- a fundamental prediction of Einstein's general theory of relativity. [any varying mass quadruple moment emits GW]
- Peters' (1964) orbit-averaged formula for orbital evolution of semimajor-axis a and eccentricity e :

$$\left\langle \frac{da}{dt} \right\rangle = -\frac{64G^3}{5c^5}m_1m_2(m_1+m_2)a^{-3}(1-e^2)^{-\frac{7}{2}}$$

Tested with high accuracy for binary pulsars (e.g. the Hans-Taylor pulsar)

Equal mass (M_{BH}) BH-BH merger time:

$$T_{mrg} = 150 \text{Myr} \left(\frac{M_{\odot}}{M_{BH}}\right)^3 \left(\frac{a}{R_{\odot}}\right)^4 (1-e^2)^{\frac{7}{2}}$$

- Tight (gravita BH.
- Einstei momen
- **Peters'**

GWs a major-Equal T_{mrg} =

radiate to single

tion of Iruple

on of semi-

with high cy for binary (e.g. the aylor pulsar)

- Tight (semi-major-axis of few solar radii) BH-BH binaries radiate gravitational waves (GW) to spiral in and finally merge into single BH.
- GWs are "ripples" in space-time --- a fundamental prediction of Einstein's general theory of relativity. [any varying mass quadruple moment emits GW]
- Peters' (1964) orbit-averaged formula for orbital evolution of semimajor-axis a and eccentricity e :

$$\left\langle \frac{da}{dt} \right\rangle = -\frac{64G^3}{5c^5}m_1m_2(m_1+m_2)a^{-3}(1-e^2)^{-\frac{7}{2}}$$

Tested with high accuracy for binary pulsars (e.g. the Hans-Taylor pulsar)

Equal mass (M_{BH}) BH-BH merger time:

$$T_{mrg} = 150 \text{Myr} \left(\frac{M_{\odot}}{M_{BH}}\right)^3 \left(\frac{a}{R_{\odot}}\right)^4 (1-e^2)^{\frac{7}{2}}$$

- Detection of GW essential for verification of Einstein's general theory of relativity.
- Detection of GW can determine masses & spins of merging BHs (see Hughes' review) --- strong constraints on supernova, stellar & binary evolution models.
- Other astrophysics (from stellar BHs): massive stellar evolution, stellar binary population, star cluster population in galaxies.
- GW yet to be detected --- possible in near future by upcoming GW missions, e.g., "Advanced LIGO" & "eLISA" (also "Virgo", "Indigo", "GEO 600").
- GW detection among most important technological challenges.

Laser Interferometer Gravitational Observatory (LIGO) at Hanford

[Arm length: 4 Km, currently under upgrade to "Advanced LIGO"]

(evolving) Laser Interferometer Space Antenna (eLISA)

Stellar mass black holes in star clusters Massive stars (ZAMS mass $\geq 18 M_{\odot}$) evolve in clusters to produce stellar BHs. BH mass function depends on cluster initial mass function (IMF) and metallicity.

What happens to these BHs ?

- Compact remnants (NS/BH) can receive birth / "natal" velocity kick due to asymmetry in supernova ejecta which carries net momentum.
- Amount of kick for BH uncertain (in theory & observation).
- Can be observationally inferred from "back-tracing" orbital motion of Galactic BH X-ray binaries
 [e.g.,Willems et al., 2005, ApJ, 625, 324, Repetto et al.] --- indicate very low to high natal kicks.
- Computations of core-collapse supernova also support a wide range of natal kicks (Janka et al.).
- "Electron Capture" mechanism necessarily produces remnants with small kick velocities.

Dynamical evolution of stellar BH population in star clusters bobniacion in scar clusters

Core collapse

Runaway contraction of the core of a star cluster due to gravothermal instability in the final phase of dynamical relaxation.

Core-collapse of model cluster (tidally truncated $W_0 = 3$ King model) without primordial binaries & no stellar evolution.

Monte-Carlo computation superposed with corresponding N-body computation.

From Joshi et al. (2000).

Mass segregation of BHs

N-body computation with "NBODY6": $N \approx 5 \times 10^4$, $r_h(0) = 1 \text{ pc}$, complete BH retention

Mass segregation of BHs

N-body computation with "NBODY6": $N \approx 5 \times 10^4$, $r_h(0) = 1 \text{ pc}$, complete BH retention Dynamical friction caused by "wake" formation behind fast-moving massive particle due to its "gravitational focussing" effect. The wake applies retarding force to the particle. [see Chandrashekhar's stellar dynamics book for details]

Image from Heggie & Hut's book