Isolated versus clustered formation of massive stars

Carsten Weidner Instituto de Astrofísica de Canarias

in collaboration with Jan Pflamm-Altenburg (HISKP, Bonn) and Pavel Kroupa (HISKP, Bonn)

MODEST 14

The dance of stars: dense stellar systems from infant to old June 4th, 2014, Bad Honnef, Germany

Motivation

- Different star-formation theories allow/exclude isolated formation of O stars.
- Monolithic collapse (McKee & Tan 2003; Krumholz 2006):
 O stars form from massive cores, in isolation or in clusters.
- Competitive accretion/cluster assisted accretion etc. (e.g. Bonnell et al. 1997): O stars form in the centre of star clusters.
- Observational evidence in star clusters (m_{max}-M_{ecl} relation) points against O stars formed in isolation (Weidner & Kroupa 2006; Weidner, Kroupa & Bonnell 2010; Weidner, Kroupa & Pflamm-Altenburg 2013).

super-canonical stars? $(m > 150 M_{\odot})$

super-canonical stars? (m > 150 M_☉)

all single stars

possible mergers of

massive binaries

Taurus-Auriga and L1641s

- Taurus-Auriga has 352 YSO in 8 small clusters.
- 42 stars have $m \ge 1 M_{\odot}$ and $m_{max} \approx 3.3 M_{\odot}$.
- The probability for this to occur randomly is 6.10-5.
- L1641s is a star-forming cloud in Orion close to the ONC (Hsu et al. 2012).
- 2362 stars have m \geq 0.1 M_o and m_{max} \approx 16 M_o.
- The probability for this to occur randomly is 4.10-3.

Criticism

- Maschberger & Clarke (2008) claim there is no evidence for a non-trivial m_{max} - M_{ecl} -relation.
- Only use clusters up to ~3200 stars (~1200 M_☉).
- The probability for their data set to origin from random sampling is 10⁻¹⁷.
- Only a sub-sample of their data agrees (20%) with random sampling.
- As no other sampling methods are tested it is not clear if their test can differentiate between models.

Massive field stars

- OB stars that are not members of any known star cluster,
 OB association or star-forming region.
- ~30% of all Galactic O stars are in the field (Gies 1987).
- Two subgroups of field O stars:
 - ~25% are high-velocity OB stars (typical > 30 km/s; runaway stars; Blaauw 1961, 1993; Gies 1987),
 - ~75% low-velocity OB stars.
- 27% of ALL Hipparcos stars are runaways ($v_{pec} > 28$ km/s; Tetzlaff et al. 2011).
- 41% of the Hipparcos OB stars (55 of 133) are runaways (Tetzlaff et al. 2011).

Origin of runaway OB stars

It is thought that runaway OB stars obtain their high velocities through two/three processes:

- Either disruption of a short-period binary after a supernova explosion (Blaauw 1961, Stone 1991),
- or through three- or many-body interactions in star clusters (Poveda et al. 1967, Gies & Bolton 1986),
- or by combining SN and dynamical interactions to twostep ejections (Pflamm-Altenburg & Kroupa 2010).

Keep in mind that ~69% of all runaways are binaries (Chini et al. 2012)!

Origin of low-velocity field OB stars

- Formed in isolation?
- Unrecognised runaways?
- Members of undetected/dissolved star clusters?
- Merged ejected binary (blue straggler)?
- Two-step ejection?
- Low-velocity tail of the ejected stars?

Stellar dynamics

100 Nbody6 models of a 1000 stars, each evolved for 5 Myr.

Weidner, Bonnell & Moeckel, 2011, MNRAS 410, 1861

II of 193 stars which cannot be associated with clusters.

4 'best examples for isolated Galactic high-mass starformation' (de Wit et al. 2004, 2005).

HD39680	HD48279	HD96917	HD112244
HD120678	HD123056	HD124314	HD154811
HD165319	HD193793	HD202124	

11/193 = 6%

4/193 = 2%

=>

4 ± 2%

II of 193 stars which cannot be associated with clusters.

4 'best examples for isolated Galactic high-mass starformation' (de Wit et al. 2004, 2005).

OB stars back-traced to their clusters (Schilbach & Röser 2008).

HD39680	HD48279	HD96917	HD1+2244
HD120678	HD123056	HD124314	HD154811
HD165319	HD193793	HD202124	

11/193 = 6%

4/193 = 2%

=>

4 ± 2%

II of 193 stars which cannot be associated with clusters.

4 'best examples for isolated Galactic high-mass starformation' (de Wit et al. 2004, 2005).

OB stars back-traced to their clusters (Schilbach & Röser 2008).

HD39680	HD48279	HD96917	HD1+2244
HD120678	HD123056	HD124314	HD154811
HD165319	HD193793	HD202124	

5/193 = 2.5%

3/193 = 1.5%

=>

 $2 \pm 0.5\%$

II of 193 stars which cannot be associated with clusters.

4 'best examples for isolated Galactic high-mass starformation' (de Wit et al. 2004, 2005).

OB stars back-traced to their clusters (Schilbach & Röser 2008).

OB stars with bow shocks (Gvaramadze & Bomans 2008).

HD39680	HD48279	HD96917	HD1+2244
HD120678	HD123056	HD124314	HD154811
HD165319	HD193793	HD202124	

$$5/193 = 2.5\%$$

II of 193 stars which cannot be associated with clusters.

4 'best examples for isolated Galactic high-mass starformation' (de Wit et al. 2004, 2005).

OB stars back-traced to their clusters (Schilbach & Röser 2008).

OB stars with bow shocks (Gvaramadze & Bomans 2008).

HD39680	HD48279	HD96917	HD1+2244
HD120678	HD123056	HD124314	HD154811
HD165319	HD193793	HD202124	

3/193 = 1.5%

1/193 = 0.5%

=>

 $1 \pm 0.5\%$

II of 193 stars which cannot be associated with clusters.

4 'best examples for isolated Galactic high-mass starformation' (de Wit et al. 2004, 2005).

OB stars back-traced to their clusters (Schilbach & Röser 2008).

OB stars with bow shocks (Gvaramadze & Bomans 2008).

HD39680	HD48279	HD96917	HD1H2244
HD120678	HD123056	HD124314	HD154811
HD165319	HD193793	HD202124	No IR data yet.

3/193 = 1.5%

1/193 = 0.5%

=>

 $1 \pm 0.5\%$

II of 193 stars which cannot be associated with clusters.

4 'best examples for isolated Galactic high-mass starformation' (de Wit et al. 2004, 2005).

OB stars back-traced to their clusters (Schilbach & Röser 2008).

OB stars with bow shocks (Gvaramadze & Bomans 2008).

3/193 = 1.5%

1/193 = 0.5%

=>

I ± 0.5%

1% to 2% of untraceable 'field' O' stars is expected from two-step ejection!

3/193 = 1.5%

1/193 = 0.5%

=>

 $1 \pm 0.5\%$

1% to 2% of untraceable 'field' O' stars is expected from two-step ejection!

3/193 = 1.5%

1/193 = 0.5%

=>

 $1 \pm 0.5\%$

Isolated high-mass star-formation in the Magellanic Clouds?

- Bressert et al. (2012) found 16 candidates in the LMC.
 - Distributed around R136 in 30 Doradus. Assuming an age of I Myr velocities of 20 to 120 km/s are necessary.
 - Only one bow-shock detected. Rest formed in isolation?
- Oey et al. (2013) 14 candidates in the SMC.
 - The stars are in the 'centre' of HII regions but should be offcentre if they have velocities of 100 km/s.
 - No bow-shocks. Formed in isolation?

The LMC candidates

- For 15 of the 16 stars young clusters/OB associations closer than R136 can be found and many of the stars are older than I Myr.
- This combined results in 14 of the 16 stars having minimal peculiar velocities less than 10 km/s. Bow-shocks can not form.
- The star with a bow-shock has a $v_{pec,min}$ of about 10 to 20 km/s. The other star has a $v_{pec,min}$ of 15 to 60 km/s.
- The high background surface brightness of 30 Doradus makes the detection of bow-shocks difficult or even impossible.

Detectability of bow-shocks near 30 Doradus

The SMC candidates

- 2 of 14 are members of known young clusters of relatively low-mass with most members below the limiting magnitude.
- Because of the limiting magnitude of the observations only a dozen cluster members could be observed.
- Using probable ages for the stars only 3 stars have $v_{pec,min}$ above 15 km/s (up to 31 km/s).
- The fastest star possibly has a bow-shock.
- Actually measuring the off-centre distances of the stars to the HII regions results in velocities of 10 to 260 km/s.
- Runaway stars in the Milky Way are known to have HII regions which are very well centred on them.

ζ Ophiuchi

Credit: NASA/JPL-Caltech/WISE Team

HII regions around MW runaways

ζ Oph HD 130298

Credit: Southern H-Alpha Sky Survey Atlas (SHASSA)

Conclusions

No unambiguous arguments for the formation of massive stars in the field in the Milky Way or the Magellanic Clouds!