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Motivation

Galactic nuclei with supermassive black holes:

The rate of capture of stars by the black hole depends on the efficiency
of angular momentum variation of individual stars;

Angular momentum changes both due to two-body relaxation (collisional)
and because of torques in a non-spherical potential (collisionless);

The number of stars in realistic galactic nucleus far exceeds
the presently accessible range for collisional N-body simulations;

Scaling to a different number of particles would distort the interplay
between collisional and collisionless effects;

Need to adjust the relaxation rate independently from N __......;

Fokker-Planck and fluid models are impractical for complex geometry
=> need to use a particle-based Monte-Carlo method.



Table 1. Comparison of Monte Carlo methods

Monte-Carlo methods

Name Reference relaxation treatment timestep 1:12 BHP remarks
Princeton |Spitzer & Hart (1971); ( local ) dif.coefs. in velocity, o T4yn no no
Spitzer & Thuan (1972) Maxwellian background f(r,v)
Cornell Marchant & Shapiro dif.coef. in E, L, self-consistent  indiv., Ty, no yes particle cloning
(1980) background f(E)
Hénon Hénon (1971a) local pairwise interaction, self- oc T, no no
consistent bkgr. f(r,v),v1)
Stodétkiewicz (1982) Hénon'’s block, T;e1(r) no no mass spectrum, disc shocks
Stodétkiewicz (1986) binaries, stellar evolution
Giersz (1998) same same yes no 3-body scattering (analyt.)
Mocca Hypki & Giersz (2013) same same yes no single/binary stellar evol.,
few-body scattering (num.)
Joshi et al. (2000) same o T, (center) yes no partially parallelized
CmMc Umbreit et al. (2012), (shared) yes yes fewbody interaction, single/
Pattabiraman+ (2013) binary stellar evol., GPU
ME(ssY)? |Freitag & Benz (2002) same indiv.oc Trel no yes cloning, SPH physical collis.
Raca this study local dif.coef. in velocity, self- indiv.oc Tyyy no yes arbitrary geometry

consistent background f(FE)

@ QOne-to-one correspondence between particles and stars in the system

b Massive black hole in the center, loss-cone effects



Spitzer's Monte-Carlo method

Local (position-dependent) velocity diffusion coefficients:

U(AUH) = — (1 + mﬂ*) Lz,
(Avf)y = 2(Io+I3),
(AvT)y = 2(2lp+ 312 — I3)),

here m and m, are masses of the test and field stars, and

Particles move in a given smooth
potential with arbitrary geometry,
and velocity perturbations are
applied according to 2-body
relaxation theory

0
Iy, = p/ dE'|f(E"), Distribution function of field stars (isotropic bkg. approx.)
E . . .
E B () n/2 Gravitational potential
I, = T / dE' f(E' ( ) ,
/2 o) JE) E_ ()

I = 16m°G*m,In A = 16m°G* M, X

(N7 tInA).

Scalable amplitude of perturbation

After each timestep, the perturbations to the velocity are computed as

AUH = <A’UH>At + Cl <A’Uﬁ>At ,

Av, = ({ (Avﬁ)At,

where (1, (> are two independent normally distributed random numbers.



The new Monte-Carlo method

Potential representation:
basis-set expansion in spherical harmonics and radius (like SCF);
adaptable to any geometry (with a well-defined center)

Orbit integration:
variable timestep Runge-Kutta;
orbits are computed in parallel, independently from each other

Relaxation:
diffusion coefficients computed under an approximation of
a spherical isotropic distribution function of background stars

Potential and DF update:

update interval >> dynamical time => temporal smoothing;

each orbit is sampled with many points during update interval =>
reduced discreteness noise



An example of orbits in a triaxial potential

Original orbit

Perturbed orbit (N.=105)
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Suppression of unwanted two-body relaxation

Test: a Plummer sphere with 10° particles;
measure the energy and angular momentum relaxation rate as functions of energy.

Temporal smoothing reduces the relaxation rate by 2 orders of magnitude!
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Suppression of shape evolution

Test: a triaxial Hernquist sphere with 10° particles and a central black hole M_=0.01;

measure the evolution of model shape as a function of time (should stay constant?)

Fluctuations from 2-body interactions enhance the diffusion of chaotic orbits and
lead to the decrease of triaxiality in the central parts of the model.

Switching off the relaxation greatly slows down the evolution of shape.
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Application to black hole feeding rates

Compute the capture rates of stars in spherical, axisymmetric, and triaxial galactic nuclei.

For M_>107 M,,, the two-body relaxation time is much longer than Hubble time, while

in @ non-spherical potential the angular momentum variations are much greater and
lead to substantially higher rate of capture of stars by the supermassive black hole.
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Limitations: (* — work in progress)

No mass spectrum (*), no stellar evolution (),
no primordial/dynamically formed binaries, no stellar collisions

No exact energy conservation (a correction applied after each update step)

Assuming isotropic spherical background in computing diffusion coefs

Applications and future prospects:
Black hole feeding rates with realistic mass spectrum and stellar evolution (*)

Binary supermassive black holes and the final-parsec problem
In non-spherical galaxies (*)

Influence of discreteness noise on the diffusion of chaotic orbits
Dynamical friction in non-spherical stellar systems

Rotating flattened globular clusters
7P



