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Figure 2. Estimates for the final radii of TDG-candidates after their gas is expelled or has been expelled against estimates of their stellar
mass, M∗. The estimates are based on the data on present-day parameters of TDG-candidates (cf. Section 2.2.1 and Table A1) and on
data on TDGs taken from numerical calculations on the formation of TDGs during the encounter of gas-rich galaxies (cf. Section 2.2.2
and Table B1). Probably the largest uncertainty to the data on the TDG-candidates shown here comes from the poor knowledge on how
star-formation and mass-loss will influence the future evolution of the gas-rich present-day TDG-candidates until they possibly resemble
old, gas-poor dEs (cf. Section 3.2). In order to quantify this uncertainty on the data for the TDG-candidates, the lower limit for future
radius of each TDG-candidate is taken to be its present-day radius, which corresponds to no future mass-loss according to equation (8).
The symbol representing the TDG-candidate is placed at a radius twice its present-day radius, which corresponds to a future mass-loss
of half of its present-day mass according to equation (8). The upper limit for the radius of each TDG candidate is taken to be four times
its present-day radius, which corresponds to a loss of 75 per cent of its present-day mass according to equation (8). Thus, the errorbars to
the data on the TDG-candidates shown here were not formally calculated from the uncertainties to the observational data, but represent
different assumptions on the future evolution of the TDG-candidates. These assumptions are admittedly quite arbitrary, but as they are
not very restrictive concerning the future mass-loss (and thus the future evolution) of the TDG-candidates, they are also conservative.
The data on old stellar systems presented in Fig. (1) are also shown here for comparison. The thin solid lines indicate the tidal radii
for stellar systems in the vicinity of a major galaxy 105 pc away. The mass of the major galaxy is M = 1010 M⊙, M = 1011 M⊙ and
M = 1012 M⊙, from top to bottom.

3.2 Properties and evolution of TDGs

A comparison of the numerically calculated TDG-candidates
with the observed TDG-candidates shows that the esti-
mates of M∗ and re of the calculated TDG-candidates are
consistent with the observed ones. If these parameters are
however compared to the according present-day parame-
ters of the GCs, UCDs, dEs and nEs (i.e. the stellar sys-
tems introduced in Section 2.1 and shown in Figure 1), the
(young) TDG-candidates are on a mass-radius relation be-

low the mass-radius relation for (old) dEs. The old TDGs
by Galianni et al. (2010) are however consistent with being
typical dEs.

In order to find the actual interrelations between the
TDG-candidates and the other stellar systems, it is neces-
sary to estimate what they would look like if they all had the
same age. This requires to account for the future evolution
of the TDG-candidates listed in Tables (A1) and (B1) in the
Appendix, since almost all of them have ages of the order of
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star-formation and mass-loss will influence the future evolution of the gas-rich present-day TDG-candidates until they possibly resemble
old, gas-poor dEs (cf. Section 3.2). In order to quantify this uncertainty on the data for the TDG-candidates, the lower limit for future
radius of each TDG-candidate is taken to be its present-day radius, which corresponds to no future mass-loss according to equation (8).
The symbol representing the TDG-candidate is placed at a radius twice its present-day radius, which corresponds to a future mass-loss
of half of its present-day mass according to equation (8). The upper limit for the radius of each TDG candidate is taken to be four times
its present-day radius, which corresponds to a loss of 75 per cent of its present-day mass according to equation (8). Thus, the errorbars to
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data on TDGs taken from numerical calculations on the formation of TDGs during the encounter of gas-rich galaxies (cf. Section 2.2.2
and Table B1). Probably the largest uncertainty to the data on the TDG-candidates shown here comes from the poor knowledge on how
star-formation and mass-loss will influence the future evolution of the gas-rich present-day TDG-candidates until they possibly resemble
old, gas-poor dEs (cf. Section 3.2). In order to quantify this uncertainty on the data for the TDG-candidates, the lower limit for future
radius of each TDG-candidate is taken to be its present-day radius, which corresponds to no future mass-loss according to equation (8).
The symbol representing the TDG-candidate is placed at a radius twice its present-day radius, which corresponds to a future mass-loss
of half of its present-day mass according to equation (8). The upper limit for the radius of each TDG candidate is taken to be four times
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for stellar systems in the vicinity of a major galaxy 105 pc away. The mass of the major galaxy is M = 1010 M⊙, M = 1011 M⊙ and
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#TDGs/
merger

TDG 
lifetime #TDGs/#DGs Author

1 - 2 10 Gyrs 1 Okazaki & 
Taniguchi (2000)

0.1 - 0.2 10 Gyrs 0.1 Bournaud & Duc 
(2006)

0.8 1 Gyr 0.1 Bournaud & Duc 
(2006)

Some statistics…



NGC 5557Duc et al. (2011)

Age = 2 ... 5 Gyr 

Aged TDGs



1460 P.-A. Duc et al.

Figure 1. Central panels: composite g′ + r′ or g′ + r′ + i′ MegaCam images of the ETGs hosting the dwarf galaxies studied here. The faintest low surface
brightness features are shown as inverted grey maps for better contrast. The ETG satellites for which a spectroscopic follow-up was carried out are indicated with
the squares. Top and bottom panels: MegaCam g′-band surface brightness maps of the pre-selected satellites. The field of view of each panel is 3 × 3 arcmin.
Each bar corresponds to a physical length of 10 kpc. Grey-scale levels range between 22 and 28.5 mag arcsec−2. H I contours from the WSRT observations are
superimposed. Levels correspond to 0.7, 1.4 and 2.1 × 1020 cm−2.

prominent features typical of merger remnants such as 200 kpc long
stellar filaments, plumes and shells. Its eastern tidal tail hosts three
blue objects, and associated with them, three isolated H I clouds,
referred later as NGC 5557-E1, E2 and E3.

Note that the sample is by no means complete. A systematic
investigation of the origin of ETG satellites is beyond the scope of
this pilot study.

2.2 Observations

Spectroscopic observations of the TDG candidates were carried out
between 2012 March and June using Gemini Multi-Object Spec-
trograph (GMOS) on the 8.1 m Gemini-North telescope (as part of
program GN-2012A-Q-103). The B600_G5307 grating was used

together with a long slit. Its width was 1.3 arcsec, leading to an in-
strumental resolution of 4 Å full-width at half maximum (FWHM).
We used two slightly different grating tilts for each galaxy in order
to fill the gap between the camera chips. The final wavelength cov-
erage was 4100 Å to 6900 Å. One single slit, positioned parallel
to the major photometric axis, was used for all targets, except for
NGC 5557-E1 which benefited from observations along two di-
rections, as shown in Fig. 2. Total exposure times ranged between
0.5 h for the most luminous dwarfs and 1.7 h for the faintest ones,
in particular those around NGC 5557.

Spectrophotometric calibration was performed using a single
observation of the baseline standard star (G191−B2B) taken
separately from the science data, but with a matching instrument
configuration.

MNRAS 440, 1458–1469 (2014)
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Eigenthaler, Ploeckinger, et al. (in prep.)

HCG04

Granted observing time @ SOAR (4.1 m)

H↵R� band

Tidal Features in Compact Groups

8 Eigenthaler et al.

Figure 5. Top panels: SDSS r0 band images of HCG04, HCG24, and HCG25. The brightest group members are labeled with capital letters as listed in Hickson
(1982). North is up, east to the left. Bottom panels: Corresponding H↵+[NII] maps. The color-scaling shows the H↵+[NII] flux per pixel in units of 10�16erg
s�1cm�2.
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Tidal Features in Compact Groups

8 Eigenthaler et al.

Figure 5. Top panels: SDSS r0 band images of HCG04, HCG24, and HCG25. The brightest group members are labeled with capital letters as listed in Hickson
(1982). North is up, east to the left. Bottom panels: Corresponding H↵+[NII] maps. The color-scaling shows the H↵+[NII] flux per pixel in units of 10�16erg
s�1cm�2.

H↵ flux [10�16 erg s�1 cm�2]

Eigenthaler, Ploeckinger, et al. (in prep.)
Granted observing time @ SOAR (4.1 m)



HCG96 H↵R� band

Tidal Features in Compact Groups

8 Eigenthaler et al.

Figure 5. Top panels: SDSS r0 band images of HCG04, HCG24, and HCG25. The brightest group members are labeled with capital letters as listed in Hickson
(1982). North is up, east to the left. Bottom panels: Corresponding H↵+[NII] maps. The color-scaling shows the H↵+[NII] flux per pixel in units of 10�16erg
s�1cm�2.

H↵ flux [10�16 erg s�1 cm�2]

Eigenthaler, Ploeckinger, et al. (in prep.)
Granted observing time @ SOAR (4.1 m)



HI velocity map of the NGC 3165/ 3166 group
Lee-Waddell et al. (2013)

Mdyn =  4 x 108 Msol

Mbaryon =  3.2 x 108 Msol

Mstellar =  1 x 107 Msol

Observing time granted for Gemini 
South (IFU) to investigate the 
internal kinematics of the TDGC.	
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Figure 2. Estimates for the final radii of TDG-candidates after their gas is expelled or has been expelled against estimates of their stellar
mass, M∗. The estimates are based on the data on present-day parameters of TDG-candidates (cf. Section 2.2.1 and Table A1) and on
data on TDGs taken from numerical calculations on the formation of TDGs during the encounter of gas-rich galaxies (cf. Section 2.2.2
and Table B1). Probably the largest uncertainty to the data on the TDG-candidates shown here comes from the poor knowledge on how
star-formation and mass-loss will influence the future evolution of the gas-rich present-day TDG-candidates until they possibly resemble
old, gas-poor dEs (cf. Section 3.2). In order to quantify this uncertainty on the data for the TDG-candidates, the lower limit for future
radius of each TDG-candidate is taken to be its present-day radius, which corresponds to no future mass-loss according to equation (8).
The symbol representing the TDG-candidate is placed at a radius twice its present-day radius, which corresponds to a future mass-loss
of half of its present-day mass according to equation (8). The upper limit for the radius of each TDG candidate is taken to be four times
its present-day radius, which corresponds to a loss of 75 per cent of its present-day mass according to equation (8). Thus, the errorbars to
the data on the TDG-candidates shown here were not formally calculated from the uncertainties to the observational data, but represent
different assumptions on the future evolution of the TDG-candidates. These assumptions are admittedly quite arbitrary, but as they are
not very restrictive concerning the future mass-loss (and thus the future evolution) of the TDG-candidates, they are also conservative.
The data on old stellar systems presented in Fig. (1) are also shown here for comparison. The thin solid lines indicate the tidal radii
for stellar systems in the vicinity of a major galaxy 105 pc away. The mass of the major galaxy is M = 1010 M⊙, M = 1011 M⊙ and
M = 1012 M⊙, from top to bottom.

3.2 Properties and evolution of TDGs

A comparison of the numerically calculated TDG-candidates
with the observed TDG-candidates shows that the esti-
mates of M∗ and re of the calculated TDG-candidates are
consistent with the observed ones. If these parameters are
however compared to the according present-day parame-
ters of the GCs, UCDs, dEs and nEs (i.e. the stellar sys-
tems introduced in Section 2.1 and shown in Figure 1), the
(young) TDG-candidates are on a mass-radius relation be-

low the mass-radius relation for (old) dEs. The old TDGs
by Galianni et al. (2010) are however consistent with being
typical dEs.

In order to find the actual interrelations between the
TDG-candidates and the other stellar systems, it is neces-
sary to estimate what they would look like if they all had the
same age. This requires to account for the future evolution
of the TDG-candidates listed in Tables (A1) and (B1) in the
Appendix, since almost all of them have ages of the order of
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❖ Implicit solver for radiative cooling!

❖ Tidal field!

❖ Self-regulated star formation!

❖ Stellar feedback !

❖ Alternative stellar population descriptions (IMF)

Additional modules for FLASH, developed for the TDG simulations:

Simulation setup

Ploeckinger et al. (2014, MNRAS)
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Self-regulated star formation

SF criteria:

❖ Convergent flow!

❖ SBF threshold

Köppen, Theis & Hensler (1995)

Stellar birth function:
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SF criteria:

❖ Convergent flow!

❖ Temperature < 104 K

Köppen, Theis & Hensler (1995)

Stellar birth function:

 (⇢, T ) = Cn⇢
2e�T/Ts
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Stellar lifetimes from Portinari et al. (1998)

SN II 	


Stellar winds
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2

According to the distribution function for mass ratios in binary stars, f(µ) = 21+�(1 + �)µ�

with � = 2 (Greggio & Renzini 1983, Matteucci & Greggio 1986, Bonaparte et al. 2013), equal mass
binary systems are more likely than binary systems with a large di↵erence between primary and
secondary star. In order to calculate the total probability of star to be the secondary in a binary
star system, the distribution function has to be integrated over the possible range of mass rations
µ, determined by the primary mass range (M
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= 1.4M�) < m
1

< (M
SNIa,max

= 8M�). As
an example: it is equally likely that a secondary star with a mass of 6M� is in a binary system
with another 6M� star as a primary, as it is for a secondary star with a mass of 3M� to be paired
with another 3M� star. Only in the case of the secondary star with 3M� there is an additional
probability to be in a binary system with a primary star that is for example twice as massive as
the secondary star, which is not possible for the 6M� secondary star. Therefore the SNIa fraction
for low mass stars is higher than for stars with masses close to M

SNIa,max

. Only accounting for
that, the probability of a 3M� star to be a secondary is 2.3 times higher than for a 6M� star.
This first approach assumes a constant number of stars for each mass. In order to get the correct
SNIa fraction, the number of stars in a stellar population as in a star cluster is has to be described
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Advantages of this setup
❖ No discrete density / temperature thresholds 

necessary for star formation!

❖ Star formation is self-regulated (stellar winds, SNe)!

❖ SNe are discrete events at the correct rate with 
accurate stellar yields!

❖ Variable, self-consistent star cluster masses allow 
additional analysis on the ECMF!

❖ The IGIMF and its impact on the dynamical evolution 
and metal enrichment of galaxies can be tested



Results

Early evolution

Ploeckinger et al. (2014, MNRAS), 
Recchi (2014, AdAst)

Long term evolution

Ploeckinger et al. (2014, in prep.)
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Integrated galactic IMF 
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Stellar kinematics 

Ploeckinger et al. (in prep.)
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Next steps
The Astrophysical Journal, 748:54 (15pp), 2012 March 20 Zemp et al.

Figure 1. Disk of the most massive galaxy at z ≈ 3 (the main halo) in simulation A in face-on (left panel) and edge-on (right panel) view. The molecular hydrogen is
shown in red, and atomic gas (H i and He i) in blue. The stars (yellow points) only form in the region where the molecular gas resides. The linear size of the image is
≈14 kpc (physical).
(A color version of this figure is available in the online journal.)

Table 1
Summary of the Simulations and their Implemented Physics

Simulation Non-equilibrium Star Supernova Supernova
Cooling Formation Metal Enrichment Thermal Feedback

A Yes Yes Yes Yes
ANF Yes Yes Yes No
B No No No No

which would speed up the molecular hydrogen formation and
as a consequence increase the star formation.

The local star formation rate volume density ρ̇S in a cell is
calculated as

ρ̇S = ϵff
ρH2

τsf
, (1)

where ρH2 is the local mass density of molecular hydrogen. The
star formation timescale is given by

τsf = min[τff(ρG), τmax], (2)

where τff(ρG) = (3π/32GρG)1/2 is the free-fall time and ρG
the local, total gas density (including all hydrogen and helium
species). The maximum timescale τmax is set to the free-
fall time of gas with a hydrogen number density of nH =
nH i + nH ii + 2nH2 = 50 cm−3. The star formation efficiency
per local free-fall time is set to ϵff = 0.007. To ensure that
star formation happens only in our numerical analogs of real
molecular clouds, we allow star formation only in cells with the
molecular mass fraction above fH2 = 2nH2/nH = 0.1. These
cells have a range of total gas density from 50 to 104 amu cm−3

for the main halo at z ≈ 3 (Figure 1). Stellar particles are
created via a Poisson process with a characteristic timescale of
2 × 107 yr. This star formation prescription is similar to the
recipe SF2 in Gnedin et al. (2009).

Figure 1 shows the disc of the most massive galaxy in our
simulation at z ≈ 3, which we call the main halo. The molecular
hydrogen forms only in high density regions and hence the
stars are confined to these central regions. In traditional star
formation prescriptions based on the total gas density instead

of the molecular hydrogen density, stars would in general be
formed over a larger volume filled by the atomic gas, depending
on the specific threshold used.

We ran three versions of the simulation, which are summa-
rized in Table 1. Simulation A is a full physics run with radia-
tive transfer and non-equilibrium cooling. Simulation ANF is the
same as simulation A but without supernova thermal feedback.
Metal enrichment due to supernovae is still included. Simulation
B is a non-radiative version without cooling and star formation.

In all simulations, the top level l = 0 grid is 2563 and we
allow for up to nine more refinement levels (lmax = 9) where
each higher level is refined by a factor two with respect to
the parent level. This results in a size of the smallest cells
L9 = Lbox/(256 × 29) = 279 pc (comoving). A cell is refined
if its dark matter or gas mass exceeded 1.07 × 106 M⊙ or
1.33 × 105 M⊙, respectively. For the dark matter, this threshold
corresponds to the mass of about six high-resolution particles.
On each refinement level l, the time step is refined as well
according to ∆νl = ∆ν0/2l , where ∆ν0 is the global time step on
the top level mesh. The value of ∆ν0 is set at the beginning
of each top level step so that the Courant–Friedrichs–Lewy
condition (Courant et al. 1928, 1967) is fulfilled on all levels
(Kravtsov et al. 2002). In total our simulation A contains
2.89×108 dark matter particles and 3.89×108 gas cells at z ≈ 2.

2.3. Halo Selection

For the analysis presented in this paper, we mainly concen-
trate on three snapshots at redshifts around 4, 3, and 2 (the
exact redshifts are 3.76, 2.85, and 2.03) in run A. These epochs

3

Zemp et al. (2012)
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