Black-hole accretion from stellar winds in star clusters using AMUSE

Edwin van der Helm, Inti Pelupessy, Simon Portegies Zwart

Motivation

Intermediate-Mass Black Holes

endorf, MODEST 14

Motivation

How much accretion would we expect from an IMBH in a Globular Cluster?

Simulate accretion from stellar winds onto the IMBH!

Astrophysical Multipurpose Software Environment

Codes - Gravity

Gravity Codes in AMUSE:

name	type of code	language	N_{\min}	$N_{\rm max}$	softening	parallel	GPU
Hermite	direct	C++	1	10^{3}	no/yes	yes	no
ph4	direct	C++	1	10^{4}	no/yes	yes	no
PhiGRAPE	direct	F77	1	10^{4}	no/yes	yes	no
HiGPUs	direct	C++	1	10^{4}	no/yes	ves	yes
Brutus	direct	C++	2	10	no 🏼	уœ	no
SmallN	direct	C++	2	10	no/yes	yes	no
Twobody	Kepler	Python	2	2	no	no	no
Mikkola	PN direct	F77	2	100	no	no	no
MI6	PN direct	• C++	2	10^{5}	no/yes	yes	yes
Huayno	symplectic	\mathbf{C}	2	10^{3}	no	no	no
Mercury	sympelctic	F77	2	10^{4}	no	no	no
octgray	treecode	C++	10^{4}	10^{6}	yes	yes	yes
Bonsai	$\mathrm{treecode}^{\bullet}$	CUDA	10^{4}	10^{9}	yes	yes	yes

Nora Lützgendorf, MODEST14

Codes - Stellar Evolution

Stellar Evolution Codes in AMUSE:

name	type of code	language	binary evolution	internal structure
MESA	Henyey	F95	no	yes
EVTWIN	Henyey	F77	yes	yes
SSE/BSE	parameterized	F77	yes	no
SeBa	parameterized	C++	yes	no

Codes - Hydrodynamics

Hydrodynamics Codes in AMUSE:

v	v	<u> </u>	
name	type of code	language	parallel
Gadget-2	TreeSPH	С	yes
Fi	TreeSPH	F95	yes
Capreole	grid	F95	yes
Athena3D	AMR	\mathbf{C}	yes
AMRVAC	AMR	F95	yes

Nora Lützgendorf, MODEST14

Nora Lützgendorf, MODEST14

Accretion

• Spherical sink particle (Black Hole)

- Infall from all directions
- Bondi Hoyle Accretion
 - $R_{acc} = 0.05 \times R_B$
 - COMPROMISE:
 Computational Efficiency -Point-Mass Accreter

(Moeckel et al., 2009)

Nora Lützgendorf, MODEST14

Cooling

Nora Lützgendorf, MODEST14

Tests - One Star

Tests - Convergence

Nora Lützgendorf, MODEST14

Tests - Accretion

Nora Lützgendorf, MODEST14

Movie - Particles

Nora Lützgendorf, MODEST14

Nora Lützgendorf, MODEST14

Movie - Temperature

Nora Lützgendorf, MODEST14

Next Steps

1. FINISH TESTS

2. REFINE ACCRETION

- Accretion Radius
- Fractions of gas particles

3. MOVE TO SUPERCOMPUTER

- i.e., SARA
- 4. COMPARE TO OBSERVATIONS

5. EXTEND TO GLOBULAR CLUSTERS AND IMBHs

• AMUSE - combining physics

- Gravitational Dynamics
- Stellar Evolution
- Hydrodynamics

Testing accretion of stellar wind with S-Stars

- > 27 Stars
- Supermassive Black Hole (M = $4.45 \times 10^6 M_{\odot}$)

• Next Steps:

- 1. Refine Accretion
- 2. Run on supercomputer
- 3. Extend to Globular Clusters and IMBHs

Nora Lützgendorf, MODEST14

