The YMC-GC link

Søren S. Larsen

N. Bastian, J. Brodie, S. de Mink, Y. Efremov, J. Eldridge, D. Forbes, F. Grundahl, N. Langer, A. Seth, L. Smith, J. Strader

Testing GC formation scenarios: The Fornax dSph

M_V ~ -13.1 (Mateo 1998)

5 globular clusters (Hodge 1961)

Extremely high GC specific frequency, $S_N \sim 26$ (Milky Way: $S_N \sim 1$)

Image from Letarte et al. (2006)

Fornax 1, 2, 3, 5

HST WFPC2+WFC3 F343N/F555W/F814W

~24 pc

Spectroscopy of Fornax GCs

Fornax dSph GC metallicities from high-dispersion spectroscopy

	[Fe/H]	[Ca/Fe]	$v_r ({\rm km}{\rm s}^{-1})$	Source	
Fornax 1	-2.5 ± 0.1	$+0.15 \pm 0.04$	59 ± 1	Letarte et al. 2006	Indiv. stars
Fornax 2	-2.1 ± 0.1	$+0.20 \pm 0.03$	64 ± 1	Letarte et al. 2006	Indiv. stars
Fornax 3	-2.3 ± 0.1	$+0.25 \pm 0.08$	60.4 ± 0.2	This work	Integr. light
Fornax 4	-1.4 ± 0.1	$+0.13 \pm 0.07$	47.2 ± 0.1	This work	Integr. light
Fornax 5	-2.1 ± 0.1	$+0.27\pm0.09$	60.6 ± 0.2	This work	Integr. light

- Fornax 1, 2, 3, 5 all have [Fe/H] < -2
- Fornax 4 significantly more metal-rich, [Fe/H] ~ -1.4
- [Ca/Fe] moderately super-solar for all five GCs

Larsen et al. (2012)

Field stars and GCs in Fornax: Metallicity distributions

Larsen et al. (2012, A&A 544, L14)

Field stars: Battaglia et al. (2006), corrected for spatial coverage

 $\label{eq:hormalized} \begin{array}{ll} \mbox{For [Fe/H]} < -2: \\ \mbox{Mass in field stars} \thicksim 3 \times 10^6 \ \mbox{M}_\odot \\ \mbox{Mass in GCs} & \sim 1 \times 10^6 \ \mbox{M}_\odot \end{array}$

About 1/5-1/4 of all metal-poor stars in Fornax dSph belong to F1/F2/F3/ F5.

Clusters could at most have been ~4-5 times more massive initially!

And this assumes no other clusters or field stars formed with similar metallicity, no "infant mortality"!

Constraining abundances with photometry

CMDs of Fornax GCs

V-I: Spread consistent with errors F343N-V: Spread larger than errors

Larsen et al., in prep

Radboud University Nijmegen

F343N-F555W colour spreads in the Fornax GCs

Observed colour spreads significantly larger than errors.

Intrinsic spreads ~0.15 mag (if uniform distr.) \rightarrow

 Δ [N/Fe] ~ 2 dex Similar to Galactic GCs.

Red curves:

Double Gaussian fits convolved with error distributions \rightarrow roughly 50% N-enhanced stars (F1/F3/F5: ~60%, F2: ~40%)

M15: 2nd generation less concentrated? (!)

Opposite to trend found by Lardo et al. (2010) for $R > 1 R_h$ (3 pc)

Is Fornax unique? The WLM dlrr

Integrated-light spectroscopy: [Fe/H] ~ -2 Na enhanced, Mg depleted

(Larsen et al. 2014)

WLM field stars vs GC

Figure 2. Full metallicity distribution functions for 126 stars out of 180 stars in our WLM data set in which the spectra had $S/N \gtrsim 10 \text{ Å}^{-1}$. Each panel shows the distribution derived from a different empirical calcium triplet calibration. The full distribution is shown in black, the original 78 stars from the FORS2 data set of Paper I are shown in blue, and DEIMOS spectra of the highest S/N quality are shown in green. Within a given calibration, samples show good agreement, providing confidence in even the lowest S/N DEIMOS stars.

Field stars: <[Fe/H]> = -1.28

10% of stars have [Fe/H]<-1.74

(Leaman et al. 2013, from Ca II IR triplet spectroscopy of RGB stars)

Globular cluster:

Metal-poor ([Fe/H]~-2.0)

Accounts for 17%-31% of metal-poor stars (Larsen et al. 2014)

Na-O anticorrelation in old GCs

What about young clusters?

Resolved photometry of YMCs

NGC1313-A:

- Age ~ 50 Myr
- Mass ~ $3 \times 10^5 M_{\odot}$
- (Larsen et al. 2011)

"Young globular cluster?"

Radboud University Nijmegen

Resolved photometry: Multiple ages..?

.. or interacting binaries?

About 4 of 10 O stars have companions that may interact (Sana & Evans 2010)

Accretion/merging \rightarrow "blue stragglers" and more massive giant stars. May produce effect similar to age spread.

Larsen et al. (2011), using models based on BPASS code (Eldridge & Stanway 2009)

"Young" and "old" stars: different spatial distributions?

Conclusions

- Multiple stellar populations not only in Milky Way GCs but also in Fornax dSph
- Important constraints on GC formation scenarios from dwarf galaxies:
 Large fraction of metal-poor stars in GCs, little mass loss / infant mortality
- Relation to YMCs: Unclear

