The Influence of Eccentric Orbits on Cluster Evolution

Andreas Küpper

Sombrero Galaxy • M104

Orbital eccentricity causes higher mass loss rates

Multi-purpose elliptical-galaxy scf & timetransformed leapfrog integrator

MUlti-purpose Elliptical-galaxy Scf & timetransformed Leapfrog Integrator - MUESLI

Brockamp et al. (2014)

MUlti-purpose Elliptical-galaxy Scf & timetransformed Leapfrog Integrator - MUESLI

Internal cluster evolution (mass loss) is treated analytically

Large fractions of the initial globular cluster population gets destroyed

Large fractions of the initial globular cluster population gets destroyed

Most clusters are disrupted in the Galactic center

Radial isotropy/anisotropy in the outer halo is conserved, center gets tangentially biased

Orbital eccentricity causes higher mass loss rates

All clusters expand rapidly into their Roche lobe

Clusters have a tiny core collapse in the beginning

In the Milky Way halo outer-halo clusters have all large half-light radii

In the Milky Way halo outer-halo clusters have all large half-light radii

Orbital eccentricity causes higher mass loss rates

Global mass function gets depleted as cluster loses mass

Mass function inside half-mass radius gets flattened even without significant mass loss

Low-mass stars are being kicked on long radial orbits into the halo of the cluster

Low-mass stars are being kicked on long radial orbits into the halo of the cluster

+ Most GCs got disrupted by the Galactic tidal field
+ Today rather tangential orbits in the Galactic center
+ Anisotropy in the outer halo is conserved

+ Eccentricity causes higher mass loss for inner halo
+ Evolution similar for deeply embedded clusters
+ Low mass stars are efficiently removed from center

Palomar clusters are very extended and in the very outer halo

Extended clusters have present-day two-body relaxation times of many Gyr

High-mass stars at present day don't seem/don't need to be segregated

