Formation of Low-Mass X-ray Binaries in globular clusters

Natasha Ivanova (UofA)

MODEST14, Bad Honnef, June 5 2014

Low-mass X-ray binaries in GCs

- Compact accretors NS or BH <u>**RLOF**</u> Donors -
- MS, RG, WD/degenerate
- low-mass donor
- **Binary Periods:**
- 10 minutes to ~100 days
- Lx: can appear as a persistent or as a transient source.

Credit: NASA/CXC/A.Hobart

- Formation rates: exceeds that in the field by about 100 times per stellar mass
- Metallicity: bright LMXBs 3 times more likely reside in a metal-rich cluster
- bMSPs: most of known MSPs are located in GCs and 2/3 of them are in binaries. What so UCXBs make?
- Black holes?

field LMXBs: standard scenario

Bhattacharya & van der Heuvel (1991)

common envelope (CE) phase, during which the lowmass star spirals inward through the extended envelope of the massive primary star, and the phase is terminated upon ejection of the common envelope the ejection uses the orbital energy as an energy source and the final binary is much more compact

Further orbit shrinkage due to tides, magnetic braking and gravitational waves in, likely, an eccentric binary and may be a second episode of CE event

magnetic braking (MB) is the process of the angular momentum loss for late type stars by magnetically coupled wind. The efficiency of the braking is proportional to the mass loss rate with stellar wind and magnetic field strength.

Binary shrinks and mass transfer occurs again. Stable mass transfer reveals the system as an X-ray source.

LMXBs in GCs: cheating

kick is the problem: keep them in!

shortcut: dynamical binary formation (BE,TC, PC, triples)

LMXBs in GCs: cheating

(BE,TC, PC, triples)

NSs production & retention

Core-collapse SNe:

Single stars mass range ~8-21 $M_{\odot}(Z=0.02)$ and ~7-19 $M_{\odot}(Z=0.001)$

Natal kick distribution (Hobbs et al 2005) : mean 3d pulsar birth velocity ~ **400 km/s**

more massive intially?

a typical cluster of $2 \times 10^5 \text{ M}_{\odot}$: makes ~3000 CC NSs

with $v_{esc} \sim 40$ km/s: 1 NS will be retained /all single & 15 / all in binaries

NSs production & retention

Electron-capture SNe: degenerate ONeMg core reaches 1.38 Mo

(Miyaji et al. 1980, Nomoto 1984, 1987, Timmes & Woosley 1992,...)

Usual stellar evolution:

a He core is massive enough to form an ONeMg core, but is less massive than is required to form a non-degenerate ONeMg core:

- single stars: 7.7-8.3 $M_{\odot}(Z=0.02)$ and 6.2-6.8 $M_{\odot}(Z=0.0005)$,
- in binary stars it can be from 3 to 20 M_{\odot}

Accretion induced collapse of a WD

• Merger induced collapse.

Might also lead to a formation of a supra-Chandrasekhar WD and accordingly to a heavy and very fast spinning NS (magnetars).

In normal stellar population, only 10-15% of NSs will be formed via ECS most famous probable example - Crab Supernova (Kitaru et al. 2006) Kicks do not exceed 100 km/s (Buras et.al. 2005)

NSs production & retention

Most of retained NSs in a GC are from different ECS channels.

Ratio of Core-Collapsed to ECS ~ I to 30-200 vs ~10 to I in the field. The typical epoch when ECS NSs are formed is 5x10⁷-1.5x10⁹ yr vs 2-3x10⁷yr for CC NSs.

Low-mass dominated NSs mass function? (as post-EC NS mass is ~1.22-1.27 M☉)

with 40 km/s for ECS/AIC:

- •a typical cluster of 2×10⁵ M☉ mass can contain as many as 200-300 NSs (even if all stars were single!),
- •47 Tuc type cluster ($10^6 \text{ M}\odot$) ~ 1000 NSs.

BHs production & retention

Stellar evolution:

- retention fraction after SN kicks 30-40% for v_{ecs} =50 km/s (Belczynski et al. 2006)

Dynamics:

- Spitzer instability and quick evaporation...? not working
- Detailed numerical calculations of BH sub-cluster: in massive clusters, up to ~20% of the BHs may remain; and these clusters do not reach equipartition (o'Leary et al. 2006)
- Monte Carlo of a whole GC: up to 25% of initial BHs remained & participated in interaction with other stars (Downing et al. 2009), up to a half and no BHs sub-cluster at all!! (Morscher et al. 2012).

⇒ at least 10-20% of initially formed BHs can remain in a GC several dozens of BHs per a "typical" GC 1000 BHs per average massive GCs of 6x10⁵M.

Ρ

a GC with intermediate metallicity sometime is called as metal-rich...

P

persistent
 transient

Bright:
L_x>10³⁶ erg s⁻¹

There is NO bright MS LMXB in metal-poor clusters

Ρ

a GC with intermediate metallicity sometime is called as metal-rich...

- persistent transient **Bright**: L_x>10³⁶ erg s⁻¹ There is NO bright MS LMXB in metal-poor clusters

a GC with intermediate metallicity sometime is called as metal-rich...

- persistent transient **Bright**: L_x>10³⁶ erg s⁻¹ There is NO bright MS LMXB in metal-poor clusters

a GC with intermediate metallicity sometime is called as metal-rich...

X-ray Luminocity Function of GCs

I 0³³ erg/s for qLMXBs

Kim et al 2012: the ratio of ~3 in red/blue GCs is valid for all the bins Caveat: the exact boundary between blue and red GCs is not same as for MW and is done using g-z, not [Fe/H]

X-ray Luminocity Function of GCs

different *L*_X implies different donors!!!

Possibly no contribution from MS donors at all

IO³³ erg/s for qLMXBs

Kim et al 2012: the ratio of ~3 in red/blue GCs is valid for all the bins Caveat: the exact boundary between blue and red GCs is not same as for MW and is done using g-z, not [Fe/H]

Effect of Metallicity: NS-MS LMXBs Appearance

Formation: BE, TC Formation has no metallicity dependence

TC: "direct" LMXB formation, some of BE too

Most of time in quiescence

MB : - persistent stage is expected for metal rich only

- it takes longer for low-metallicity MS-NS binaries to start MT

Effect of Metallicity: NS-RG LMXBs Appearance

Dynamically: exchanges.

Appearance: slightly favors metal rich, but also a function of age Caveat: duty cycles are not know well, but can be as long as 30 years

UCXBs formation: physical collisions. Direct LMXB formation.

UCXBs formation: physical collisions. Direct LMXB formation.

UCXBs numbers are consistent with the observed bright LMXBs in Milky Way GCs ONLY IF several % of NS is retained. This is possible ONLY if AIC/ECS are at work(?GCs 10 times more massive initially?)

origin of metallicity dependence: RGs lifetimes

metallicty effect:

- effective cross-section of RGs is higher in metal-rich GCs
- mass of the envelope is larger -> tighter UCXBs

origin of metallicity dependence: RGs lifetimes and possibly age?...(Hansen et al. 2013)

metallicty effect:

- effective cross-section of RGs is higher in metal-rich GCs
- mass of the envelope is larger -> tighter UCXBs

Observed radio MSPs

Observed radio MSPs

Excellent match in numbers & period distribution for all theoretically produced radio bMSPs with the exception for made by UCXBs!

Excellent match in numbers & period distribution for all theoretically produced radio bMSPs with the exception for made by UCXBs!

1) Observed numbers of bMSPs do not match numbers of bright UCXBs in Milky Way GCs:

⊤~10⁸ yr for Lx>10³⁶ erg/s per UCXBs: N_{bmsp}=100
2) Periods do not match
3) Same problem in the field: no any bMSPs that comes from UCXBs (deLoye 2008)

Observed radio MSPs

Excellent match in numbers & period distribution for all theoretically produced radio bMSPs with the exception for made by UCXBs!

 Observed numbers of bMSPs do not match numbers of bright UCXBs in Milky Way GCs: ⊤~10⁸ yr for Lx>10³⁶ erg/s per UCXBs: N_{bmsp}=100
 Periods do not match
 Same problem in the field: no any bMSPs that comes from UCXBs (deLoye 2008)

PSR J1719-1438 (field): 2.2h + Mjup, minimum density 23 g/cm³ (Bailies et al 2011)

It takes more than Hubble time to get to this period.

van Haaften et al. 2013: donor wind, irradiation, evaporation?

NS: triples formation rate

 $N_{tr,ns}/N_{bin,ns} \sim 0.05$ per Gyr (47 Tuc-type) $N_{tr,ns}/N_{bin,ns} \sim 0.15$ per Gyr (Ter 5-type)

~1/3 of the formed triples are Kozai triples ~50% of bMSPs were in triples at some point in their past !

In a hierarchical triple, a distant third body exerts tidal forces on the inner binary. As a result, there is a cyclic exchange of the angular momentum between inner binary and third body, causing variations in the eccentricity and inclination of the stars orbits

(Kozai 1962; Ford, Kozinsky & Rasio 2000; Blaes, Lee & Socrates 2001).

Kozai mechanism, if coupled with tidal friction, could drive the inner binary of the triple system to merge or RLOF before next interaction with other stars: KCTF - "Kozai Cycle with Tidal Friction" (Eggleton & Kiseleva 2006, Fabrycky & Tremain 2007)

NGC 6624: 4U 1820-303

Binary orbital period is ~685s (Stella et al. 1987;Anderson et al. 1997). Period decreases: $(\dot{P}/P)_{obs}$ =-(3.5±1.5)10-8 yr-1 vs predicted \dot{P}/P > 8x 10-8 yr-1

4U 1820-303 has the luminosity variation by a factor of ~2 at a super-orbit period P~170d (Chou&Grindlay 2001).

a hierarchical triple? (Chou & Grindlay 2001)

Prodan & Murray 2012:

 $M_1=1.4M\odot$ (primary NS), $M_2=0.067M\odot$ (secondary WD), $M_3=0.55M\odot$,

ein=0.009, eout=0.0001, i=440.715 (initial mutual inclination),

 $a_{out}=1.5 R_{\odot}$ (outer binary semi-major axis), $P_{out}=0.15d$

NGC 6623: 4U 1820-303

The observed triple LMXBs s hardest to make via encounters. Double/external CE?

To get to this point, a outer binary has to have some additional a.m. loss

GCs BH XRBs: observations

NGC 4472 (Zepf et al. 2008)

- $L_x \sim 4 \times 10^{39}$ erg s⁻¹, strong variability
- strong, broad (2000 km/s) O III emission lines and low Hα/[OIII] ratio
- Could be a BH of 5-20 M_{\odot} , most likely 15 M_{\odot} (Gnedin et al. 2009)

How frequent are ULXs ($L_x > 10^{39}$ ergs/s) in GCs?

- Kim et al. 2006: 8 in 6173 GCs \Rightarrow 2x10⁻⁹ per M_{\odot}
- Humphrey&Buote 2008: 2 in $3782 \Rightarrow 7 \times 10^{-10}$ per M_{\odot}
- Sivakoff 2010: 7 in 6776 GCs \Rightarrow 2x10⁻⁹ per M_{\odot}
- Kim et al. 2012: 24 with $L_x > 5 \times 10^{38}$ ergs/s erg/s, in 5904 GCs
 - sample is big enough to indicate the metallicity dependence!
 - average Mv=-9. Only 7 Galactic GCs are in same weight category
- MS companions? 1000 times harder to form than BH-WD in field, however dominate MW field BH XRB populations.

Observationally inferred formation rates

if only 1 BH remains, R is ~2 LMXB per Gyr per BH
if 10% remains, R is 4x10⁻³ per Gyr per BH

exchanges

Almost no direct LMXB formation unlike NS-RG case, BH-RG collision do not make tight enough binaries

Triples induced mass transfer is the most important mechanism.

The combined rate of all the channels is $\sim 4 \times 10^{-2}$ per BH per Gyr. Retention of 1% of all ever formed BHs is the minimum value to explain the formation rates inferred from the observations.

exchanges

Almost no direct LMXB formation unlike NS-RG case, BH-RG collision do not make tight enough binaries

Triples induced mass transfer is the most important mechanism.

The combined rate of all the channels is $\sim 4 \times 10^{-2}$ per BH per Gyr. Retention of 1% of all ever formed BHs is the minimum value to explain the formation rates inferred from the observations.

Maccarone et al 2010: large X-ray flux variation consistent with to be in a triple

Final points

- Different formation channels are important at different Lx luminosities. MS&WD for Milky Way, WD&RG for extragalactic.
- ECS/AIC are the must *unless* initially <u>ALL</u> GCs were ~10 more massive or natal kicks were totally different from MW NSs.
- radio bMSPs and UCXBs?
- BH-WD LMXBs give new constraints on the dynamical evolution of BH population in GCs.
- metallicity: lifetime of RGs matters.
- triples are crucial for GC LMXBs, but especially for BH XRBs.
- •There is no yet <u>solid</u> scenario to explain faint BH XRBs with non-degenerate donors, especially to catch up with the rate Jay discovers them.