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Thank you

I Thank you for having me here!
I Thank you for the financial support!



Outline

I Influence of initial conditions on blue straggler populations
I Spatial distribution of blue stragglers (bimodal, unimodal, flat)



Why GCs? Why BSs? Why
MOCCA?



Toolkit

Why GCs?
I efficient environment to create exotic objects (e.g. BSs)

Why BSs?
I they might reveal complex interplay between stellar evolution and

stellar dynamics
I two channels of formation: collisions and mass transfer

Why MOCCA?
I it is a Monte Carlo method, but still:

I it provides as many details as N-body codes
I it follows the N-body codes very closely (Giersz 2013)

I it is fast⇔ one can compute many models



Influence of the initial
conditions on the population
of BSs
Can BSs help to narrow down the initial binary properties?



The initial MOCCA models

I many models with different:
I N (300k, 600k)
I fb (0.1 - 0.5)
I mass ratios (uniform, random)
I semi-major axes

I uniform in log scale up to 100 AU
I lognormal distribution up to 100 AU
I binary period distribution Kroupa (1995)
I eigenevolution and feeding algorithm Kroupa (1995)
I new eigenevolution and feeding algorithm Kroupa (2013)

I eccentricities (thermal, thermal + eigenevolution)
I rtid (15 - 400 [pc])
I rh (1 - 40 [pc])

I essentially 2 groups to test:
I influence of the initial conditions on the population of BSs
I formation of the bimodal distribution



BASE model - radii
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Figure: Specific radii for the BASE model

I 300k, fb = 0.2

I fb slightly
higher than
in MW GCs
to have more
BSs

I Plummer model,
IMF = Kroupa
(1991, 1993)

I q = U, a = UL, e = T,
z = 0.001

I rtid = 69 [pc]
I c = rtid/rh = 10, rh

= 6.9 [pc]
I slow increase of the

density, no
core-collapse

I quite standard
model, nothing
unusual



BASE model - population of BSs
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Figure: Population of BSs of different types for the BASE model: EM
(Evolutionary Merger), EMT (Evolutionary Mass Transfer), CBS+CBB
(Collisional Binary-Single/Binary-Binary), EXBS+EXBB (Exchange . . . ),
DBS+DBB (Dissolution . . . )



Different semi-major axes
distributions



BASE model vs. lognormal semi-major axes
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Figure: MOCCA-REF – base model; MOCCA-54 – lognormal distribution of
semi-major axes



BASE model vs. lognormal semi-major axes
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Figure: EM, EMT number ↘. CBS+CBB number ↗



I EM, EMT number↘
I there are essentially less compact binaries to create EM and EMT

BSs
I CBS+CBB number↗

I more dynamical interactions for wider binaries from the lognormal
distribution of semi-major axes

I many of them are just fly-by interactions: semi-major axes are not
changed but eccentricities are

I eccentricities raise to such values (close to 1.0) that a collision is
detected



BASE model vs. Kroupa (1995)

Figure: MOCCA-REF – base model; MOCCA-55 – Kroupa (1995)



BASE model vs. Kroupa (1995)
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Figure: EM, EMT number not significant; CBS+CBB number ↗



Different concentrations



BASE model vs. c = rtid/rh = 60 (rh = 6.9 vs. 1.7 [pc])
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Figure: EM, EMT number essentially not changed (unperturbed primordial
binaries); CBS+CBB number ↗↗↗



Bimodal spatial distribution of
BSs
A few facts. . .



Bimodal spatial distribution

Figure: Bimodal spatial distributions for
selected star clusters, Ferraro et al. (2012)

I maximum at the
center of the cluster,
clear-cut dip in the
intermediate region
and again rise of BSS
in the outer region of
the cluster (but lower
than the central value)

I bimodality, if any, it is
present for star
clusters with various
masses and
concentrations



Bimodal spatial distribution – theories

Figure: Bimodal spatial distribution for
selected star clusters, Ferraro et al. (2012)

I Mappeli (2004, 2006) –
the leading theory
today

I long-term effect of
dynamical friction
acting on the cluster
binary population
since the early
stages of cluster
evolution



Flat and monotonic spatial distributions

Figure: Examples of flat spatial
distributions

Figure: Examples of unimodal spatial
distributions



Bimodal spatial distribution of
BSs
How accurate is the „dynamical clock”?



The ravoid drift for simplified N-body simulation

Figure: Ferraro’s N-body simulation
(Ferraro et al. 2012)

I simplified simulation with:
89% MS, 10% RGB and 1%
BSs

I drift of the ravoid with time



N-body simulation with the drift of the ravoid

Figure: N-body simulations run by
Douglas Heggie

I N-body simulation with the
same initial conditions as from
Ferraro et al. (2012)

I drift of the ravoid with time
visible too, but:

I errors are larger
I dip around ravoid is smaller
I constant drop of RBSS in

outside region



MOCCA simulation with the drift of the ravoid

I MOCCA simulation with the
same initial conditions as from
Ferraro et al. (2012)

I drift of the ravoid similar to the
N-body one



N-body noise of the bins

Figure: 1st, 3rd, 6th and 10th bin for N-body simulation showing large noise



MOCCA noise of the bins

Figure: 1st, 3rd, 6th and 10th bin for MOCCA simulation showing large noise



N-body vs. MOCCA

I MOCCA agrees with N-body
I MOCCA is a proper tool to study the BSs movement in the GCs

I ... one can proceed to the real size GCs
I there is a LARGE noise while looking for the bimodal spatial

distribution



Bimodal spatial distribution of
BSs for real size GCs
Real size GCs > 100k stars



MOCCA, 600k, rtid = 55, c = 20
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Figure: Specific radii like core radius, half-mass radius
etc.

I MOCCA
simulation for
600k stars,
concentration
rtid/rh = 20.0,
rtid = 55 [pc]

I fast evolving GC
– radii change
significantly for
the whole GC

I half-mass
relaxation time
is „short”



MOCCA, 600k, rtid = 55, c = 20
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MOCCA, 600k, rtid = 55, c = 20, T = 1.0 Gyr
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MOCCA, 600k, rtid = 55, c = 20, T = 2.0 Gyr
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MOCCA, 600k, rtid = 55, c = 20, T = 4.8 Gyr
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But there are problems
ravoid goes out of sync with the apparent minimum after ∼ 2trh



MOCCA, 600k, rtid = 55, c = 20, T = 6.4 Gyr
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MOCCA, 600k, rtid = 55, c = 20, T = 10.4 Gyr
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Bimodal spatial distribution is
very transient
It appears and vanishes all the time...



MOCCA, 600k, rtid = 55, c = 20, T = 3.2 Gyr
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NEXT snapshot +200 Myrs, T = 3.4 Gyr
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Transientness of the bimodal distribution

I the number of clear signs of the bimodal distribution was
observed only in 13 out of 53 snapshots between time 1 Gyr and
11.6 Gyr

I 25% chance to see a bimodality for this model



Possible observational implication of the transientness
of the bimodality
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Figure: Bimodal spatial distributions for real star clusters (Harris catalogue)



The case of NGC 6388

Figure: Spatial distribution of BSs for
five globular clusters: NGC 6388, M5,
M3, 47 Tuc and NGC 6752 Lanzoni
(2007).

I all GCs have a clear bimodal
spatial distribution

I the arrows represents the
calculated radius of
avoidance.

I in the case of NGC 6388 its
ravoid does not correspond to
the dip in the number of BSs
which is around 5r/rc

I it suggests that NGC 6388 is
a dynamically old GC – not
dynamically younger as it is
stated by Dalessandro (2008)



The way of binning is very
important



Combining two separate bins into larger one
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Summary

I the initial semi-major axes distribution is crucial
I large number of compact binaries → large number of EM and EMT
I a very unexpected results:

I increase of the dynamical BSs for semi-major axes distributions with
wider orbits

I but still, there is a strong need to distinguish evolutionary BSs from
the dynamical ones

I higher concentrations do not seem to change evolutionary BSs
population

I it gives additional „confidence” that EM, EMT are a result of
unperturbed evolution of the primordial binaries



Summary

I „dynamical clock” - works!
I ..., but it seems it works only „in the morning”

I bimodality is a feature of BSs in GCs
I ..., but very transient one

I bimodality is present even for old, large GCs (dynamically young)

I ..., but very close to the GC’s center
I ⇒ it is not a feature characteristic only for dynamically old GCs



Thank you!

http://www.moccacode.net/

http://www.moccacode.net/

	Outline
	Influence on the initial conditions
	Bimodal spatial distribution

