Properties of blue straggler populations in evolving star clusters based on the MOCCA dynamical simulations

Arkadiusz Hypki

Nicolaus Copernicus Astronomical Center, Warsaw, Poland ahypki@camk.edu.pl

MODEST-14, Bad Honnef, June 30, 2014

Thank you

- ► Thank you for having me here!
- ► Thank you for the financial support!

Outline

- ▶ Influence of initial conditions on blue straggler populations
- ► Spatial distribution of blue stragglers (bimodal, unimodal, flat)

Why GCs? Why BSs? Why MOCCA?

Toolkit

Why GCs?

efficient environment to create exotic objects (e.g. BSs)

Why BSs?

- they might reveal complex interplay between stellar evolution and stellar dynamics
- two channels of formation: collisions and mass transfer

Why MOCCA?

- it is a Monte Carlo method, but still:
 - ▶ it provides as many details as N-body codes
 - ▶ it follows the N-body codes very closely (Giersz 2013)
- it is fast ⇔ one can compute many models

Influence of the initial conditions on the population of BSs

Can BSs help to narrow down the initial binary properties?

The initial MOCCA models

- many models with different:
 - N (300k, 600k)
 - f_b (0.1 0.5)
 - mass ratios (uniform, random)
 - semi-major axes
 - uniform in log scale up to 100 AU
 - lognormal distribution up to 100 AU
 - binary period distribution Kroupa (1995)
 - eigenevolution and feeding algorithm Kroupa (1995)
 - new eigenevolution and feeding algorithm Kroupa (2013)
 - eccentricities (thermal, thermal + eigenevolution)
 - r_{tid} (15 400 [pc])
 - ► r_h (1 40 [pc])
- essentially 2 groups to test:
 - influence of the initial conditions on the population of BSs
 - formation of the bimodal distribution

BASE model - radii

Figure: Specific radii for the BASE model

- ightharpoonup 300k, $f_b = 0.2$
 - ► f_b slightly higher than in MW GCs to have more BSs
- ► Plummer model, IMF = Kroupa (1991, 1993)
- q = U, a = UL, e = T, z = 0.001
- $r_{tid} = 69 [pc]$
- $c = r_{tid}/r_h = 10, r_h$ = 6.9 [pc]
- slow increase of the density, no core-collapse
- quite standard model, nothing unusual

BASE model - population of BSs

Figure: Population of BSs of different types for the BASE model: EM (Evolutionary Merger), EMT (Evolutionary Mass Transfer), CBS+CBB (Collisional Binary-Single/Binary-Binary), EXBS+EXBB (Exchange ...), DBS+DBB (Dissolution ...)

Different semi-major axes distributions

BASE model vs. lognormal semi-major axes

BASE model vs. lognormal semi-major axes

Figure: EM, EMT number

✓. CBS+CBB number

✓

- EM, EMT number \(\sqrt{} \)
 - there are essentially less compact binaries to create EM and EMT BSs
- ► CBS+CBB number /
 - more dynamical interactions for wider binaries from the lognormal distribution of semi-major axes
 - many of them are just fly-by interactions: semi-major axes are not changed but eccentricities are
 - eccentricities raise to such values (close to 1.0) that a collision is detected

BASE model vs. Kroupa (1995)

Figure: MOCCA-REF – base model; MOCCA-55 – Kroupa (1995)

BASE model vs. Kroupa (1995)

Figure: EM, EMT number not significant; CBS+CBB number *>*

Different concentrations

BASE model vs. $c = r_{tid}/r_h = 60 \ (r_h = 6.9 \ \text{vs.} \ 1.7 \ [pc])$

Figure: EM, EMT number essentially not changed (unperturbed primordial binaries); CBS+CBB number / / /

Bimodal spatial distribution of BSs

A few facts...

Bimodal spatial distribution

Figure: Bimodal spatial distributions for selected star clusters, Ferraro et al. (2012)

- maximum at the center of the cluster, clear-cut dip in the intermediate region and again rise of BSS in the outer region of the cluster (but lower than the central value)
- bimodality, if any, it is present for star clusters with various masses and concentrations

Bimodal spatial distribution - theories

Figure: Bimodal spatial distribution for selected star clusters, Ferraro et al. (2012)

- Mappeli (2004, 2006) the leading theory today
 - long-term effect of dynamical friction acting on the cluster binary population since the early stages of cluster evolution

Flat and monotonic spatial distributions

Figure: Examples of flat spatial distributions

Figure: Examples of unimodal spatial distributions

Bimodal spatial distribution of BSs

How accurate is the "dynamical clock"?

The *r*_{avoid} drift for simplified N-body simulation

Figure: Ferraro's N-body simulation (Ferraro et al. 2012)

- simplified simulation with: 89% MS, 10% RGB and 1% BSs
- ightharpoonup drift of the r_{avoid} with time

N-body simulation with the drift of the r_{avoid}

- N-body simulation with the same initial conditions as from Ferraro et al. (2012)
- drift of the r_{avoid} with time visible too, but:
 - errors are larger
 - dip around r_{avoid} is smaller
 - constant drop of R_{BSS} in outside region

Figure: N-body simulations run by Douglas Heggie

MOCCA simulation with the drift of the r_{avoid}

- ► MOCCA simulation with the same initial conditions as from Ferraro et al. (2012)
- drift of the r_{avoid} similar to the N-body one

N-body noise of the bins

Figure: 1st, 3rd, 6th and 10th bin for N-body simulation showing large noise

MOCCA noise of the bins

Figure: 1st, 3rd, 6th and 10th bin for MOCCA simulation showing large noise

N-body vs. MOCCA

- MOCCA agrees with N-body
- MOCCA is a proper tool to study the BSs movement in the GCs
 - ... one can proceed to the real size GCs
- there is a LARGE noise while looking for the bimodal spatial distribution

Bimodal spatial distribution of BSs for real size GCs

Real size GCs > 100k stars

MOCCA, 600k, $r_{tid} = 55$, c = 20

Figure: Specific radii like core radius, half-mass radius etc.

- MOCCA simulation for 600k stars, concentration $r_{tid}/r_h = 20.0$, $r_{tid} = 55$ [pc]
- fast evolving GC

 radii change
 significantly for
 the whole GC
- half-mass relaxation time is "short"

MOCCA, 600k, $r_{tid} = 55$, c = 20

Figure: Half-mass relaxation time

MOCCA, 600k, $r_{tid} = 55$, c = 20, T = 1.0 Gyr

MOCCA, 600k, $r_{tid} = 55$, c = 20, T = 2.0 Gyr

MOCCA, 600k, $r_{tid} = 55$, c = 20, T = 4.8 Gyr

But there are problems r_{avoid} goes out of sync with the apparent minimum after $\sim 2t_{rh}$

MOCCA, 600k, $r_{tid} = 55$, c = 20, T = 6.4 Gyr

MOCCA, 600k, $r_{tid} = 55$, c = 20, T = 10.4 Gyr

Bimodal spatial distribution is very transient It appears and vanishes all the time...

MOCCA, 600k, $r_{tid} = 55$, c = 20, T = 3.2 Gyr

NEXT snapshot +200 Myrs, T = 3.4 Gyr

Transientness of the bimodal distribution

- the number of clear signs of the bimodal distribution was observed only in 13 out of 53 snapshots between time 1 Gyr and 11.6 Gyr
- ▶ 25% chance to see a bimodality for this model

Possible observational implication of the transientness of the bimodality

Figure: Bimodal spatial distributions for real star clusters (Harris catalogue)

The case of NGC 6388

Figure: Spatial distribution of BSs for five globular clusters: NGC 6388, M5, M3, 47 Tuc and NGC 6752 Lanzoni (2007).

- all GCs have a clear bimodal spatial distribution
- the arrows represents the calculated radius of avoidance.
- in the case of NGC 6388 its r_{avoid} does not correspond to the dip in the number of BSs which is around $5r/r_c$
- it suggests that NGC 6388 is a dynamically old GC – not dynamically younger as it is stated by Dalessandro (2008)

The way of binning is very important

Combining two separate bins into larger one

Summary

- the initial semi-major axes distribution is crucial
 - large number of compact binaries → large number of EM and EMT
 - a very unexpected results:
 - increase of the dynamical BSs for semi-major axes distributions with wider orbits
 - but still, there is a strong need to distinguish evolutionary BSs from the dynamical ones
- higher concentrations do not seem to change evolutionary BSs population
 - it gives additional "confidence" that EM, EMT are a result of unperturbed evolution of the primordial binaries

Summary

- "dynamical clock" works!
 - ..., but it seems it works only "in the morning"
- bimodality is a feature of BSs in GCs
 - ..., but very transient one
- bimodality is present even for old, large GCs (dynamically young)
 - ..., but very close to the GC's center
 - ightharpoonup \Rightarrow it is not a feature characteristic only for dynamically old GCs

```
Thank you!
  http://www.moccacode.net/
```