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Michel Hénon
(1931-2013)
at IAU Symposium
69, Besançon,
France, 1974

His contributions to collisional stellar dynamics

1. Theory of relaxation (1958–1960)

2. Escape from isolated star clusters
(1960–1969)

3. Self-similar solutions of the Fokker-Planck
equation (1961–1965)

4. The Monte Carlo method (1967–1975)
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Digression: Hénon Units

I A system of units introduced by Hénon (1971) for Monte
Carlo simulations of star cluster dynamics

I I propose we adopt this system of units to honour Hénon’s
memory

I I propose that we abandon the system called N-body units

I Hénon units are defined so that

G = 1 (constant of gravitation)

M = 1 (total mass)

E = −1

4
(total energy)

I Fortunately these are the same as N-body units, and so only
the name changes
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I A system of units introduced by Hénon (1971) for Monte
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Escape from an isolated cluster (equal masses)

1. Ambartsumian (1938)
I Tail of Maxwellian above escape speed is replenished every

relaxation time Tr

I
dN

dt
= −ξ1N

Tr
(ξ1 constant ' 0.0069)

2. Hénon (1960)
I General formula for cluster described by distribution function

f (E )

I Structure
dN

dt
= − ξ2N

Tr ln Λ
(ln Λ is Coulomb logarithm) Λ ∝ N

3. Hénon (1965)
I Self-similar solution of Fokker-Planck equation

I
dN

dt
= 0

4. These are estimates of the escape rate from two-body
encounters
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Reconciling the results
Summary:

Ṅ =


−ξ1N/Tr Ambartsumian 1938 (1a)

−ξ2N/(Tr ln Λ) Hénon 1960 (1b)

0 Hénon 1965 (1c)

I Hénon (1960) showed that, as a star diffuses towards the
escape energy, its period grows very quickly, and therefore its
rate of relaxation decreases sufficiently rapidly that the escape
energy cannot be reached in finite time. Therefore (1a) is
wrong.

I A derivation of the Fokker-Planck equation from a more
general master equation neglects terms which are of order
logN smaller than the Fokker-Planck terms. Therefore escape
is also neglected. Thus (1b), (1c) are consistent.

I We shall come back to (1a)
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Empirical results
Baumgardt, Hut, Heggie 2002

Why does the escape time scale
decrease as N increases?

Complication: escape rate
affected by post-collapse
expansion, which slows down all
dynamical processes.
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Hénon’s homological model (1965)1

I Isotropic, isolated model

I Expands with constant mass

I Radius R ∝ t2/3

I Energy evolves like Ė = −ζE
Tr

(ζ constant)

I Energy supplied by binary-single (i.e. 3-body encounters)
within the core

I Approximately applicable to expanding isolated N-body
models, but –

I Not quite constant mass
I Models with different N do not have exactly the same

structure (Baumgardt et al 2002)
I Models not isotropic (ibid)

1Trans. F Renaud (2011)
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The escape rate

I Assume Ṅ = −k1
N

Tr

(Ambartsumian),Ṙ = k2
R

Tr
(Hénon)

I Assuming
Coulomb logarithm constant,

N = N0

(
1 +

k1(t − t0)

νTr0

)−ν
where ν =

2k1
3k2 − k1

I Suppose half stars escape at

T1/2. Then k1 ' ν21/ν
Tr0

T1/2
.

I Baumgardt+ (2002) give
T1/2, ν for N = 128 – 8192
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“The relatively close agreement
.... is clearly somewhat
fortuitous” – Lyman Spitzer Jr
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Why does Ambartsumian’s formula work, even though
Hénon says it is wrong?

Answer: three-body escape (maybe)
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“Hénon’s Principle” (1975)

I You can calculate the luminosity of a star without knowing
anything about the source of stellar energy (Eddington 1926)

I Similarly you can calculate the energy generated in the core of
a star cluster without knowing what generates it (Hénon 1975)

I The core adjusts so that the energy released equals that of

the self-similar solution, i.e. Ė = −ζE
Tr

I Energy source must exist
(otherwise core collapse)

I Energy source must be
centrally concentrated

I May be true only in
time-averaged sense
(gravothermal oscillations)
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Three-body escape

I Assume post-collapse expansion is powered by interactions
involving hard binaries in the core, where the potential is φc

I By the time its energy is of order |mφc |, where m is individual
stellar mass, it has ejected a few stars, and then ejects itself

I Hence heating rate is related to escape rate by Ė = mṄεφc
(Goodman 1984), where ε ∼ 1

I By “Hénon’s Principle”, which states that Ė = −ζE
Tr

, we get

Ṅ = − ζE

Trmεφc

I Assume E ∝ Nmφc . Hence Ṅ = −ζ
′N

Tr
, i.e. Ambartsumian

However, is it true that E ∝ Nmφc?
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Where escapers are created

Radius (units of 10% Lagrangian
radius) against escaper energy
(units 1kT)
Baumgardt+ 2002

Three mechanisms of escape

1. Three-body interactions
(high-energy, low radius)

2. Two-body interactions
(intermediate energy and
radius)

3. Induced escapers (low
energy, large radius)

I Weakly bound particles
I Escape because of the

decreasing potential well,
and/or

I Escape because of recoil
of the cluster from
energetic escapers
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Summary and comments
What is the escape rate from an isolated star cluster?

I Our best estimate has not
substantially changed in 76 years,
though we do not know why
Ambartsumian’s estimate is correct
(Hénon’s 1960 argument), despite
understanding much more about
the problem

I Theoretical improvements would
require attention to issues such as

1. departures from homological
evolution

2. anisotropy

I Numerical improvements depend
on attention to several details, e.g.

1. The velocity of the density centre
2. The required accuracy of very

long simulations

V.A. Ambartsumian
http://heyhoheyho.blogspot.co.uk
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Three-body escape
I Assume post-collapse expansion is powered by interactions

involving hard binaries in the core, where the potential is φc
I By the time its energy is of order |mφc |, where m is individual

stellar mass, it has ejected a few stars, and then ejects itself
I Hence heating rate is related to escape rate by Ė = mṄεφc

(Goodman 1984), where ε ∼ 1

I By “Hénon’s Principle”, which states that Ė = −ζE
Tr

, we get

Ṅ = − ζE

Trmεφc
I In steady post-collapse expansion, central part of cluster

nearly isothermal, and core population Nc ∝ N1/3 (Goodman

1987). Hence
E

mφc
∝ 1

lnN
, and so Ṅ ∼ − N

Tr ln Λ
I However, for N >∼ 7000, post-collapse expansion is not steady,

binary activity may occur near minimum core radius of
gravothermal oscillations. Hence three-body escape rate even
slower.
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