Ultra-deep IR Imaging of the GC M4: Hunting for Brown Dwarfs in Globular Clusters Andrea Dieball – University of Southampton, UK

Christian Knigge – University of Southampton, UK Mike Rich – University of California, USA Aaron Dotter – Australian National University, Australia France Allard – Centre de Recherche Astronomique de Lyon, France Dave Zurek – American Museum of Natural History, USA Harvey Richer – University of British Columbia, Canada Antonino Milone - – Australian National University, Australia Luigi Bedin – INAF, Osservatorio Astronomico die Padova

What is a Brown Dwarf?

• Not a star:

- cannot sustain H-fusion (sub-stellar, "failed stars")
 - \rightarrow cool forever
- less massive than $\approx 0.07 M_{\odot}$
- cooler than \approx 2100 K (Dieterich et al. 2014, solar neighbourhood)

Artist's renditions: Dr. Robert Hurt of the Infrared Processing and Analysis Center, CALTECH

- Not a planet:
 - different formation
 - $M_{BD} > 13 M_{Jupiter}$
 - Can sustain D-burning

(is there a distinction between lowest mass BDs and planets?)

What is a Brown Dwarf?

Like a star: • BD form in the same way as stars do (Andre et al. 2012) (But do they?)

Like a planet:
Complex atmospheres

BDs represent a link between lowest mass stars and planets

Credit: Gemini Observatory/Artwork by Jon Lomberg

And why do we want to study BDs?

BDs represent a link between lowest mass stars and planets

- Can teach us about the low mass end of the H-burning sequence
 - Mass-Luminosity relation
 - Initial Mass function
- Can teach us about exoplanet atmospheres
 - BD and planet structure and atmospheres
- Star, BD and planet formation

How do BDs form?

Several mechanisms have been proposed:

- Turbulent compression and fragmentation of molecular gas produce collapsing cores over a wide range of masses
 → BDs form just like stars (e.g. Whitworth & Goodwin 2005, Hennebelle & Chabrier 2008)
- Ejection from multiple protostellar system, preventing the ejected stellar embryo to accrete more mass (Reipurth & Clarke 2001)
- Photoionisation from nearby OB stars removes envelope and disk from low-mass protostars, producing BDs (e.g. Kroupa & Bouvier 2003)
- Gravitational fragmentation of protostellar disks (Thies et al. 2010, Basu & Vorobyov 2012)

Image credit: P. Marenfeld & NOAO/AURA/NSF

Why Brown Dwarfs in Globular Clusters??

- Large samples of BDs are known today (SDSS, 2MASS, WISE, UKIDSS, Pan-STARRS,...)
- DwarfsArchive.org: 1281 spectroscopically confirmed L, T and Y dwarfs
- But: all of those are rather metal-rich (solar neighbourhood) or metallicity and age are unconstrained

 \rightarrow determining the physical properties of BDs is difficult and the major hurdle in BD research!

Benchmark BDs at known age, distance & metallicity are crucial if we are to test and improve theories about star/BD/planet formation, evolution, and structure!!

Why Brown Dwarfs in Globular Clusters??

Finding BDs in star clusters can considerably improve the situation \rightarrow BDs have been found in young, open clusters & star forming regions (e.g. de Oliveira 2013)

Need to find benchmark metal-poor BDs

But: Only very few halo BDs (i.e. old and metal-poor) are known (Burgasser et al. 2002, 2009;...; Deaconn et al. 2012; Burningham et al. 2014) \rightarrow GCs are old (>10 Gyr) and metal-poor

- harbour the oldest BDs from the era of star formation in MW & Universe
- GC IMF down to and beyond the H-burning limit:
 - universal IMF, breaks in IMF, BDs formation
 - dynamics of GC and impact on MF
 - formation & evolution of our Galaxy

Which Globular Cluster? – Target Selection

GCs are distant and old, and BDs are faint!

- \rightarrow Target clusters should be close
- →Ultra-deep optical data should be available
 - Matching BD candidates
 - Testing predicted metallicity effects
 - PM cleaning

Ideal targets for deep IR observations: M4 & NGC 6397

Theoretical Predictions: Spectral Energy Distribution

SED of VLMS and BDs is governed by molecular absorption.

- TiO, VO optical
- $H_2O IR$

Collision induced absorption of H_2O depletion of TiO and VO become more dominant with decreasing metallicity (e.g. Allard et al. 1997)

→ depresses IR and shifts flux to the near-IR
 → bluer SEDs with decreasing metallicity!

2000 K model spectra created with the Phoenix Web Simulator

Theoretical Predictions: CMDs

• Optical: VLMS monotonically fainter & redder, independent of [Fe/H]

- IR-optical: VLMS of metal-poor isochrone turns blue
- IR: metal-poor much bluer than metal-richer isochrone

Theoretical Predictions: Brown Dwarf Cooling Models

- Stars at the H-burning limit retain the same luminosity for longer than the Hubble time
 As a BD cools, its luminosity decreases
- → gap in luminosity between the lowest mass stars and the brightest BDs could be a new age dating tool

VLMS and BD cooling models kindly provided by I. Baraffe

The Globular Cluster M4: optical

- Distance: 2.2 kpc, [Fe/H]= -1.16
- Deep optical HST ACS imaging: F606W 24000sec, F775W 8400sec

Bedin et al. 2009, ApJ, 697, 965

The Globular Cluster M4: IR

HST WFC3: F110W 5220 sec

F160W 10440 sec

The Globular Cluster M4: IR CMD

- Best-fit photometry
- Deepest IR CMD of a GC to date!
- Expected end of MS at F110W≈24 mag
- CMD ≈ 4 mag deeper and well into the BD region
- WD sequence
- Split in VLMS

The Globular Cluster M4: IR – optical CMDs

۲

Unselected data WDs Bottom of IR MS (> 24 mag)

IR matches to optical WD candidates No optical matches fainter than F110W = 26 mag **Deep IR Imaging of the GC M4:** Hunting for Brown Dwarfs in Globular Clusters Conclusions – so far

- Deepest near-IR of a GC so far!
- Approx. 4 mags below the predicted end of the H-burning sequence
- Numerous BD candidates
 - However: so far no optical matches
- IR counterparts to optical WD sequence

The Globular Cluster M4: Multiple Stellar Populations along the VLMS

M4 was previously not known to harbour multiple MSs

High precision photometry of ACS optical and IR data set, concentrating on the low-mass MS, reveals 2 populations of M-dwarfs below the MS knee:

- ~38 % (MSI, green)
- ~62 % (MSII, magenta)

Milone, Marino, Piotto, Cassisi, Dieball et al. 2014, MNRAS, 439, 1588

The Globular Cluster M4: Multiple Stellar Populations along the VLMS

Comparing observed and predicted colours suggests
MSI: primordial abundance
MSII: enhanced in He, N, Na and depleted in O

The Globular Cluster M4: Multiple Stellar Populations along the VLMS

M4 is now only the third GC (after NGC2808 and NGC5139) for which multiple stellar populations along the VLMS have been confirmed!

NGC 2808 – well known for its three MS sequences • Merge at the MS knee

• Split into 2 sequences along the VLMS M4 split smaller than in NGC 2808 due to small O-depletion of 2nd generation in M4 **Deep IR Imaging of the GC M4:** Hunting for Brown Dwarfs in Globular Clusters Outlook

• PM cleaning the deep IR data set

- Based on optical data
- 2nd epoch of IR data ?

Add data from the M4 core project (WFC3/F775W)

 $\rightarrow LF$

 \rightarrow low-mass MF

ightarrow calibrate low-mass models

• Deep near-IR imaging of NGC 6397 ?

→ ideal target cluster as we already have 6 optical BD candidates!

Richer et al. 2008, AJ, 135, 2141