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What are Ultra-compact
dwarf galaxies (UCDs) ?



Pressure-supported stellar systems
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Pressure-supported stellar systems

normal elliptical
galaxies
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Pressure-supported stellar systems
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Pressure-supported stellar systems
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mass-to-light ratio

The M/L ratios of UCDs
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The M/L ratios of UCDs
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Why are the M/L
ratios of UCDs
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The M/L ratios of UCDs
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Why are the M/L

ratios of UCDs
higher than those of
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Dark matter?



mass-to-light ratio

The M/L ratios of UCDs
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ratios of UCDs
higher than those of
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Dark matter?

different stellar
populations!?
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non-baryonic cold dark matter -
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appreciable amount of it (Murray 2009).



Dark matter in UCDs!?

Dark matter in UCDs cannot be
non-baryonic cold dark matter -
UCDs are too compact to contain an
appreciable amount of it (Murray 2009).

|

This motivates to have closer look at the stellar
populations of UCD:s.
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The stellar populations of UCDs

Compare the M/L ratios of UCDs with predictions
from models for stellar populations.

For this, an stellar initial mass function (IMF) has to
be assumed:

The canonical IMF



The canonical IMF:
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The canonical IMF:
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This IMF is apparently invariant in open clusters (Kroupa 2001),
which makes it a good initial assumption for UCDs as well.



observed over canonical M/L ratio

The M/L ratios of UCDs
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The M/L ratios of UCDs
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observed over canonical M/L ratio

The M/L ratios of UCDs
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The most likely M/L ratios of
UCDs exceed the prediction of
simple stellar population models

(with the canonical IMF)!

(Dabringhausen, Hilker & Kroupa 2008)
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number density

Possible variations of the IMF

Bottom-heavy IMF:
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Possible variations of the IMF

Bottom-heavy IMF:
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Possible variations of the IMF

Bottom heavy IMF:
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Possible variations of the IMF
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Top heavy IMF:
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Top-heavy IMF in UCDs



Top-heavy IMF in UCDs

Vary the high-mass part of the IMF such that stellar
remnants can explain the M/L ratio of UCDs
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Top-heavy IMF in UCDs

Vary the high-mass part of the IMF such that stellar
remnants can explain the M/L ratio of UCDs
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Top-heavy IMF in UCDs

Vary the high-mass part of the IMF such that stellar
remnants can explain the M/L ratio of UCDs
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Top-heavy IMF in UCDs

Vary the high-mass part of the IMF such that stellar
remnants can explain the M/L ratio of UCDs
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(Dabringhausen, Kroupa & Baumgardt 2009)
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Tracing neutron stars and black holes
in UCDs

Neutron stars (NSs) and black holes (BHs) in
UCDs remain invisible unless they accrete matter

If NSs and BHs accrete matter, they become X-ray
sources that can be observed

NSs and BHs can accrete matter from an evolving
low-mass companion star

Such binary systems are called low-mass X-ray
binaries (LMXBs)
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The encounter rate
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LMXBs in GCs and UCDs in
the Virgo Cluster

The encounter rate for GCs and UCDs in Virgo:
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LMXBs in GCs and UCDs in
the Virgo Cluster

Comparison to observational results for the LMXB-
frequency:
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LMXBs in GCs and UCDs in
the Virgo Cluster

Comparison to observational results for the LMXB-
frequency:
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LMXBs in GCs and UCDs in

the Virgo Cluster

Is there an IMF such that the probability for an LMXB
in a UCD can be proportional to the encounter rate!
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Fitting the encounter rate to the
LMXB-frequency

A variation of the IMF implies that the
parameters ng, ns and 0 change in the encounter rate
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Fitting the encounter rate to the
LMXB-frequency

A variation of the IMF implies that the
parameters ng, ns and 0 change in the encounter rate
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Thus, an appropriate set of these parameters has to be
found in order to explain the LMXB-frequency in UCDs
with a variation of the IMF.



Fitting the encounter rate to the
LMXB frequency
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Fitting the encounter rate to the
LMXB frequency
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Fitting the encounter rate to the
LMXB frequency
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LMXBs in GCs and UCDs in

the Virgo Cluster

Is there an IMF such that the probability for an LMXB
in a UCD can be proportional to the encounter rate!
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LMXBs in GCs and UCDs in

the Virgo Cluster

The LMXB-frequency in UCDs in the Virgo Cluster
can be explained with a top-heavy IMF!
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Initial conditions of UCDs

Top-heavy IMFs in UCDs explain their M/L ratios
and their LMXB-frequencies.
(Dabringhausen et al. 2009)
(Dabringhausen et al. 2012)



Initial conditions of UCDs

Top-heavy IMFs in UCDs explain their M/L ratios
and their LMXB-frequencies.
(Dabringhausen et al. 2009)
(Dabringhausen et al. 2012)

Top heavy IMFs imply however
extreme initial conditions for the UCD:s.

(Dabringhausen et al. 2010)
(Marks et al. 2012)
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Initial conditions of UCDs

Consider a UCD with 10 ’ solar masses today.
Initially, it may have had:

® A mass of some 108 solar masses...

® . .but a half-mass radius of only a few pc!
(expansion through mass-loss!)

e A population of 10° O-stars...



Initial conditions of UCDs

Consider a UCD with 10 ’ solar masses today.
Initially, it may have had:

® A mass of some 108 solar masses...

® . .but a half-mass radius of only a few pc!
(expansion through mass-loss!)

® A population of 10° O-stars...

® _.with a total luminosity of 10 ' solar
luminosities.



