Galactic Cepters

R. Capuzzo Dolcetta *3 Junel 2014*

Thanks to Pavel and Sambaran for the invitation.

Some former and present collaborators: F. Anntonini, M. Arca Sedda, A. Mastrobuono Battisti, D. Merritt, P. Miocchi, M. Spera,

Thanks also S. Mikkola for discussions.

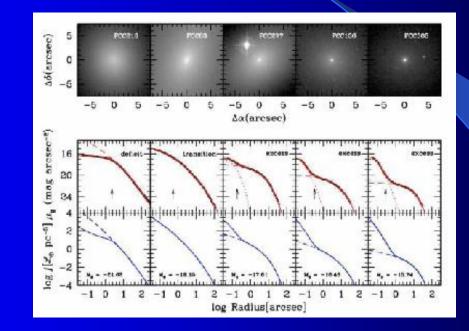
host 2500 euros

4 GPUs 1200 euros

Speed 16TFlops

Power: 1.5 KW

Cost: 3700 euros


Massive 'compact objects' in galactic centers

SMBHs - MBHs - resolved stellar nuclei - NSCs $(10^6 \div 10^{10} M_{\odot})$ $(10^5 \div 10^8 M_{\odot})$ decreasing host galaxy luminosity increasung steepness of the lum. profile

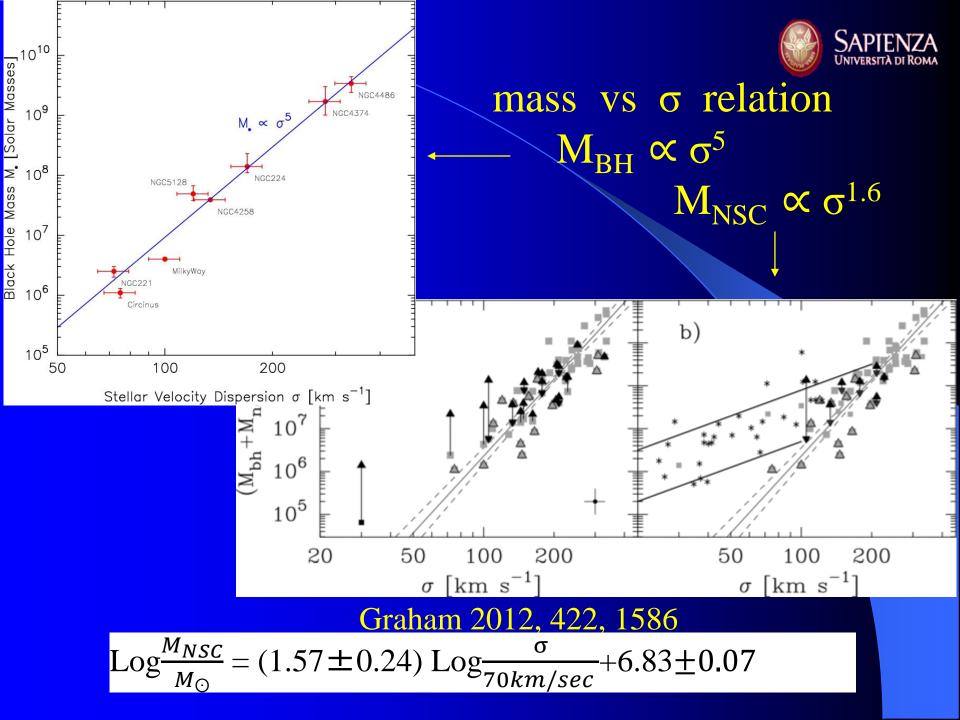
Brighter galaxies host more massive and compact objects *Fainter* galaxies have more peaked luminosity distribution

Resolved stellar Nuclei found in galaxies fainter than $M_{\rm B} = -19.5$

Decreasing luminosity → ACSFCS sample (Turner et al. 2012)

• The MW and a handful of other galaxies are also known to contain **both** an NSC and an MBH (Seth et al. 2008a, Graham & Driver 2007, Graham & Spitler 2009), and the ratio of MBH to NSC mass in these galaxies is of order <u>unity</u>.

• In models of NSCs, the dynamical influence of a MBH should therefore be **considered**, at least in bulges brighter than about $10^9 L_{\odot}$ which are believed to always contain an MBH (Ferrarese & Ford 2005).



How do NSCs form?

Two competing models hve been proposed so far:

• The *gas model* : gas migrates to the center of the galaxy where then forms stars (Schinnerer et al. 2006, 2008).

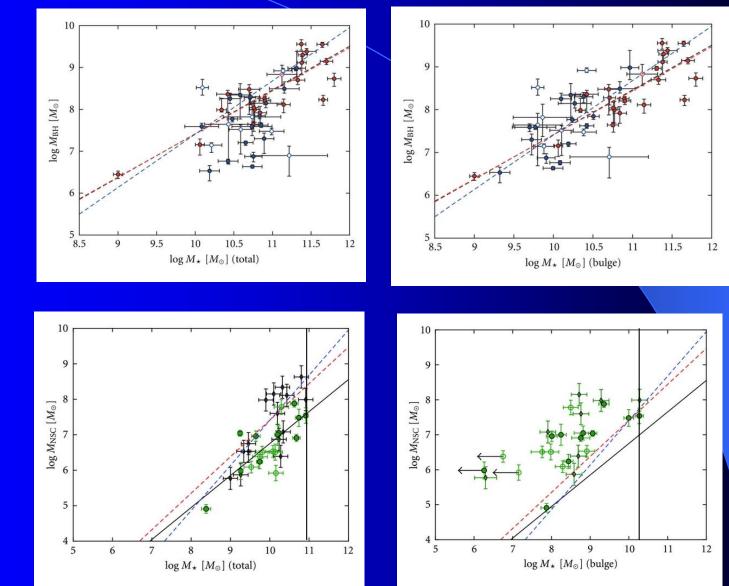
 The dry *merger model*: massive clusters migrate to the center via dynamical friction and merge to form a dense nucleus (Tremaine et al. 1975, Ostriker 1988, Capuzzo-Dolcetta 1993, Miocchi & Capuzzo-Dolcetta 2008, Agarwal & Milosavljevic 2011).

A simple interpretation of the NSC M vs σ scaling law

Hypothesis: singular isothermal sphere

$$\rho(r) = \frac{1}{2\pi G} \frac{\sigma^2}{r^2},$$
$$M(r) = \frac{2\sigma^2}{G}r,$$
$$v_c^2 = 2\sigma^2.$$

The GC orbital evolution due to dynamical friction is governed by


$$\frac{dL}{dt} = \sqrt{2}\sigma\dot{r} = r\ddot{r}_{df} = -0.4276\frac{GM\ln\Lambda}{r}$$

$$r^{2}(t) = r^{2}(0) - 0.6047GM \ln \Lambda \frac{t}{\sigma}$$

$$\Downarrow$$

$$M_{n}(t) = \frac{2\alpha}{G} \sigma^{2} r(t_{0}) = \frac{2\alpha}{G} A t^{1/2} \sigma^{3/2}$$

BHs

NSCs

Some simulations ...

Ingredients

• Host galaxy: represented by a <u>self-consistent particle model</u>; contains a massive BH.

• **The GCs**: massive GCs evolved up to a King quasi-equilibrium profile, initially located at close distance from the galactic center.

Computations:

Done with **PhiGRape**, **NBSymple and HiGPUs**, high-precision, direct sum, parallel codes running on composite CPU+GPU systems.

MBH-GC

movingBH

<u>simultaneousmerger</u>

consecutivemerger

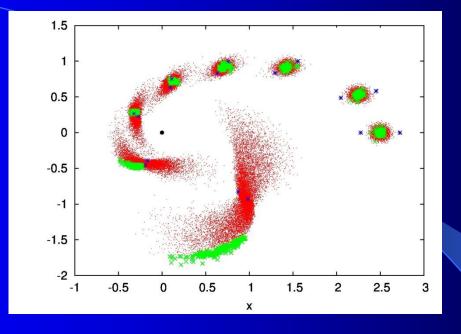
SMBH

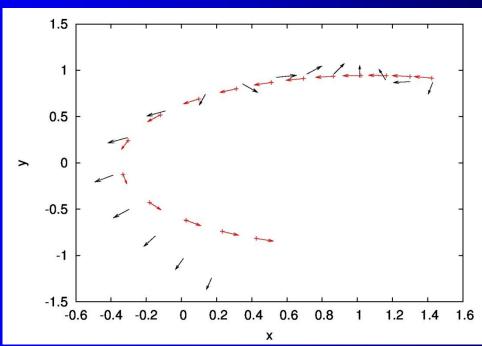
<u>MBH</u>

High velocity stars from a GC

High velocity stars from a compact GC

High velocity stars from a GC





.

High velocity stars from a compact GC

•

Regularized 3 body integrations

Immediate ejection

C

Delayed ejection

Release to the MBH and ejecton

Release to and recapture from MBH

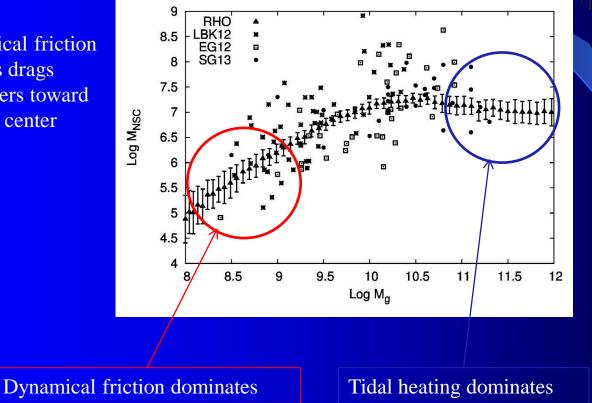


Conclusions

What we found:

In galaxies with $M_g > 5 \times 10^{10} M_{\odot} (M_{SMBH} > 5 \times 10^8 M_{\odot})$ SMBH tidal forces are strong enough to disrupt most of the incoming clusters, preventing the formation of a nucleated region within the galactic center.

Clusters which move on eccentric orbits lose a population of stars that are ejected from the galaxy at high velocities. This can be a complementary mechanism to explain the origin of High-Velocity Stars are observed in galactic haloes.



Thanks for the attention

How do Nuclear Clusters form?

The dry merger model

 The dynamical friction (df) process drags stellar clusters toward the galactic center

Leigh et al., 2012, MNRAS, 424,2130

> The tidal heating (th) process disrupt the in falling stellar clusters

from Arca Sedda & Capuzzo Docetta, 2014, submitted to MNRAS)

- Resolved stellar nuclei
- in <u>faint ellipticals</u>: ACS Virgo (Cote' et al. 2004) and Fornax (Jordan et al. 2007) Cluster Surveys.

frequency of nucleation:

66% Virgo, 72% Fornax less than 10% of nuclei are offset for 0.5"

It is argued that they are the **low-mass counterparts** of nuclei hosting **SBHs** detected in <u>bright</u> <u>galaxies</u>.

Nuclear clusters

in <u>late-type spiral galaxies</u> (Böker 2008): superdense systems with mass in the range $10^5 \div 10^8$ M_{\odot}. They reveals a <u>close match</u> in terms of size, luminosity, and overall frequency (but the latter have a young component).

• Global -to- nucleus scaling relations do exist : this imply a link among *large* (galaxy) and *small* (nuclear environment) space-time scales (Capuzzo-Dolcetta 1993; Rossa et al. 2006, etc.).