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There are many talks on potential sources of gravitational
radiation in globular clusters:

Rasio - Aarseth -+ Mapelll
- Strader -+ Knigge - Tauris
- Giersz - lvanova
- van den Berg - Lanzoni

... SO | will give a tutorial on gravitational wave
observations and provide some examples of their use Iin

understanding clusters.
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BICEP2 B-mode signal
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Right ascension [deg.]

We are entering the age of
gravitational wave astronomy

BICEP2 Collaboration: arXiv:1403.3985v2

BICEP2 results indicate primordial gravitational wave

2014

background from inflation.
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We are entering the age of
gravitational wave astronomy

Right ascension [deg.]

BICEP2 Collaboration: arXiv:1403.3985v2

2014 BICEPZ2 results indicate primordial gravitational wave
background from inflation.



_e* >’ NANOGrav
The transformational advance

The NANOGrav PFC will open a new observational window onto the nano-Hz band of the GW
spectrum.

10—14

NANOGrav 2010 upper
limit (Demorest et al 201 3)

PPTA upper limit
«—— (Shannon et al 2013)

Expected amplitude range
for SMBBH background

Strain
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NANOGrav PRELIMINARY \ Year astrophysically
2014 sensitivity from current data  Projected NANOGrav 2014

sensitivity interesting territory!

“It is important to remember that this is a decisive timesin the gravitational wave detection effort...”



ESA L3 Mission

Scheduled launch:
2034
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eLISA: Sensitive to mHz

SMBH mergers
Extreme Mass Ratio Inspirals
Compact Object Binaries
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Acceleration noise (1 test mass)
3x10"*ms'/VHz

Armlength response
10° m (0.15 Hz cut-off)

Interferometry
(incl. shot noise)
12x10"2 m/vHz
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o1 Advanced Virgo

AdvanCed LIGO/V Il’gO " N\ o [EEEarly (2016-17, 20 - 60 Mpc)
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Design Sensitivity 2019
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Advanced LIGO/Virgo

First Science Runs 2015
Design Sensitivity 2019
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SOURCES

Wave Period
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DETECTORS

THE GRAVITATIONAL WAVE SPECTRUM

quantum fluctuations in the very early Universe
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THE GRAVITATIONAL WAVE SPECTRUM

quantum fluctuations in the very early Universe
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These are approprlate for globular cluster
sources
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What is a gravitational

wave?
+ Perturbation in the - Affects measured
metric of space- distances between
time. objects.

- Quadrupolar - Two polarizations



What is a gravitational
wave?
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Interferometry

- These detectors all rely on a
form of interferometry to

detect the changing _
distance. e i By

test mass - test mass

-

splitter photodetector

fest mass

- Instantaneously detects a
single polarization.



Binary Waveforms

- Power and polarization depend - Low frequency sources (eLISA)

on orientation of orbital plane. have very small power
radiated, can approximate by
monochromatic waves.
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2-axis

Z-axis

X-axis

Y-axis

Y-axis



- High frequency sources - Need NR or PN expansion
will include inspiral and

merger (and ringdown if + Spins and frame dragging
final object is a black hole). ~ Will precess the orbital
plane.
6 - I
s
2 |
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20 40 60 80 100 120

time [arbitrary units]
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+ Detection through ‘Matched Filtering’

- Model the waveform with parameters for relevant

physical properties
- All the usual orientation angles /

Mchirpa 77:M1M2/M27 f7 f
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-+ Spins, sky location, distance CM

- Parameters may be degenerate
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0 12 24 36 48 60
Solid Angle (deg)’ Area of 68% Credible Region (95% in Gray)

F1G. 6.— The uncertainties on the sky of 160 BNS systems in the HLV detector configuration. Each region represents a single injection,
with the colored central region representing the 68% uncertainty region on the sphere, and the gray shade representing the 95% uncertainty
region. The color scheme indicates the total solid angle size of the 68% region. Note the similar shape of the uncertainty regions at
particular points; this is due to the specific pattern of sensitivity over the sky for the three-detector network.



0

Solid Angle (deg)” Area of 68% Credible Region (95% in Gray)

Fic. 7.— The same as Fig 6, except for the HLVI detector configuration. Note the substaintally lower average uncertainties on the skies
for the majority of the injections. Also note the lack of large, “banana-shaped” uncertainties that were recovered by the HLV configuration.
The two improvements are due to the breaking of the plane degeneracy that is facilitated by the transition to a four-detector network.
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Localization (PSF)




Localization (PSF)




Amplitude Modulation

awin~ ¢

MJB, De Goes, Lunder 2004
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Detections with LIGO/Virgo are expected in ~2016-2018.

After the first detection ...
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Detections with LIGO/Virgo are expected in ~2016-2018.

After the first detection ...

... but then what”
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Galactic Globulars

Most likely to be LISA sources.

Angular resolution ~ 1 square degree.

Can use targeted searches.

Will identify all sources within a given globular.

More detall on sources in today's talks.

21



Some comments ...
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Some comments ...

e 2034 is very far into the future

* Improved observations with traditional telescopes
may answer several questions

e Of course they may also raise new guestions

* Improved simulations may answer several
guestions

* Of course they may also raise new questions

Some examples of questions that may be answered by eLISA
observations:

22



Close white dwarf binaries in globular clusters

Modeling the
population with
standard assumptions
shows an
enhancement of short
period systems over
the field population

Varying these
assumptions produces
significant variations in
the population.

eLISA would provide a
census of the shortest
period systems.
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Close white dwarf binaries in globular clusters

Modeling the
population with
standard assumptions
shows an
enhancement of short
period systems over
the field population

Varying these
assumptions produces
significant variations in
the population.

eLISA would provide a
census of the shortest
period systems.
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Neutron star binaries (progenitors of LMXBs, MSPs)

* Observable objects are current and post MT.
* Pre-MT inspiral phase are best GW sources.
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Figure 3. Companions in binary systems formed via physical collision with
a RG during the scattering experiment (Z = 0.001). The triangles are WDs,
the circles are He stars; the solid symbols denote the systems that started the

MT before 11 Gyr.



Neutron star binaries (progenitors of LMXBs, MSPs)

* Observable objects are current and post MT.
* Pre-MT inspiral phase are best GW sources.

. Terzan 5
. mass gain via CE

lvanova +, 2008
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Figure 3. Companions in binary systems formed via physical collision with
a RG during the scattering experiment (Z = 0.001). The triangles are WDs,
the circles are He stars; the solid symbols denote the systems that started the

MT before 11 Gyr.



Binary Black Holes
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Extragalactic BBH may be detectable to ~20 Mpc
Hinojosa, MB, in prep

BBH from globulars will be more massive due to low
metallicity and dynamical interactions.

Distance vs ChirpMass Percentage of Detection Distance vs LogFrequency Percentage of Detection
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eLISA error
DOX
superimposed
on a chart of
the Virgo

cluster,
centered on
NGC 4365 for
a typical BBH
signal.
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FiG. 7.— A three color (gri) Suprime-Cam image of NGC 4365, with its globular cluster (GC) candidates marked by small circles. This
image is a zoom-in at ~ 18" x 17’ (~ 120 x 110kpc) of the original, which is three times the area. An HST/Advanced Camera for Surveys
image mosaic was also used to select GCs out to ~ 4’ from the galactic center. Blom et al. (2012a) determined that NGC 4365 has
64504110 GCs and that its GC system extends beyond 9.5 galaxy eﬁf@ctive radii.




L IGO/Virgo Sources

LIGO/Virgo frequency range of 10 Hz - 2 kHz

Coalescences of NS, BH binaries are in this range.

Rare events — extragalactic clusters.

Binary Type | NS-NS | NS-BH | BH-BH
Range (Mpc)| 300 650 1000
Rates (yr 40 |10 20

Advanced LIGO website

N.B. rates paper [CQG, 27, 173001 (2010)] gives horizon distances,
which are ~2.26 times larger than the average distance (which we

call the range).

Rates paper ignores dynamically formed binaries.
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How to distinguish cluster binaries!?

® Field binaries may have aligned spins

® Evidence from mass transferring systems. (XTE
J I 550'564) Steiner & McClintock,Ap], 745:136, 2012.

® Kicks may disrupt the alignment

® Resonant alignments Gerosa + 2013,2014
® Star formation rate/delay times
® Cluster binaries should have unaligned spins

® Early epoch of cluster formation plus rapid mass
segregation

31



Conclusion/Summary

Gravitational waves provide a complementary view
of compact binaries compared with e+m waves.

eLISA will explore ultra-compact binaries
throughout the Galactic globular cluster system.

eLISA may observe high-mass black hole binaries
within ~15 Mpc. These are most likely globular

cluster sources.

LIGO/Virgo will observe NS/B

binary

coalescences within 300 Mpc — 1 Gpc. Many of
these will be dynamically formed.
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Commentary

e |t dynamical evolution models produce detached
compact object binaries with mHz orbital
frequencies, consider gravitational waves as
additional discriminators.

 Much of LIGO/Virgo event rates do not include
dynamically formed systems.

* Additional eLISA sources (e.g.: compact object +

smbh/mbhb) are present in galactic nuclei, but are
not part of this talk.
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