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Outline

• We study the emergence of dynamical instabilities in stellar dynamical models charac-
terized by a strong degree of differential rotation and relatively low values of the ratio
of the rotational kinetic energy to the gravitational energy t = Krot/|W |.

• The instabilities are dominated by coherent global modes with azimuthal number m =
1, 2. For the relevant unstable modes, corotation occurs inside the rotating configuration.

• Such instabilities show striking similarities with the dynamical instabilities observed in
low t differentially rotating fluid polytropes.

• This result represents a first step in the investigation of the analogies between stellar and
fluid rotating spheroidal systems in a regime currently unexplored.

Method and initial conditions

We consider the class of axisymmetric rotating equilibria [9] defined by the DF:

fWT (I) = A exp(−aE0){exp[−a(I − E0)]− 1 + a(I − E0)} (1)

if E ≤ E0 and fWT (I) = 0 otherwise, with I = E − [ωJz/(1 + bJ2 cz )]. The family of
self-consistent models is characterized by two main parameters (Ψ, χ), measuring the
depth of the central potential well and the central rotation strength, respectively. We
consider configurations in the regime of strong differential rotation, that is, such that

0.4 ≤ ω̂/ω̂max ≤ 1.0, where ω̂ = 3χ1/2 is the central dimensionless angular velocity.

Id N Ψ χ ω̂/ω̂max t ρmax/ρ0 σ1 σ2/2

C2R90 65536 2 3.92 0.9 0.16 5.37 2.90 0.75
C2R70 65536 2 2.37 0.7 0.14 3.35 3.66 0.58
C2R50 65536 2 1.21 0.5 0.12 1.92 - 0.91
C2R40 65536 2 0.75 0.4 0.11 1.43 - 0.85

The dynamical evolution of the models is studied by means of N-body simulations
performed with starlab. The systems are followed until T/TD = 35, where TD =

[3π/(16Gρ90)]
1/2 is the dynamical time associated with the sphere enclosing 90% of the

mass of the system. Here the analysis focuses on model C2R90, for details about the
other models see [10].

The instabilities are dominated by global m = 1, 2 modes
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The instabilities are studied by means of
a Fourier analysis of the density distribu-
tion of the models. We define the com-
plex coefficient associated with the mode
of azimuthal number m as:

Cm =
1

2π

∫ 2π

0
ρ(R, z, φ;T ) e−imφdφ (2)

with the normalized coefficient
Am(R, z;T ) = Cm(R, z;T )/C0(R, z;T ).

The tangent of the phase angle of the
m-th mode is then defined as

φm = tan−1
[

−ℑ(Am)

ℜ(Am)

]

(3)

and the associated pattern speed is given
by σm/m = (∂φm/∂T )/m.

Fig. 1: Fourier analysis of the density of model C2R90. Top panel: Growth of the amplitude of the
Fourier coefficient |Am|, for m = 1, 2, 3, 4. Bottom panels: Cosine of the phase angle φm for the dominant
modes m = 1, 2.

Morphological evolution

Fig. 2: Time evolution of the surface density of model C2R90, projected on the equatorial plane (x, y). An
m = 1 (lop-sided) mode emerges by T/TD = 5 and then gives way to an m = 2 (bar) mode by T/TD = 30.
In each panel, the surface density is normalized to the maximum value; from red to black, the isodensity
contours correspond to Σ/Σmax = 0.77, 0.65, 0.5, 0.3, 0.1, 0.05, 0.01, 0.001. Time is expressed in units of the
dynamical time and spatial coordinates are in N-body units.

Corotation points appear when modes become unstable
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The corotation point is defined as the
radial position in the configuration at
which the pattern speed of a given
mode is equal to the angular velocity of
the system ω(Rcor) = σm/m.

From the calculation of the pattern
speed of the m = 1, 2 modes at different
times of the evolution, it appears that
the corotation point associated with the
m = 1 mode disappears almost exactly
when the m = 1 becomes subdomi-
nant with respect to the m = 2 mode
(T/TD ≈ 8).

Fig. 3: Radial profile of the angular velocity of the model C2R90 at different times of the evolution. Thick
horizontal lines mark the pattern speeds of the two dominant modes m = 1, 2 in the two phases of the
evolution.

Curious about
the initial

equilibria?
See [9] for details!

While in the moderate rotation regime the equilibria are dy-
namically stable and suited for describing rotating globular
star clusters [1], here we focus on the strong differential ro-
tation regime in which the configurations show an off-center
density maximum.

Analogies with differentially rotating fluid polytropes

The surprising discovery of an unsta-
ble m = 1 mode in polytropes with
strong differential rotation [2] kindled
a revival of interest in the study of sta-
bilities of rotating fluids.

Numerical studies [5] [7] have con-
firmed that m = 1, 2 modes can be-
come unstable in a variety of differ-
entially rotating fluid models, having
values of t as low as t ≈ 0.01 [8].

The study of the stability of differ-
entially rotating spherical shells sug-
gests that the unstable modes are
characterized by corotation within
the system [11].

The models presented in this study
may be interpreted broadly as stellar
dynamical counterparts of the fluid
systems examined by [2] and [7].

Fig. 4: Time evolution of the isodensity contours in the equatorial plane of a differentially rotating poly-
tropic model with index n = 3.33 and t = 0.14 (taken from Fig. 2 in [2]).

The role of the degree of differential rotation

Too simplistic to describe the emergence
of dynamical instabilities in rotating stellar
systems by means of the parameter t alone!

We further investigated the role of
the degree of differential rotation by
means of an additional series of N-
body simulations.

The initial configurations are charac-
terized by a King (1966) density dis-
tribution with Ψ = 7 in which the “j-
constant” rotation law is introduced

ω(R) = ωcA
2/(A2 + R2) (4)

where R is the cylindrical radius and
A = R90/n.

The degree of differential rotation is
measured by d = n2 + 1. The global
amount of rotation is measured by t
(teff denotes the value of t after a
short initial transient phase).

Fig. 5: Green, yellow, and red dots denote stable, marginally stable, and unstable configurations, respec-
tively. Dashed lines mark the critical values (t = 0.14, 0.27) for dynamical instability according to [4] and
the sequence of Maclaurin ellipsoids (e.g., see [3]).
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Animations!
http://alvarri.com/dyninstab
Questions?
annalisa.varri@gmail.com
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