Early Evolution of Rotating Star Clusters
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Outline Morphological evolution Rotation and Anisotropy
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Fig. 1: Top panel: Rotation curve of 47 Tuc, fitted by an axisymmetric rotating VB12 model [16] (taken
from [3]). Bottom left panel: Schematic view of the velocity field of the young massive star cluster R136
from the VLT-FLAMES Tarantula Survey, solid line denotes the optimal rotation axis (taken from [10]).
Bottom right panel: Velocity field of M5 from the IFU instrument VIRUS-W; solid line denotes the kine- P — T — e ik

matic PA, green arcs the photometric PA. (taken from [7]).

Density slope - Anisotropy relation

Recently, it has been demonstrated
[2] [6] that in an anisotropic spheri-
cal stellar system the density pro-
# file slope ~ 1is related to the
/ " anisotropy [ by the inequality
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Fig. 2: Time evolution of the surface density of models (left to right column) F24 3a (clumpy, cold, ro-
tating), H3a (homogeneous, cold, rotating), and Hla (homogeneus, cold, non-rotating) projected on the P ' h f' : ‘dered
equatorial plane (z,y). The systems are evaluated at 7" = 0, 2, 4, 20 N-body time units (top to bottom row). I The  contigurations  considere

Method and initi al Conditions The spatial coordinates are scaled with respect to the initial half-mass radius. Although characterized by - In our Study are consistent with
the same initial value of (),,,, the depth of the collapse experienced by the models is significantly affected this relation. We wish to em-

by the presence of rotation and clumpiness. Note also that some rapidly rotating models in our survey , : L.
may be dynamically unstable with respect to bar modes (e.g., see the bottom left panels). L B s e e e phasize that this is one of the

first examples in which this in-
equality has been shown to hold
y also for non-spherical rotating

Fig. 6: Beta-gamma plane for the selection of models (tangentially-biased) stellar sys-
presented in Figs. 4 and 5.

We designed a survey of N-body simulations to investigate the effects of non-
vanishing total angular momentum on the dynamics of dissipationless collapse (see
also [9][11][1][8][4]). The initial configurations are characterized by homogeneous and
inhomogeneous density distributions and uniform rotation, with different values of
Qrot = 2K,ot/|W| and Qran = 2Kran/|W |, where K and W denote the kinetic and po-
tential energy, respectively. All models (N = 65536 equal-mass particles) have been
followed during the collapse phase, until the configurations have reached equilibrium
conditions (typically, at least ' = 20 N-body units). All simulations have been per-
formed with starlab [13].
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