The impact of metallicity on the dynamics of young star clusters

Alessandro A. Trani (SISSA), Michela Mapelli (INAF-OAPd), Alessandro Bressan (SISSA)

AIM:

We investigate the impact of stellar evolution and dynamics onto core collapse and post-core collapse phase in young massive ($M \sim 3 \times 10^4 \text{ M}_{\odot}$) star clusters (SCs) with different metallicities.

SIMULATIONS:

100 direct N-body simulations (N=50000) of SCs with metallicity $Z = 1, 0.1, 0.01 Z_{\odot}$ King model with $W_0=5$ SET A: dense SCs ($r_{vir} = 1$ pc), SET B: loose SCs ($r_{vir} = 5$ pc)

CODE:

STARLAB software environment (Portegies Zwart et al. 2001), with upgraded stellar evolution recipes, including metallicity dependence of black hole mass (Mapelli & Bressan 2013)

Two heating processes:

Stellar mass loss
makes potential well shallower
stronger in metal-rich SCs
relevant in the early life of the SC

Binary hardening

- increases the kinetic energy
- enhanced in metal-poor SCs
- relevant only after core collapse

RESULTS: The evolution of the half-mass radius depends on how the core collapse timescale (t_{cc}) and the stellar evolution timescale (t_{se}) compare

SET A: $t_{cc} \sim t_{se}$

Fig. 1: Total binary binding energy E_b (top panel), core radius r_c (middle panel) and half-mass radius r_{hm} (bottom panel) as a function of time for SCs of different metallicities. Solid red line: $Z=0.01 Z_{\odot}$; dashed black line: $Z=0.1 Z_{\odot}$; dotted blue line $Z=1 Z_{\odot}$. E_b is normalised to the initial average kinetic energy of a star in the SC (k_bT_0). Each line is the median value of 10 runs. Dense SCs with initial $r_{vir}=1$ pc, $N=5\times10^4$, $W_0=5$. With these initial conditions, $t_{cc} \sim 3$ Myr is comparable to $t_{se} \sim 6$ Myr.

- Binary hardening is delayed in metal-rich SCs, because of stronger stellar winds,
- core collapse occurs at the same time, independently of metallicity,
- core radius expansion occurs earlier in metal-rich SCs, because of stellar winds,
- half-mass radius expands more in metal-poor SCs, because of heating by binary hardening (~15% larger $r_{\rm hm}$ than that of metal-poor SCs)

SET B: $t_{cc} \gg t_{se}$

Fig. 2: Same as Fig. 1, but for looser SCs ($r_{vir}=5 \text{ pc}$, $N=5\times10^4$, $W_0=5$). Because of the longer two-body relaxation timescale, these SCs have a core collapse timescale much longer than the timescale of mass loss by stellar evolution. ($t_{cc} \gg 6 \text{ Myr} \sim t_{se}$).

- Evolution dominated by the stellar mass loss, which is a source of heating and causes the SCs to expand,
- core collapse delayed in metal-rich SCs (only Z=0.01Z₀ SCs undergo core collapse before 100 Myr),
- binary hardening starts in post-collapse phase, ONLY in metal-poor SCs
- half-mass radius begins to expand more than that of metal-rich SCs (differences in half-mass radius <10% throughout the simulations)

Fig. 3: Core radius as a function of time for three individual dense SCs of set A ($r_{vir} = 1 pc$, $N=5\times10^4$, $W_0 = 5$). Top panel, solid red line: $Z=0.01 Z_{\odot}$; middle panel, dashed black line: $Z=0.1 Z_{\odot}$; bottom panel, dotted blue line $Z=1 Z_{\odot}$.

- Core radius oscillations in dense SCs are driven by strong three-body encounters,
- the oscillation strength increases for the decreasing metallicity of the SC,
- the higher maximum remnant mass in low-metallicity SCs explains the stronger and more frequent three-body encounters

References: Trani et al., in prep. Mapelli & Bressan, 2013, MNRAS, 430, 3120 Portegies Zwart et al., 2001, MNRAS, 321, 199

