The Physical Properties of Low-z Ovi Absorbers in the OverWhelmingly Large Simulations

Thorsten Tepper García

in collaboration with:

Philipp Richter (Universität Potsdam)
Joop Schaye (Sterrewacht Leiden)
Tom Theuns (Durham)
Craig Booth (Sterrewacht Leiden)
Rob Wiersma (Sterrewacht Leiden)

Institut für Physik und Astronomie
Universität Potsdam

Astroseminar
September 24, 2009
The Baryon Budget ($z \geq 2$)

OBSERVATIONS:

- e.g. Weinberg+97, Butler & Tytler 97, 98, Rauch+98
- $\sim 90\%$: Lyα Forest
- $\sim 10\%$: gravitationally bound structures (clusters, galaxies, etc.)

SIMULATIONS:

- e.g. Cen+94, Zhang+95, Miralda-Escudé+96, Hernquist+96
- $\sim 75 - 90\%$: diffuse component ("intergalactic gas")
- $\sim 10 - 25\%$: contained in other phases, mainly condensed gas ("stars" and "galaxies")

Good News:

Simulations in good agreement with observational results
The Baryon Budget \((z \approx 0)\)

- **OBSERVATIONS**
 - \(\sim 30\%\)
 - \(\sim 10\%\)
 - \(\sim 10\%\)
 - ?

- **SIMULATIONS**
 - \(\sim 40\%\)
 - \(\lesssim 20\%\)
 - WHIM

Legend:
- Green: Diffuse Gas
- Red: Hot Gas
- Blue: Stars
- Purple: "Condensed"
Warm-Hot-Intergalactic Medium (WHIM)

Characteristics

- **Shock-heated intergalactic gas**
- **High temperatures:** \(T \approx 10^5 - 10^7 \) K
- **Low densities:** \(n_H \approx 10^{-6} - 10^{-5} \text{ cm}^{-3} \)
- **Highly-ionised plasma**
- \(\text{H}^{\text{II}}, \text{He}^{\text{II}}, \text{He}^{\text{III}}, \) and traces of highly-ionized O, Ne, C
- **Observationally Challenging:**
 - Diffuse, soft (< 0.25 keV) X-ray emission (\(\text{Davé+01} \))
 - Broad and shallow Ly\(\alpha \) absorption (BLAs; e.g. Richter+04)
 - X-ray / E(F)UV line absorption from highly-ionized O, Ne, C (e.g. Cen & Ostriker '99)
OVERALL RESULTS

- High incidence rate (relative to e.g. Mg\text{\textsc{ii}})
- Heavy metal content $\sim 10\%$ Solar
 \rightarrow well reproduced by simulations
- Multi-phase systems (as traced by H\text{\textsc{i}} and O\text{\textsc{vi}})
- Significant baryon reservoirs ($\sim 0.1 \Omega_b$)

No general consensus about:

- O\text{\textsc{vi}} absorbers being tracers of WHIM

 e.g. Tripp+08, Thom & Chen 08, Oppenheimer & Davé 09 vs. Danforth & Shull 08, Cen & Fang 06

- Ionization state (photoionized, collisionally ionized, or both) of O\text{\textsc{vi}} bearing gas

 \rightarrow Uncertainty in the baryon content of the gas traced by O\text{\textsc{vi}}
Cosmological SPH Simulations of Structure Formation:

- Initial conditions taken from WMAP3
- CDM, gas, stars, optically thin radiation
- Evolution of structure from $z = 127 \rightarrow z = 0$
- Self-consistently Computed:
 - Star Formation (Dalla Vecchia & Schaye 08, Schaye & Dalla Vecchia)
 - SNe Feedback (Galactic Winds) (Wiersma+09b)
 - Timed Release of Heavy Elements (Wiersma+09b)
 - Radiative Cooling including photoionization (Wiersma+09a)
 - AGN Feedback (Booth & Schaye 09)
Spectrum 32 short z0.403 o6 DEFAULT–L100N512 S/N= 50.000 region: 1 / 1 lines: 9 / 9

SpecWizard Spec Fit (modified AutoVP)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Transmission
Restframe Velocity [km/s]

9 $N_{\text{O}_6}=10^{13.88} \pm 10^{12.62}$ $b=9.41 \pm 0.18$ $EW=57.41$ $z=0.4209$
8 $N_{\text{O}_6}=10^{14.00} \pm 10^{12.61}$ $b=17.17 \pm 0.24$ $EW=86.35$ $z=0.4209$
7 $N_{\text{O}_6}=10^{13.37} \pm 10^{12.78}$ $b=15.35 \pm 2.25$ $EW=26.04$ $z=0.4206$
6 $N_{\text{O}_6}=10^{13.43} \pm 10^{12.72}$ $b=7.42 \pm 0.47$ $EW=26.19$ $z=0.4205$
5 $N_{\text{O}_6}=10^{13.73} \pm 10^{11.95}$ $b=6.81 \pm 0.07$ $EW=41.15$ $z=0.4204$
4 $N_{\text{O}_6}=10^{13.74} \pm 10^{11.51}$ $b=5.90 \pm 0.04$ $EW=39.24$ $z=0.4203$
3 $N_{\text{O}_6}=10^{13.83} \pm 10^{11.86}$ $b=8.53 \pm 0.09$ $EW=51.63$ $z=0.4201$
2 $N_{\text{O}_6}=10^{13.94} \pm 10^{11.88}$ $b=7.96 \pm 0.09$ $EW=50.59$ $z=0.4200$
1 $N_{\text{O}_6}=10^{14.54} \pm 10^{11.85}$ $b=10.17 \pm 0.02$ $EW=107.95$ $z=0.4199$

SpecWizard Spec Fit (modified AutoVP)
MOST mass in LARGE volume

OVI traces tail at moderate densities
photoionized

shock-heated

Probability Distribution Function

Temperature [K]

OVI absorbers
mass weighted
OVI absorbers
mass–weighted

OVI is found in gas with \(\langle Z \rangle \sim 0.1Z_\odot \)
Cooling time contours adapted from Wiersma+08

\[t_{\text{cool}} \equiv \frac{3}{2} \frac{k T}{n \Lambda} \]

\[\begin{align*}
 t_{\text{cool}} &> t_{\text{Hubble}} \\
 t_{\text{cool}} &< t_{\text{Hubble}}
\end{align*} \]
Cooling time contours adapted from Wiersma+08

\[t_{\text{cool}} \equiv \frac{3 k T}{2 n \Lambda} \]

Photoionization cannot be neglected
Stronger absorbers trace higher (over-)densities
→ observations might be biased towards lower temperatures
Summary

- **UNCERTAINTY** in the nature and physical properties of O\textsc{vi} bearing gas inferred from observations
 - Need for simulations

- **RESULTS:**
 - O\textsc{vi} traces gas in the low-temperature regime of the predicted WHIM phase, with a mean heavy-element content around 10% solar and overdensities in the range 10 - 100
 - Estimated average baryon content of 6.22 %, i.e.
 \[\Omega_{\text{WHIM}}(O\textsc{vi}) \approx 0.062\Omega_b \]

- **DISAGREEMENT** between different studies of O\textsc{vi} absorbers using simulations
 - Need for more detailed analysis and more constraints from observations