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• general adaptive moments (GLAM)

Problem:
Z

d2x I(x) generally diverges.

One solution: introduce weights w(x) � 0
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and use weighted moments
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• general adaptive moments (GLAM)

GLAM use adaptive weights by least-square fitting an elliptical 
template to the image, i.e., by minimising
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★ GLAM ε  (and centroid) of best-fit template 
is that of the adaptively weighted image;  

★ the radial weight profile is 

★ GLAM ε is independent of w(r)  for elliptical 
 galaxy images (is third flattening of iso-contours); 

★ for any weight w(r) and any I(x), the GLAM ε is an unbiased 
estimator of reduced shear;  

★ unweighted moments are special case of GLAM, 
 
 

★ adaptive, moment-based ellipticities are not fundamentally 
different to model-based ellipticities;   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• Bummer: we need the pre-seeing GLAM ellipticity.



• ignore pixel noise; optimal guess for pre-seeing ellipticity? 
 
 step 1: assume L is regular (no information loss)

pre-seeing profiles are very finely pixelated; cost function is

then obtain pre-seeing ellipticity form post-seeing image:

Therefore, we fit in post-seeing frame template Lfρ  
with metric                             (no bias!).U := (LLT)�1
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The inverse of (33) is given by

ϵ =
ϵs + g
1 + ϵsg∗

. (34)

We recover for the GLAM ellipticity ϵ exactly the transformation
law of unweighted moments (SS97). The GLAM ellipticity ϵ is
therefore an unbiased estimator of the reduced shear g along the
line-of-sight of the galaxy, and there is no need to determine
unweighted moments.

As a side remark, the transformation between ϵ and ϵs is a
linear conformal mapping from the unit circle onto the unit cir-
cle, and from the origin of the ϵ-plane onto the point −g in the ϵs-
plane. If |g| > 1, then g has to be replaced by 1/g∗ in Eq. (34), but
we shall not be concerned here with this situation in the strong
lensing regime.

2.4. Point spread function and pixellation

We have defined the GLAM ellipticity ϵ of an image I(x) rel-
ative to an adaptive weight f (ρ). This definition is idealized in
the sense that it assumes an infinite angular resolution and the
absence of any atmospheric or instrumental distortion of the im-
age. Equally important, it ignores pixel noise. In this section, we
move one step further to discuss the recovery of the original ϵ
of an image after it has been convolved with a PSF and pixel-
lated. The problem of properly dealing with noise in the image
is discussed subsequently.

Let Ipre(x) be the original image prior to a PSF convolution
and pixellation. This we call the ’pre-seeing’ image. Likewise,
by the vector Ipost of Npix values we denote the ’post-seeing’
image that has been subject to a convolution with a PSF and
pixellation. For mathematical convenience, we further assume
that Ipre(x) is binned on a fine auxiliary grid with N ≫ Npix pix-
els of solid angle Ω. We list these pixel values as vector Ipre. The
approximation of Ipre(x) by the vector Ipre becomes arbitrarily
accurate for N → ∞. Therefore we express the post-seeing im-
age Ipost = LIpre by the linear transformation matrix L applied to
the pre-seeing image Ipre. The matrix L with N × Npix elements
combines the effect of a (linear) PSF convolution and pixellation.
Similarly, we bin the template f (ρ) in the pre-seeing frame to the
grid of Ipre, and we denote the binned template by the vector f ρ;
as usual, the quadratic form ρ is here a function of the variables
(x0, ϵ, t), Eq. (6). The GLAM parameters ppre of the pre-seeing
image are given by the minimum of E(p|Ipre), or approximately
by

Epre(p|Ipre) := (Ipre − A f ρ)T(Ipre − A f ρ) ≈ 2Ω−1E(p|Ipre) . (35)

For the recovery of the pre-seeing ellipticity ϵ, the practical chal-
lenge is to derive the pre-seeing parameters ppre from the ob-
served image Ipost in the post-seeing frame. For this task, we
assume that the transformation L is exactly known. Note that a
linear mapping L is an approximation here; we ignore the nonlin-
ear effects in the detector (Plazas et al. 2014; Gruen et al. 2015;
Niemi et al. 2015; Melchior et al. 2015).

For a start, imagine a trivial case where no information is
lost by going from Ipre to Ipost. We express this case by a trans-
formation L that can be inverted, i.e., we have N = Npix and L is
regular. We then obtain ppre by minimising Epre(p|L−1Ipost) with
respect to p: we map Ipost to the pre-seeing frame and analyse
Ipre = L−1Ipost there. This is equivalent to minimising the form
(Ipost − AL f ρ)T(LLT)−1(Ipost − AL f ρ) in the post-seeing frame.

For realistic problems where L−1 does not exist, because
N ≫ Npix, this trivial case at least suggests to determine the

high-res template with PSFhigh-res template

pixelated template pixelated template with PSF

Fig. 1. Examples of GLAM templates in the pre-seeing frame, f ρ (top
left), and the post-seeing frame, L f ρ (other panels); the templates are
Gaussian radial profiles with f (ρ) = e−ρ/2. The bottom left panel simu-
lates only pixellation, whereas the right column also shows the impact
of a PSF, indicated in the top right corner, without (top) and with pixel-
lation (bottom).

minimum ppost of the new functional

Epost(p|Ipost) := (Ipost − AL f ρ)TU(Ipost − AL f ρ) (36)

as estimator of ppre. This way we are setting up an estimator by
forward-fitting the template f ρ to the image in the post-seeing
frame with the matrix U being a metric for the goodness of the
fit. Clearly, should L−1 exist we recover (35) only by adopting
U = (LLT)−1. So we could equivalently obtain ppre, without bias,
by fitting L f ρ to the observed image Ipost in this case. However,
realistically L is singular: the recovery of ppre from (36) can only
be done approximately. Then we could at least find an optimal
metric to minimise the bias. We return to this point shortly. In
any case, the metric has to be positive-definite and symmetric
such that always Epost ≥ 0. Note that the moments at the min-
imum of (36) are related but not identical to the adaptive mo-
ments in the post-seeing frame. To obtain the latter we would fit
a pixellated f ρ with U = 1 to Ipost. The bottom and top right im-
ages in Fig. 1 display examples of post-seeing templates that are
fitted to a post-seeing image to estimate ppre with the functional
(36).

For singular L, the minimum of the functional yields an un-
biased ppre for any U if

1. Ipre(x) has confocal elliptical isophotes with the radial bright-
ness profile S (x);

2. and if we choose f (ρ) = S (ρ) as GLAM template;
3. and if Epost has only one minimum (non-degenerate).

To explain, due to 1. and 2. we find a vanishing residual

Rpre = Ipre − A f ρ = 0 , for p = ppre , (37)

at the minimum of Epre and consequently Epre(ppre|Ipre) = 0. At
the same time for any metric U, we also have Epost(ppre|Ipost) = 0
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The inverse of (33) is given by

ϵ =
ϵs + g
1 + ϵsg∗

. (34)

We recover for the GLAM ellipticity ϵ exactly the transformation
law of unweighted moments (SS97). The GLAM ellipticity ϵ is
therefore an unbiased estimator of the reduced shear g along the
line-of-sight of the galaxy, and there is no need to determine
unweighted moments.

As a side remark, the transformation between ϵ and ϵs is a
linear conformal mapping from the unit circle onto the unit cir-
cle, and from the origin of the ϵ-plane onto the point −g in the ϵs-
plane. If |g| > 1, then g has to be replaced by 1/g∗ in Eq. (34), but
we shall not be concerned here with this situation in the strong
lensing regime.

2.4. Point spread function and pixellation

We have defined the GLAM ellipticity ϵ of an image I(x) rel-
ative to an adaptive weight f (ρ). This definition is idealized in
the sense that it assumes an infinite angular resolution and the
absence of any atmospheric or instrumental distortion of the im-
age. Equally important, it ignores pixel noise. In this section, we
move one step further to discuss the recovery of the original ϵ
of an image after it has been convolved with a PSF and pixel-
lated. The problem of properly dealing with noise in the image
is discussed subsequently.

Let Ipre(x) be the original image prior to a PSF convolution
and pixellation. This we call the ’pre-seeing’ image. Likewise,
by the vector Ipost of Npix values we denote the ’post-seeing’
image that has been subject to a convolution with a PSF and
pixellation. For mathematical convenience, we further assume
that Ipre(x) is binned on a fine auxiliary grid with N ≫ Npix pix-
els of solid angle Ω. We list these pixel values as vector Ipre. The
approximation of Ipre(x) by the vector Ipre becomes arbitrarily
accurate for N → ∞. Therefore we express the post-seeing im-
age Ipost = LIpre by the linear transformation matrix L applied to
the pre-seeing image Ipre. The matrix L with N × Npix elements
combines the effect of a (linear) PSF convolution and pixellation.
Similarly, we bin the template f (ρ) in the pre-seeing frame to the
grid of Ipre, and we denote the binned template by the vector f ρ;
as usual, the quadratic form ρ is here a function of the variables
(x0, ϵ, t), Eq. (6). The GLAM parameters ppre of the pre-seeing
image are given by the minimum of E(p|Ipre), or approximately
by

Epre(p|Ipre) := (Ipre − A f ρ)T(Ipre − A f ρ) ≈ 2Ω−1E(p|Ipre) . (35)

For the recovery of the pre-seeing ellipticity ϵ, the practical chal-
lenge is to derive the pre-seeing parameters ppre from the ob-
served image Ipost in the post-seeing frame. For this task, we
assume that the transformation L is exactly known. Note that a
linear mapping L is an approximation here; we ignore the nonlin-
ear effects in the detector (Plazas et al. 2014; Gruen et al. 2015;
Niemi et al. 2015; Melchior et al. 2015).

For a start, imagine a trivial case where no information is
lost by going from Ipre to Ipost. We express this case by a trans-
formation L that can be inverted, i.e., we have N = Npix and L is
regular. We then obtain ppre by minimising Epre(p|L−1Ipost) with
respect to p: we map Ipost to the pre-seeing frame and analyse
Ipre = L−1Ipost there. This is equivalent to minimising the form
(Ipost − AL f ρ)T(LLT)−1(Ipost − AL f ρ) in the post-seeing frame.

For realistic problems where L−1 does not exist, because
N ≫ Npix, this trivial case at least suggests to determine the
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Fig. 1. Examples of GLAM templates in the pre-seeing frame, f ρ (top
left), and the post-seeing frame, L f ρ (other panels); the templates are
Gaussian radial profiles with f (ρ) = e−ρ/2. The bottom left panel simu-
lates only pixellation, whereas the right column also shows the impact
of a PSF, indicated in the top right corner, without (top) and with pixel-
lation (bottom).

minimum ppost of the new functional

Epost(p|Ipost) := (Ipost − AL f ρ)TU(Ipost − AL f ρ) (36)

as estimator of ppre. This way we are setting up an estimator by
forward-fitting the template f ρ to the image in the post-seeing
frame with the matrix U being a metric for the goodness of the
fit. Clearly, should L−1 exist we recover (35) only by adopting
U = (LLT)−1. So we could equivalently obtain ppre, without bias,
by fitting L f ρ to the observed image Ipost in this case. However,
realistically L is singular: the recovery of ppre from (36) can only
be done approximately. Then we could at least find an optimal
metric to minimise the bias. We return to this point shortly. In
any case, the metric has to be positive-definite and symmetric
such that always Epost ≥ 0. Note that the moments at the min-
imum of (36) are related but not identical to the adaptive mo-
ments in the post-seeing frame. To obtain the latter we would fit
a pixellated f ρ with U = 1 to Ipost. The bottom and top right im-
ages in Fig. 1 display examples of post-seeing templates that are
fitted to a post-seeing image to estimate ppre with the functional
(36).

For singular L, the minimum of the functional yields an un-
biased ppre for any U if

1. Ipre(x) has confocal elliptical isophotes with the radial bright-
ness profile S (x);

2. and if we choose f (ρ) = S (ρ) as GLAM template;
3. and if Epost has only one minimum (non-degenerate).

To explain, due to 1. and 2. we find a vanishing residual

Rpre = Ipre − A f ρ = 0 , for p = ppre , (37)

at the minimum of Epre and consequently Epre(ppre|Ipre) = 0. At
the same time for any metric U, we also have Epost(ppre|Ipost) = 0
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• conceptional GLAM procedure (noiseless images)

fit template to images  
with metric

Ubest = (LLT)+



• ignore pixel noise; optimal guess for pre-seeing ellipticity? 
 
 step 2: assume L is singular (information loss: mainly pixelation)
Ansatz for cost function:  
 
 
 
Unbiased if pre-seeing image Ipre  is prefectly fit by fρ ; but biased if 
best-fit in pre-seeing frame has residuals Rpre, namely 
 
 
 
 
 
 
 

�p = (GULG)�1 GTUL Rpre +O(R2
pre)
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����
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GLAM exhibit “underfitting bias” if  

(i)   Ipre is unmatchable with template; 
(ii)  and if L is singular; 
(iii) and if LRpre<>0; 
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★ adaptive-moment ellipticities are parameters of best-fits 
with elliptical templates; adaptive weight is derivative of 
template;  

★ no information loss in Ipost: estimator of GLAM ellipticity is 
unbiased; then also unbiased estimator of g; 

★ information loss in Ipost: bias depends on residuals between 
best-fit template and image in pre-seeing frame  
(necessary for bias is LRpre <>0 and a singular L); 

★ bias is reduced by template profile that closely resembles 
that of pre-seeing image; 

★ there is bias for pixelated and non-elliptical images; 

• Conclusions for images without pixel noise



There shall be noise! 
(part II)
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• illustration of noise bias  
 
bias of estimator varies with S/N; not present without noise  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the expression Eq. (43) for the bias is strictly only applicable to
our estimator. But it seems plausible that the bias of estimators
of pre-seeing moments generally depends on the residual Rpre.

In the literature the problem of bias due to residuals in model
fits is known as model bias or underfitting bias (Zuntz et al. 2013;
Bernstein 2010). Consequently, moment-based techniques are as
prone to underfitting bias as model-based methodologies.

3. Statistical inference of ellipticity
Realistic galaxy images I are superimposed by instrumental
noise δI. Therefore the pre-seeing GLAM ellipticity can only be
inferred statistically with uncertainties, and it is, according to the
foregoing discussion, subject to underfitting bias. For a statisti-
cal model of the ellipticity ϵ, we exploit the previous conclusions
according to which the ellipticity of I(x) for the adaptive weight
f ′(ρ) is equivalent to ϵ of the best-fitting template f (ρ). This ren-
ders the inference of ϵ a standard forward-fit of a model AL f (ρ)
to I.

We consider post-seeing images I with Gaussian noise δI,
i.e., I = Ipost + δI. The covariance of the noise is N = ⟨δI δIT⟩,
while Ipost = LIpre is the noise-free image in the post-seeing
frame. A Gaussian noise model is a fair assumption for faint
galaxies in the sky-limited regime (Miller et al. 2007). Possible
sources of noise are: read-out noise, sky noise, photon noise, or
faint objects that blend with the galaxy image. If an approximate
Gaussian model is not applicable, the following model of the
likelihood has to be modified accordingly.

The statistics of noise are reflected by the likelihood L(I|p)
of an image I = LIpre+δI given the GLAMparameters p. We aim
at a Bayesian analysis, for which we additionally quantify our
prior knowledge on parameters by the PDF Pp(p). We combine
likelihood and prior to produce the marginal posterior

Pϵ(ϵ|I) ∝
∫
dA dt d2x0 L(I|p) Pp(p) (45)

of ellipticity by integrating out the nuisance parameters (x0, A, t);
the constant normalisation of the posterior is irrelevant for this
paper but we assume that the posterior is proper (it can be nor-
malised). Our choice for the numerical experiments in this study
is a uniform prior Pp(p) for positive sizes t and amplitudes A, el-
lipticities |ϵ| < 1, and centroid positions x0 inside the thumbnail
image. As known from previous Bayesian approaches to shear
analyses, the choice of the prior affects the affects the consis-
tency of the ellipticity posteriors (see, e.g., BA14). The origin of
the prior-dependence becomes clear in Sect. 3.3.

With regard to notation, we occasionally have to draw ran-
dom numbers or vectors of random numbers x from a PDF P(x)
or a conditional density P(x|y). We denote this by the shorthand
x! P(x) and x! P(x|y), respectively. As common in statisti-
cal notation, distinct conditional probability functions may use
the same symbol, as for instance the symbol P in P(x|y) and
P(y|x).

3.1. Caveat of point estimates

The bias in a lensing analysis is not only affected by how we
statistically infer galaxy shapes but also how we process the
statistical information later on. To demonstrate in this context
the disadvantage of point estimators in comparison to a fully
Bayesian treatment, we consider here a simplistic nonlinear toy
model. This model has one parameter x and one single observ-
able y = x3 + n that is subject to noise n. By n ! N(0,σ)
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Fig. 2. Toy-model demonstration of a maximum-likelihood estimator
(red), a maximum-likelihood estimator with first-order bias correction
(green), and an estimator exploiting the full posterior (blue). Data points
display the estimator average (y-axis) over 106 data points at varying
signal-to-noise levels (x-axis). The true value to be estimated is x = 1.
The panels show different signal-to-noise regimes; −nppt denotes y =
1 − n/103.

we draw random noise from a Gaussian distribution N(0,σ)
with mean zero and variance σ. From the data y, we statisti-
cally infer the original value of x. Towards this goal we con-
sider the (log-)likelihood of y given x which is −2 lnL(y|x) =
(y − x3)2 σ−2 + const.

A maximum likelihood estimator of x is given by xest = y1/3,
the maximum ofL(y|x). We determine the bias of xest as function
of signal-to-noise ratio (S/N) x/σ by averaging the estimates of
Nreal = 106 independent realisations of y. The averages and the
standard errors are plotted as red line in Fig. 2. Clearly, xest is
increasingly biased low towards lower S/N levels. In the con-
text of lensing, this would be noise bias. As an improvement we
then correct the bias by employing the first-order correction in
Refregier et al. (2012) for each realisation of y. As seen in the
figure, this correction indeed reduces the systematic error, but
nevertheless breaks down for S/N ! 3.

On the other hand in a fully Bayesian analysis, we obtain
constraints on x that are consistent with the true value for any
S/N. For this purpose, we make Nreal independent identically dis-
tributed realisations (i.i.d.) yi and combine their posterior densi-
ties Ppost(x|yi) ∝ L(yi|x) Pprior(x) by multiplying the likelihoods;
we adopt a uniform (improper) prior Pprior(x) = const. This gives
us for y = (y1, . . . , yNreal ), up to a normalisation constant, the
combined posterior

ln Ppost(x|y)+ const =
Nreal∑

i=1
lnL(yi|x) = −

1
2σ2

Nreal∑

i=1
(yi − x3)2 . (46)

As expected due to the asymptotic normality of posteriors (under
regularity conditions), for i.i.d. experiments yi the product den-
sity is well approximated by a GaussianN(x0,σx) and is consis-
tent with the true value x (van der Vaart 1998). We plot values
of x0 and σx in Fig. 2 as blue data points. In conclusion, keep-
ing the full statistical information Ppost(x|y) in the inference of
x yields consistent constraints over the entire S/N range probed:
the noise bias vanishes. Also note that the Bayesian approach has
not substantially increased the error σx compared to the error of
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• Bayesian GLAM: do not use point estimates of ellipticity;  
keep full statistical information;  
 
Likelihood function of GLAM ellipticity (Gaussian noise)?  
 
Inferring adaptive moments by forward-fitting templates….

We do not know the pre-seeing residuals.  
 
Option 1: hope that they are not relevant, and use a misspecified  
likelihood , 
 
 
Option 2: quantify your ignorance by a prior density for residuals,

�2 lnL(I|p,Rpre) + const =

⇣
I�AL f⇢ � LRpre

⌘T
N�1

⇣
I�AL f⇢ � LRpre

⌘

=: kI�AL f⇢ � LRpre)k2N

L(I|p) =
Z

dRpre p(Rpre|p)L(I|p,Rpre)

�2 lnL(I|p) + const = kI�AL f⇢k2N



• posterior density of GLAM ellipticity  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• Experiment 1: i.i.d. exposures of same pre-seeing galaxy Ipost 

Combine likelihoods of all exposures for posterior

p(p|I1, I2, . . .) /
nY

i=1

L(Ii|p) p(p)

Investigate consistency by considering n->infinity,

Asymptotic posterior puts all probability mass at 
minimum of

(I
post
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post
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1. Same as noise-free problem with metric U = N�1

2. There is no noise bias: no effect for  
3. Magnitude of bias depends on LRpre and LTN�1L
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• Experiment 2: sample of different pre-seeing galaxies, same ε

Same ellipticity but different qi = (Ai, ti,x0,i)

Combine marginal posteriors of same ellipticity:

marginalize prior

Now asymptotic consistency explicitly depends on prior  
density of nuisance parameters. 

Prior does not become irrelevant here because complexity  
of model increases with every new image Ii in the sample.
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• Bayesian (nuisance) priors can be incorrect (prior bias).
P. Simon and P. Schneider: Study of bias in lensing shape-measurements

3.3. Prior bias

The foregoing section discusses the consistency of the likeli-
hood of a single image I. We can, on the other hand, interpret
the analysis also in a different way: if we actually had NI inde-
pendent exposures Ii of the same pre-seeing image, then com-
bining the information in all exposures results in a posterior
Pp(p|I) ∝

∏NI
i=1 L(Ii|p) Pp(p) would result in a density Pp(p|I)

that is consistent with ppost for a uniform prior Pp(p) = 1. As dis-
cussed in van der Vaart (1998), the more general Bernstein-von
Mises theorem additionally shows that under regularity condi-
tions the choice of the prior is even irrelevant provided it does
not exclude ppost (Cromwell’s rule). This gives us the impression
that for a correctly specified likelihood L(Ii|p), a fully Bayesian
approach for the consistent measurement of ϵ might be found
that is independent of the specifics of the prior and has no noise
bias in the sense of Sect. 3.2. That this impression is misleading
is shown in the following.

In contrast to the previous simplistic scenario, sources in a
lensing survey have varying values of p. For more realism, we
therefore assume now i = 1 . . .NI pre-seeing images that, on the
one hand, shall have different centroid positions x0,i, sizes ti, am-
plitudes Ai but, on the other hand, have identical ellipticities ϵ.
Our goal in this experiment is to infer ϵ from independent im-
age realisations Ii = Ipost,i + δIi by marginalizing over the 4NI
nuisance parameters qi = (x0,i, ti, Ai). This experiment is similar
to the standard test for shear measurements where a set of dif-
ferent pre-seeing images is considered whose realisations Ii are
subject to the same amount of shear (e.g., Bridle et al. 2010). As
a matter of fact, that scenario would just result in 2NI additional
nuisance parameters for the intrinsic shapes with essentially the
same following calculations.

Let Pp(pi) be the prior density of ϵ and the four nuisance pa-
rameters qi of the ith image. We combine all in pi := (qi, ϵ). We
assume that all images have the same prior density and that the
noise covariance N applies to all images. The marginal posterior
of ϵ is then the integral

N Pϵ(ϵ|I1, . . . , INI ) =
NI∏

i=1

∫
d4qi L(Ii|pi) Pp(pi)

=

∫
d4q1 . . . d4qNf

NI∏

i=1
L(Ii|pi) ×

NI∏

i=1
Pp(pi) , (54)

with N being a normalization constant.
The product of the likelihood densities inside the integral is

given by

−2 ln
NI∏

i=1
L(Ii|pi) + const (55)
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Here we have taken into account that the GLAM parameters
partly differ, indicated by the additional index in Ai and f ρ,i.
This is different in Eq. (53) where we take the product of full
likelihoods in p-space without marginalization. In the limit of
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Fig. 3. Bias in the marginal posterior Pϵ(ϵ |I1, . . . , INI ) as function of
S/N ν for different galaxy sizes rh (in arcsec). The posterior assumes
a uniform prior. Shown as δϵ = |ϵ1 − ϵtrue| is the offset in the real part
of the inferred ϵ relative to the true ϵtrue = 0.3 obtained by combining
the marginal posteriors of NI = 5 × 103 exposures of the same galaxy
with random centroid positions. The pixel size is 0.1 arcsec equal to the
PSF size (Moffat). Galaxy profiles and GLAM templates have a Sérsic
profile with n = 2.

NI → ∞, we find in addition to the relations (52) that
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because δIi is uncorrelated to AL f ρ,i so that δITi (AL f ρ,i) vanishes
on average for many δIi. Therefore, for the asymptotic statistic
we can replace all Ii by Ipost,i in Eq. (55) to obtain

NI∏

i=1
L(Ii|pi)→

NI∏

i=1
L(Ipost,i|pi) , (57)

and, as a result, for Eq. (54)

N Pϵ(ϵ|I1, . . . , INI )

→
NI∏

i=1

∫
d4qi L(Ipost,i|pi) Pp(pi) =:

NI∏

i=1
Pϵ(ϵ|Ipost,i) , (58)

where Pϵ(ϵ|Ipost,i) is the marginal ellipticity posterior for the ith
noise-free image.

The limit (58) has the interesting consequence that the con-
sistency with ppost of the marginal posterior depends on the spe-
cific choice of the prior density Pp(pi). To show this, consider
one particular case in which, for simplicity, all pre-seeing im-
ages are identical such that Ipost,i ≡ Ipost. Then, according to (58),
the ellipticity posterior converges in distribution to [Pϵ(ϵ|Ipost)]NI
which for NI → ∞ peaks at the global maximum of Pϵ(ϵ|Ipost). It
is then easy to see that we can always change the position of this
maximum by varying the prior density in Pϵ(ϵ|Ipost). In particu-
lar, even if the likelihoods are correctly specified, we generally
find an inconsistent marginal posterior depending on the prior. A
similar argument can be made if Ipost,i ! Ipost, j for i ! j.
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bias 

1. Prior bias introduces noise bias into Bayesian picture after all. 
2. Becomes irrelevant if likelihood for individual images dominates. 
3. Vanishes if prior equals actual distrb. of nuisance parameters.

Correctly specified likelihood but incorrect prior:

pixel 0.1’’ 

PSF 0.1’’
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• Experiment 3: sample of different pre-seeing galaxies, same shear

Similar to Experiment 2 but now with shear posteriors:
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• Results for numerical analysis

P. Simon and P. Schneider: Study of bias in lensing shape-measurements
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Fig. 5. Plots of the multiplicative bias m for simulated images, based on Eq. (69), for two different priors Ps(ϵs) (filled data points: correct prior;
open data points: uniform prior). Different styles for the data points indicate different image sizes rh, see key inside figure, while colors vary with
galaxy type: GLAM template (TMP; red); exponential (EXP; green); bulge-like (DEV; blue). Data points for rh = 0.3′′, same galaxy type, and
same prior are connected by dotted lines to guide the eye. The prior for galaxy sizes t, amplitudes A, and centroids x0 is uniform giving rise to
noise-dependent prior bias; the offset of EXP and DEV is due to underfitting. A square image pixel has the size 0.1′′, which also equals the PSF
size.

In contrast, a multiplicative bias m is typically significant.
At high S/N ν = 200, this bias in Fig. 5 is mainly underfitting
bias which is consequently absent for TMP galaxies since their
likelihood is correctly specified. The shear of bulge-like galaxies
DEV, with steeper slope compared to f (ρ), is underestimated by
m = −9.6 ± 0.5%; the shear of exponential galaxies EXP, which
have a shallower slope, is overestimated by m = +7.7 ± 0.5%.
These numbers are the mean and standard error for all galaxy
sizes at ν = 200; they depend on the specific PSF and pixel sizes
chosen for this experiment.

Compared to the underfitting bias at ν = 200, the bias m sig-
nificantly drops if ν ! 20 for all galaxies, most prominently at
rh = 0.15′′, but stays roughly constant within a couple of per cent
otherwise. We attribute the noise-dependence of m to prior bias
owing to our choice of an (incorrect) uniform prior for the nui-
sance parameters q of the images (see Sect. 3.3). The prior bias
thus becomes only relevant here at sufficiently low S/N. The par-
ticular value of S/N is specific to the PSF size. This can be seen
in Table 1 which lists estimates for m for galaxies, in a slightly
smaller sample Ngal = 2 × 104, with size rh = 0.2′′ but for a mod-
ified, larger PSF size 0.22′′. Now the noise-dependence of prior
bias is already visible below ν ! 40. On the other hand, the un-
derfitting bias, to be read off at high S/N ν = 200, is roughly
halved since the images are spread out over more pixels.

The choice of a uniform prior for the intrinsic ellipticities,
distinctively different from the true distribution of ϵs in the sam-
ple, has a negligible effect on shear bias here for both PSF sizes.
Values of m between the two priors Ps(ϵs) are consistent, as
found by comparing filled and open data points of same colour
and at same ν in Fig. 5. Nevertheless, the resulting statistical er-
rors of shear, as opposed to its bias, are larger by roughly the fac-
tor 1.7 with the uniform prior, which reflects the larger a-priori
uncertainty on ϵs. This implies that a shear bias due to an incor-
rect prior Ps(ϵs) is negligible in this experiment.

5. On the problem of inferring ellipticity correlations

Up to here only samples of source galaxies with equal ellipticity
ϵ or reduced shear g were considered for a Bayesian inference.
In a realistic lensing analysis, on the other hand, the gravitational
shear is a function that varies with position on the sky and with
source redshift; the relevant information on the large-scale dis-
tribution of matter or cosmology is contained in the coherence
of the shear signal. Clearly, a fully Bayesian lensing analysis has
to deal with samples of varying shear.

As example, we would like to infer the correlation ξ+ = ⟨gg∗⟩
in a sample of images Î = {I1, . . . , INI }. We may hope that
it is valid to determine Pϵ(ϵ|Ii) for each image Ii individu-
ally in this process and to incorporate these into a posterior
Pξ(ξ+|Î) ∝ Lξ(Î|ξ+) P(ξ+) of ξ+. On the other hand, a general
value of ξ+ ! 0 means that images are statistically dependent so
that the likelihood Lξ(Î|ξ+) will not factorize into terms that de-
pend only on one Ii at a time, and, consequently, the joint poste-
rior Pξ(ξ+|Î) cannot be a simple function of individual marginal
densities Pϵ(ϵ|Ii). Indeed the following analysis demonstrates
that treating ellipticity constraints statistically independent be-
tween source images results in inconsistent constraints on ξ̂+ for
any posterior model Pϵ(ϵ|Ii), including those that pass all fore-
going tests without ellipticity or shear bias.

5.1. Ellipticity correlator

A quantity of interest for cosmology are the correlation ξ+(ϑ) =
⟨g(x1)g∗(x2)⟩ of g between two points x1 and x2 with separation
ϑ = |x1 − x2| (Bartelmann & Schneider 2001). Since pre-seeing
ellipticities ϵ at x are unbiased estimators of g(x), an estimator
of ξ+ is given by the following. Let ϵ = (ϵ1, . . . , ϵNgal ) be a vec-
tor of pre-seeing ellipticities of sources located at positions xi
on the sky. An (unbiased) estimator of the average ξ+ inside a

Article number, page 13 of 19

noise-dependent  
prior bias

underfitting 

g = (1 +m) gtrue + c

pixel 0.1’’ 
PSF 0.1’’

open symbols: uniform prior for intrinsic shapes  

filled symbols: correct prior for intrinsic shapes



★ can construct a marginal posterior of GLAM ellipticity; 

★ likelihood is misspecified for LRpre<>0; could be fixed with 
prior density for Rpre (dedicated survey); 

★ misspecified likelihood produces underfitting bias; 
depends on L, heterogeneity and correlation of noise but not 
overall S/N; 

★ intrinsically different images Ipre can introduce noise-
dependent prior bias if prior density of q=(A,t,x0) is not 
distribution of q in sample; 

★ prior bias prominent when posterior of ellipticity is 
dominated by prior in individual image;

• Conclusions for images with pixel noise



• backup slide: non-adaptive weighted moments  
 
Assume fixed weight w(x) and minimise w.r.t. to p = (x0, ✏, t, A)

to find at the minimum the relations

Non-adaptive weighted moments are parameters of best-fit 
template with a metric w(x) and f(ρ) = ρ.

Qij =
hw(x), (xi � x0,i)(xj � x0,j) I(x)i

hw(x), I(x)i
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