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Chapter 1

Introduction

1.1 What is this course about?

Galaxies are gravitationally bound collections of stars, gas, dust, cosmic
rays, and, very likely, non-baryonic dark matter. Deep optical images show
that they are the main building blocks of the universe (Figure 1.1). Galaxy
surveys have indicated that the spatial distribution of galaxies displays a
foamy cellular texture (Figure 1.1). The most outstanding feature is the
presence of compact associations of galaxies containing up to a few thousand
members and extending to Mpc scales (galaxy clusters and groups). The
space in between massive clusters is bridged by a highly structured network
of (almost) uni-dimensional arrays of galaxies (filaments) extending for tens
of Mpc. The filaments are interweaved with vast regions of space nearly
devoid of galaxies. These “cosmic voids” are approximately spherical and
extend up to ∼ 50 Mpc.

A question then arises spontaneously: is there gas (or baryonic material
in general) in the space between galaxies? In fact, it seems unlikely that
galaxy formation would have been 100% efficient locking all the baryons into
galaxies. We also know that galaxy evolution can eject material out through
galactic winds, tidal stripping or more violent galaxy encounters. Therefore
we expect that there exists an intergalactic medium (IGM).

This course will review the current knowledge on the matter. In partic-
ular, it will address questions like:

• How many baryons are locked in stars and galaxies?

• How many of them reside in clusters, filaments, and voids?

• What is the state of the diffuse gas forming the IGM?

• What was the history of the IGM over cosmic time?

• What does the IGM tell us about cosmology and physics in general?

7



8 CHAPTER 1. INTRODUCTION

Figure 1.1: The Hubble “Ultra Deep Field” (UDF) has been obtained point-
ing to the same region of the sky during 400 orbits of the Hubble Space
Telescope (HST) for a total exposure time of 1 million seconds (11.3 days).
Nearly 10,000 galaxies are visible in this image. Some of them are very dim,
we receive 1 photon per minute from them. Note that the area in the picture
covers nearly 1/50 of the lunar surface. The whole sky contains 12.7 million
more time area the the HUDF.

Figure 1.2: A map of the distribution of galaxies in a thin wedge on the sky
from the 2-degree Field Galaxy Redshift Survey (from Colless et al. 2003).
Each point marks the position of a galaxy with a measured distance. Note
that, at small distances, where the sampling rate of this flux-limited survey
is higher, large-scale structures are clearly visible while at larger distances
they are hidden by shot noise.
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This is a very young field of research, dating back just to the late 1960s.
Despite it has matured fairly quickly, especially in the last decade, there
still exists many exciting directions to explore both theoretically and ex-
perimentally. In the near future, it will certainly provide many research
opportunities for young scientists.

1.2 Historical remarks: the birth of modern cos-
mology

This course will follow a pedagogical appoach. Ideas will be introduced in
such a way to make them more easily understandable. Material will not
be presented following the chronological order of discoveries. It is very in-
structive, however, to spend a little bit of time glimpsing the history of this
field of research. Beyond helping us to become familiar with some of the
concepts, this will give us the opportunity to appreciate the difficulties that
the community had to face, and the alternative explanations that now have
faded into oblivion. Also it will be an ideal way to thank all the scientists
of the past (including all those who will not be mentioned here) who con-
tributed moving the horizon of knowledge a little bit further. Remember
that behind each name there was a human being first. This people were in-
fants, grew up, ate, slept, studied, made errors, loved, hated, suffered, aged
like anyone of us. To acknowledge this, I will try to show you slides with
pictures of most of them.

Of course, for time reasons, our little excursus through history will be far
from complete. Every now and then we will interrupt following the flow of
history to summarize what the current understanding is regarding a specific
topic. These summaries are highlighted by boxes surrounding the text.

1.2.1 The general theory of relativity

We start our brief historical excursion from 1915 when Albert Einstein (1879-
1955) published his general theory of relativity. Postulating the equivalence
principle (i.e. asserting the complete physical equivalence of gravitational
acceleration and the inertial acceleration of a reference frame), he presented
a metric theory of gravitation where space-time was warped by the presence
of matter. The theory predicted new phenomena like gravitational redshift
(light becomes redder receding from a massive body) and gravitational light
deflection (light rays passing close to a massive body are bended towards
the body).

The general theory of relativity has been experimentally and obser-
vationally tested to a high-degree of accuracy (in the weak-field limit)
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from mm scales to solar-system scales (nearly 16 orders of magnitude)
and is still our favoured model of gravitation. Note that applying the
general theory of relativity to the size of the visible universe still requires
an extrapolation over 13 orders of magnitude.

1.2.2 The expansion of the universe

Einstein himself soon used his new theory to describe the entire universe.
On February 15 1917 he published the paper “Cosmological considerations
in the General Theory of Relativity” where he presented a model of the uni-
verse. This conventionally marks the birth of modern cosmology. Einstein
assumed that the universe on large-scales looks the same from any point in
it (i.e. it is homogeneous) and in any direction (i.e. it is isotropic). This now
goes under the name of “cosmological principle” and has deep philosophical
implications linked to the Copernican principle. In the same paper, Einstein
also added a cosmologically repulsive term (the cosmological constant Λ, in-
tended as a fundamental constant of nature) to the original field equations
to keep the universe static under the action of gravity on matter. In the
same year, Willem de Sitter (1872-1934) and Tullio Levi-Civita (1873-1941)
independently found a curious solution to Einstein’s equations. It repre-
sented an “empty” universe with no matter but including the cosmological
term. Arthur Eddington (1882-1944) noted that, although the de Sitter so-
lution was static (the metric did not contain any explicitly time-dependent
term), any test particle in the space-time manifold would exhibit a radial
motion. The solution also implies a cosmological redshift1 that becomes in-
creasingly apparent at large distances. De Sitter wrote: “Consequently the
frequency of light-vibrations diminishes with increasing distance from the
origin of co-ordinates. The lines in the spectra of very distant stars or neb-
ulae must therefore be systematically displaced towards the red, giving rise
to a spurious positive radial velocity.” This feature was called the de Sitter
effect. For small distances r, the redshift was expected to scale as z ∝ r2.
Paul Ehrenfest (1880-1933) is said to have been the first to realize that
the redshift was a pure effect of the curvature of space-time similar to the
gravitational redshift predicted by Karl Schwarzschild (1873-1916) around
a spherically-symmetric, non-rotating, non-charged mass in 1916 (the first
exact solution to Einstein’s field equations).

Alexander Friedman (1888-1925) and Georges Lemâıtre (1894-1966) pi-
oneered the discussion of time-dependent cosmological models. In 1922 and
1927, respectively, they independently worked out a solution to general rela-

1The wavelength λobs at which an observer detects a given spectral features is shifted
towards the red with respect to the corresponding wavelength at emission λem by the
“cosmological redshift” z = λobs/λem − 1.
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tivity field equations where the universe was expanding. Both of them used
the original equations by Einstein without the cosmological term. In 1927
Lemâıtre also showed that his models admitted a linear redshift-distance
relation z ∝ r (to first order in r).

Progress came also from more mathematical studies. In 1929 Tolman
(1881-1948) proved that there are only 3 static solutions of Einstein’s equa-
tion that also satisfy the cosmological principle. All of them were already
known: the metric of special relativity and the two world models by Einstein
and by de Sitter. In 1930 Eddington showed that Einstein’s static solution
is unstable against spatially homogeneous and isotropic perturbations that
makes it either expand or contract. Howard Robertson (1903-1961) in 1935
and Arthur Walker (1909-2001) in 1936 independently proved that the met-
ric used by Friedman and Lemâıtre is the only one on a Lorentzian manifold
that is both homogeneous and isotropic. Note that this is a geometric re-
sult that holds for any metric theory as it does not rely specifically on the
equations of general relativity.

Laborious activity was begun simultaneously on the observational side.
Between 1913 and 1917, Vesto Slipher (1875-1969) managed to take opti-
cal spectra of a number of “spiral nebulae”2 finding that the vast majority
(21 out of 25) showed spectral lines shifted towards the red with respect to
those produced by reference arc lamps in the spectrograph. He interpreted
this red-shift as a Doppler effect (z ∼ v/c with v the recession velocity
and c the speed of light): most nebulae were receding from the Earth. As
a result of the disruption of communications during the First World War,
de Sitter and Slipher did not know of each other’s accomplishments. In
1923, Edwin Hubble (1889-1953) discovered variable Cepheid stars in the
Andromeda spiral nebula. This provided convincing evidence that nebu-
lae were “island universes”: i.e. stellar systems similar to our Milky Way
(what we nowadays call galaxies) at enormous distances. With the help
of Milton Humason (1891-1972) he extended Slipher’s catalog of velocities
and, using the period-luminosity relation for Cepheid stars previously dis-
covered by Henrietta Leavitt (1868-1921), he could estimate the distance of
the galaxies. In 1929 he provided observational evidence for a linear rela-
tion between the recession velocity of a galaxy and its distance. Note that a
similar analysis (looking for a quadratic relation, however) had already been
fruitlessly attempted by Knut Lundmark (1889-1958) and by Ludwik Silber-
stein (1872-1948). Hubble was very cautious regarding the interpretation of
his results and wanted to leave open the possibility for a quadratic relation

2At the time the origin of the nebulae was unclear. In 1920 the Great Debate took
place where Harlow Shapley (1885-1972) and Heber Curtis (1872-1942) disputed over the
size of the universe. Curtis argued that the universe is composed by many galaxies like our
own which had been identified as spiral nebulae. Shapley argued that the spiral nebulae
were nearby gas clouds and that the universe was made by one big galaxy, the Milky Way.
But this is another story.
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that would not have implied a time-dependent solution of Einstein’s equa-
tions. In his 1929 paper he wrote: “The outstanding feature is the possibility
that the velocity-distance relation may represent the de Sitter effect. . . . In
this connection it may be emphasized that the linear relation found in the
present discussion is a first approximation representing a restricted range in
distance.” However, in 1931 and 1934 Hubble and Humason enlarged their
dataset showing beyond any doubt the linearity of the effect. In 1933 de
Sitter then wrote “We know now, because of the observed expansion, that
the actual universe must correspond to one of the nonstatic models. . . . The
static models are, so to say, only of academic interest.” In fact, one year be-
fore, he had published a paper together with Einstein where they proposed
that the cosmological constant should be set equal to zero and worked out
a world model with flat spatial sections at constant cosmic time that was
filled with matter. As like as in the Friedmann-Lemâıtre models, time had a
beginning. The peculiarity was that galaxies recede for ever but the cosmic
expansion rate asymptotically coasts to zero as time advances to infinity.
The model provides the separating case between recollapsing and infinitely
expanding models.

Nevertheless, the concept of an expanding universe seemed so bizarre
that people immediately started finding alternative explanations for the ob-
served redshifts. Hubble himself was always very reluctant to believe that
the redshifts represent a true expansion rather than being “caused by an
unknown law of nature.”

Today we have additional pieces of evidence in favour of the ex-
pansion of the universe. The main one concerns the cosmic microwave
background and will be discussed in section 1.2.5. Another one comes
from using the light curves of Type Ia supernovae as clocks. As orig-
inally proposed by Olin Wilson (1909-1994) in 1939, relativistic time
dilation should stretch the light curves proportionally to a factor 1 + z.
This effect has now been observed and data give a spectacular confirma-
tion of the theory: the light curves of distant supernovae are consistent
with those of nearby ones whose time axis is dilated by a factor 1 + z
(Leibundgut et al. 1996; Goldhaber et al. 1997, 2001). Similar results
have been obtained analyzing Type Ia supernova spectra (Blondin et al.
2008).

It is now time to fix a bit of notation. The constant of propor-
tionality between recession velocity and physical distance is now called
the “Hubble constant” and is generally indicated with the letter H:
v = Hr + O(r2) or z = Hr/c + O(r2) (both to first order in r). Note
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that the name refers to the constancy ofH over space. In the Friedmann-
Lemâıtre models H is linked to the scale factor of the universe a(t) (a
measure of how length scales change over time) by H = ȧ/a (where the
dot indicates the time derivative), therefore H is generally time depen-
dent! Its present-day value is usually written as H0 = 100h km s−1

Mpc−1 with h a dimensionless number. The best direct measurement
with the Hubble space telescope gave h = 0.72 ± 0.08 (Freedman et
al. 2001). Note that 1/H has the dimension of time. This quantity is
dubbed “Hubble time” and gives the characteristic timescale for cosmic
expansion. In numbers: 1/H0 = 3.086× 1017h−1 s = 9.778× 109h−1 yr.
The current “age” of the universe in the Friedmann-Lemâıtre models is
obtained multiplying the Hubble time by a number of order unity (that
depends on the specific model).

The Hubble constant also determines the “critical density” ρc, i.e.
the minimum density of a universe filled with matter that that would be
needed to halt the cosmic expansion at some point in the future. General
relativity gives: ρc = 3H2

0/8πG ' 2.778 × 1011h2M� Mpc−3 = 1.88 ×
10−26h2 kg m−3 = 11.2h2 protons m−3. In cosmology it is customary to
express densities in units of ρc and to indicate them with the letter Ω
followed by a subscript indicating what density one is speaking about.
For instance, the baryon density will be Ωb = ρb/ρc.

1.2.3 The cosmological debate

Following Hubble discovery, in 1931 Lemâıtre had suggested that the uni-
verse might have originated when a “primeval atom” or “cosmic egg” ex-
ploded in a spectacular fireworks, creating space-time. This proposal met
skepticism from the scientists of the time. Lemâıtre was a Catholic priest
and his theory was considered too strongly reminiscent of the dogma of
creation.

The idea of an evolving universe was soon challenged by a new hypoth-
esis, that the universe might be in a steady state after all. 3 In 1948, Fred
Hoyle (1915-2001), Hermann Bondi (1919-2005), and Thomas Gold (1920-
2004) formulated the so-called “steady-state model” based on the “perfect
cosmological principle”: the universe looks the same from every point in it
and at every time. How could the universe continue to look the same when
observations suggested it was expanding? To this regard, Hoyle wrote: “One
tends to think of unchanging situations as being necessarily static. . . . One
can have unchanging situations that are dynamic, as for instance a smoothly

3Hubble’s original measurement of the expansion rate gave H ∼ 500 km s−1 Mpc−1,
corresponding to an expansion age of ∼ 2 Gyr. This was shorter than the estimated age
of the Earth from radioactive dating!
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Figure 1.3: Relative abundance of the chemical elements in the Solar System.

flowing river.” The key idea was to balance the ever-decreasing density of
an expanding universe assuming that matter was continuously created in
such a way that the cosmic density was kept always the same. The amount
required was undetectably small: 1 nucleon every 50 years in a cubic km.
While Bondi and Gold did not propose any mechanism for matter creation,
Hoyle introduced the concept of the C-field (C for creation) a reservoir of
negative energy which, because of energy conservation, was becoming more
negative every time matter was created from its perturbations and then re-
stored to the original value by cosmic expansion.4 The negative pressure of
the C-field drove the steady expansion of the cosmos.

During those years, the cosmological debate was very harsh and ac-
quired religious and political aspects. Some people associated the steady-
state model to the Communist party (when, in reality, Soviet astronomers
rejected both western world models as idealistic and unsound). Hoyle saw
in it the symbol of freedom and anti-communism, other loosely associated
it to atheism. In this climate, during a BBC radio talk in 1949, Hoyle
coined the name “big bang” for the competing theory. In 1952, Pope Pious
XII announced that big-bang cosmology was in harmony with the Christian
dogma.

1.2.4 The origin of the elements

With the development of nuclear physics another astrophysical problem be-
came of great interest. 92 elements are naturally found on Earth, of which
80 have stable isotopes. Their relative abundance in the Solar System as a

4One might smile today but would you consider more reasonable to create a few atoms
here and now or the entire universe out of some quantum fluctuations?
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function of atomic number shows peculiar features (Figure 1.3). Can physics
explain these trends?

In the 1920s Arthur Eddington suggested that stars obtain their energy
from nuclear fusion of hydrogen into helium. In 1928, George Gamow (1904-
1968) developed the basic theory that gives the probability for two nuclei
to fuse at given conditions of the stellar interior (temperature and density).
In the late 1930s, Hans Bethe (1906-2005) and Karl von Weizsäcker (1912-
2007) individuated the proton-proton chain and the CNO cycle. This was
enough to explain the source of energy that kept the stars hot and prevent
them to collapse under their own weight. The creation of heavier nuclei was
not addressed however.

In 1946, George Gamow (who had briefly studied with Friedman) started
considering the implications of cosmic expansion and cooling from an initial
state of nearly infinite density and temperature. He realized that suffi-
ciently early on all matter would have been protons, neutrons and electrons
swamped in an ocean of high-frequency radiation that dominated the en-
ergy budget.5 Gamow thought that in these conditions all elements could
be built up capturing neutrons one by one. Protons could capture neutrons
and lead to the formation of deuterium atoms. Then the subsequent neu-
tron captures resulted in the building up of heavier and heavier nuclei. β
decay would have got rid of unstable atoms. He also realized that this could
have happened for a relatively short time as the universe would have soon
become too cold and too little dense because of its rapid expansion. In his
mind, the slope of the abundance curve was related to the expansion history
of the universe. His graduate student Ralph Alpher (1921-2007) made de-
tailed calculations using one of the first computers (some neutron-capture
cross sections stopped being classified material after the end of World War
II). His results were published in the famous αβγ paper (Alpher, Bethe &
Gamow 1948).6 They roughly agreed with the observations of stars: Helium
accounted for roughly a quarter of the mass, and Hydrogen for nearly all
the rest. However, Enrico Fermi (1901-1954) noted an inconsistency in the
calculation. The cross section for neutron capture of a Helium atom is basi-
cally zero. However, Alpher fitted a smooth curve to interpolate through the
known cross sections and this made this particular one excessively high. At-
tempts to repeat the calculations with the correct reaction rates failed to get
a sensible answer for heavier elements. Basically primordial nucleosynthesis
could not produce anything heavier than Helium atoms.

Fred Hoyle dismissed the attempts of pre-stellar element buildup as “re-
quiring a state of the universe for which we have no evidence” and continued

5Gamow dubbed this hypothetical mixture of particles “Ylem” (from obsolete Middle
English phylosophical jargon indicating “the primordial matter from which all matter is
formed” and deriving from the Greek hylem, “matter”).

6The name of Bethe was added by Gamow just to make the list of authors appear
funny. This, however, made Alpher deeply unhappy.
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to pursue the possibility that elements were cooked up in stars. In 1946 he
showed that hot star interiors could synthesize elements from Carbon up to
Iron but the paper remained unnoticed for long time. In 1950 a revolution-
ary observational result solved part of the controversy. Martin Schwarzschild
(1912-1997, son of Karl) together with his wife Barbara showed that popu-
lation I stars (young stars in the disk of the Milky Way, originally selected
by Walter Baade (1893-1960) for their low vertical velocity with respect to
the disk of the Galaxy) have a greater abundance of Iron and other metals
with respect to population II stars (old stars in the halo of the Milky Way,
originally selected by Baade for their high vertical velocity with respect of
the disk of the Galaxy). This striking evidence for metal production by stars
removed the need for a pre-stellar mechanism for element formation. The
subsequent work by Edwin Salpeter (1924-), Fred Hoyle, and Willy Fowler
(1911-1995, Nobel prize winner in 1983) culminated in the seminal paper
B2FH (Burbidge, Burbidge, Hoyle & Fowler 1957) that showed that all
atomic elements heavier than lithium up through uranium could be synthe-
sized in stars.

Surprisingly enough, it was Hoyle himself to show that the total amount
of energy released by the formation of all observed Helium is some ten times
greater than the energy radiated by galaxies since their formation (Hoyle &
Taylor 1964). So the work begun by George Gamow was revived, revised
and merged with the stellar channel.

As you will discuss in detail in the cosmology class, the current
tenant is that primordial nucleosynthesis took place after protons and
neutrons condensed out of the primordial quantum soup (Baryogenesis)
and lasted for a few minutes, until densities and temperatures were too
low for nuclear reactions to happen. In the end, big-bang nucleosynthesis
(BBN) produced a mixture dominated by Hydrogen (∼ 76% in mass)
and Helium 4 (∼ 24% in mass), along with trace amounts of Deuterium,
Helium 3 (any Hydrogen 3 decays to Helium 3), Lythium, and Berillium
(Figure 1.4).

The key parameter that regulates the final elemental abun-
dances is the current number of baryons per photon, η = 3.4 ×
10−10(Ωbh

2/0.0125). Since the temperature at which the reactions hap-
pen is fixed (at the onset of nucleosynthesis T ∼ 70 keV, η is simply
a measure of the baryon density Ωb. The great success of the theory
is that a single value of Ωb is enough to simultaneously explain the
observed abundance of all pre-stellar elements (Figure 1.4). The most
recent studies give Ωbh

2 = 0.0214± 0.002.
We now firmly believe that all heavier elements have been synthe-

sized in stars (in some sense then our bodies are made of stardust).
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Figure 1.4: The light element abundance predictions from BBN theory plot-
ted against the baryon density. From top to bottom are the mass fraction
of 4He and the relative fractions D/H, 3He/H and 7Li/H. The shaded bands
enclose the 1σ experimental uncertainty.

1.2.5 The microwave background

In their 1949 paper, Alpher and Robert Herman (1914-1997) predicted that
a remnant of the hot early universe would remain at late times: a cosmic
background radiation permeating all space. The key reasoning was as fol-
lows. Cosmic hydrogen remained ionized until the temperature dropped
below 3000 K because of the universal expansion. At this point, the pho-
tons could stream freely without interacting anymore with matter. As the
universe expanded this radiation would cool. Alpher and Herman predicted
that the temperature of this radiation now should be not higher than 5
K. They thought, however, that it would have been difficult to distinguish
it from other forms of cosmic radiation including integrated starlight. In
1964, A Doroshkevich (1937-) and Igor Novikov (1935-) were the first to re-
alize that the relic radiation should have had a blackbody spectrum7 (as it
had been in thermal equilibrium with matter through frequent interactions)
and should be detectable with current technology in the microwave spec-
tral range. They identified the ultra-sensitive horn antenna of Bell Labs at
Crawford Hill (NJ) as the best available instrument for its detection. How-
ever, they misinterpred some published data taken with this instrument and

7Already in 1934 Tolman had demonstrated that black-body radiation in an expanding
universe cools but remains thermal.
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concluded that the “Gamow theory” was contradicted by experiments.

The year 1965 is a milestone of modern astrophysics and cosmology.
Arno Penzias (1933-) and Robert Wilson (1936-) of Bell Labs were conduct-
ing radio astronomy experiments at Crawford Hill but were frustrated by a
noise in its receiving system, a noise that remained constant no matter which
direction they scanned. This made no sense but after carefully checking all
the plausible sources (including chasing pigeons that lived in the antenna)
the noise remained. Mentioning their unexplained noise to Bernard Burke
(1929-) of MIT, they became aware of the theoretical work by Robert Dicke
(1916-1997), a physicist at nearby Princeton University who had indepen-
dently thought of the cosmic background radiation. In March 1965, Dicke
and his former student Philip James Edwin (“Jim”) Peebles (1935-) had pub-
lished a paper explaining the origin and nature of this radiation. Together
with some colleagues they had planned to build an experiment dedicated to
its detection. An agreement was made: Penzias and Wilson published the
data without attempting any interpretation while Dicke and collaborators
wrote a different paper containing the interpretation as radiation of about
3 K left over from the big bang.

Many groups have now measured the intensity of the cosmic mi-
crowave background (CMB) at different wavelengths. Currently the best
information on its spectrum comes from the FIRAS instrument onboard
the COBE satellite (1974-1976, Figure 1.5). No spectral deviation from
a black-body spectrum at T = 2.725 ± 0.002 K was detected over the
wavelength range from 0.5 to 5 mm. Moreover, the temperature of the
CMB is isotropic to nearly one part per 105. Recent studies of the CMB
temperature anisotropies provided a new measure of the baryon density
in the universe: Ωbh

2 = 0.0223+0.0007
−0.0009 where the Hubble parameter is

h = 0.73+0.03
−0.04.

Penzias and Wilson were awarded the Nobel prize in Physics in 1978.8

The leaders of the COBE experiment, John Mather (1946-) and George
Smoot (1945-), got it in 2006 for having accurately measured the spectrum
of the CMB and detected tiny temperature anisotropies, respectively.

The discovery of the CMB and the observation that quasars and radio
sources were much more abudant at high redshift than in the local universe
basically ended the era of the steady-state model.

8The first experimental evidence for CMB was actually obtained (but unrecognized)
by Adams & Dunham in 1937 who detected several optical absorption lines due to the CN
molecule rotationally excited by the radiation background.
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Figure 1.5: FIRAS spectrum of the CMB.

It is important to stress that, in its modern interpretation, the big
bang is not an explosion localized in space and time. Rather it describes
the origin of space-time and happens everywhere in the universe. At the
enormous densities reached in the vicinity of the singularity quantum-
gravity effects (that we do not know how to model) become extremely
important. Therefore, the predictions of classical general relativity in
this regime should not be taken too seriously. Inflationary theories give
a speculative theoretical explanation of the origin of cosmic expansion
without requiring a “bang”. Future experiments will test their predic-
tions.

1.3 Historical remarks: The search for the IGM

We will now depart from the history of cosmology and focus on the search
for the intergalactic medium.

1.3.1 The X-ray background

The energy density of the X-ray sky is dominated by a diffuse radiation
which is mostly of cosmic origin: the X-ray background (XRB). It was first
clearly detected in 1962 (before the discovery of the CMB) during a rocket
flight intended to study X-rays from the Moon (Giacconi et al. 1962).9

At energies below 1 keV the background is patchy and clearly correlated
with optical features in the Milky Way suggesting that it receives a sub-

9Riccardo Giacconi (1931-) was awarded the Nobel prize in 2002 for his pathbreaking
work inventing the field of X-ray astronomy.
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Figure 1.6: The spectrum of the X-ray background.

stantial contribution from Galactic emission (namely hot gas produced by
supernova explosions in the Galaxy). On the other hand, at energies above
2 keV, the high degree of isotropy and the lack of correlation with Galactic
features strongly suggest that the bulk of the background is of extragalactic
origin.

For some time after the discovery of the cosmic XRB there was consider-
able controversy over its origin. Diffuse emission of thermal bremsstrahlung
radiation from a hot intergalactic plasma at a temperature of ∼ 108 K was
a plausible source. Alternatively, the hard XRB could be attributed to the
superposition of unresolved discrete X-ray sources (active galactic nuclei and
quasars).

The spectrum of the XRB (Figure 1.6) was accurately measured in the
late 1970s by the first of the High Energy Astronomy Observatories (HEAO-
I, a NASA satellite). In the 2-10 keV energy range, this is well fit by a
power-law model with a slope Γ ∼ 1.4, significantly different from typical
(Type I, showing broad optical spectral lines) active galactic nuclei (AGN)
that are characterized by Γ ∼ 1.7. This “spectral paradox” and the fact
that the observed spectrum is well fit by a thermal bremsstrahlung model
at a temperature of ∼ 30 keV, were favouring the first possibility. However,
the discovery of many soft X-ray sources (obscured, Type II AGN showing
only narrow optical spectral lines) provided evidence for the second.

In order to explain the XRB with bremsstrahlung radiation, one has to
assume that a density corresponding to Ωb ' 0.25 − 0.30 is contributed by
gas in a uniform IGM.10 This gas was heated in the early universe by some
unknown phenomenon and then cooled by adiabatic expansion, Compton

10This could be somewhat reduced by clumping the gas, but the isotropy of the mi-
crowave background forces the clump to be on a scale of less than 1 Mpc and so they must
be confined in some way.



1.3. HISTORICAL REMARKS: THE SEARCH FOR THE IGM 21

scattering against the microwave background and bremsstrahlung. This
scenario suffers from a number of problems.

1. The gas density needed to generate the background is difficult to recon-
cile with the limits coming from standard primordial nucleosynthesis;

2. It requires a total energy nearly 40% of the cosmic microwave back-
ground to be injected into the IGM at early epochs (corresponding
to a redshift z > 6). It is difficult to concieve how this could have
happened.

3. A hot IGM perturbs the cosmic microwave background by inverse
Compton scattering: the microwave spectrum is cooled by about 0.1
K in the Rayleigh-Jeans part of the spectrum but retains its expo-
nential shape up to energies well into the exponential tail where it
develops a quasi-power-law high-energy component which extends up
to the infrared.

We now know that that the bulk of the XRB cannot originate in a
uniform, hot intergalactic medium because a strong Compton distortion
on the cosmic microwave background spectrum was not observed by
the FIRAS instrument on the COBE satellite. Moreover, very deep
images of the X-ray sky taken with the Chandra and the XMM-Newton
satellites have shown that discrete sources can account for at least 75%
of the hard XRB (and likely much more than that).

1.3.2 Intracluster gas

The existence of baryonic material outside galaxies became evident in the
late 1970s and early 1980s when extended X-ray emission (Figure 1.7) has
been detected from over a hundred local galaxy clusters (z < 0.08). In
this case, there is little doubt that the dominant X-ray emission process is
thermal bremsstrahlung. For instance, spectral lines resulting from transi-
tions of higly ionized iron have been detected and found in good agreement
with the hot-plasma hypothesis. The baryonic material that pervades the
space between galaxies in a galaxy cluster has been dubbed the “intracluster
medium” (ICM). Studies of the X-ray surface brightness have been used to
define the cluster gravitational potential and thus its mass.

A number of sources can contribute gas to the ICM:

1. primordial gas can survive in the ICM without being ever included
in galaxies as a consequence of the limited efficiency of the galaxy-
formation process;

2. primordial gas can accrete onto the cluster at late epochs;
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Figure 1.7: The map of the X-ray emission from the intracluster medium
in the core of the Abell 2199 galaxy cluster (left) is compared with the
corresponding optical emission of the galaxies (right).

3. gas injection of metal enriched gas from galaxies may result as a con-
sequence of galactic winds, ram-pressure stripping or evaporation.

Evidence for galaxy-ICM interactions is provided by the fact that local
galaxy clusters typically have a Fe/H abundance (in number) which is nearly
one half of the solar value.

1.3.3 The Lyman-alpha forest

In 1971, Roger Lynds took the optical spectrum of the quasar 4C 05.34 (at
redshift z = 2.877, the largest known at the time) and reported the presence
of a much larger density of sharp absorption lines on the blue side of the
Lyman-α emission line as compared with the red side.

He suggested that the absorption lines are due to the presence of inter-
vening intergalactic clouds absorbing in the strongest hydrogen resonance
line: the Lyman-α transition. The absorption lines appear at longer wave-
lengths due to the expansion of the universe and the cosmological redshift.

Further observations revealed that the phenomenon is widespread and
applies to all high-redshift quasars (Figure 1.8), in some cases, there are
associated Lyman-β and γ lines; however, only in rare cases, are there lines
of heavier elements at the same redshift. This supports the idea that the
absorption features are generated by large clouds of atomic hydrogen.

Several distinct possibilities were proposed to account for the origin of
the lines. The absoption could in fact take place from:

• Truly intergalactic gas clouds and protogalaxies (Figure 1.9, originally
proposed by Arons in 1972);
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• Very extended, diffuse, hydrogen halos surrounding each galaxy;

• Strong winds generated by violent star-formation episodes in dwarf
galaxies;

• Gas pervading superclusters of galaxies (a sort of intrasupercluster
gas);

• Shockwaves propagating out of star-forming galaxies or quasars.

Detailed determinations of the number density, clustering properties, and
metal content of the absorbers combined with studies of the line profiles
ruled out all the possibilities but the first. The main arguments against the
hypothesis that the Lyman-α forest is associated to galaxies are:

1. The objects responsible for the Lyman-α absorption are generally poor
in heavy elements;

2. The number density of single Lyman-α absorbers exceeds that of the
systems associated with heavy elements (which are thought to be
largely due to intervening galaxies) by a factor of ∼ 60 (but galaxies
are rare objects, so they should have a huge cross-section or, equiva-
lently, fill most of the volume);

3. The Lyman-α lines are much less clustered than the heavy element
lines.

The Lyman-α forest has been extensively studied. We now believe
that it is caused by relatively cold (T ∼ 104 K), photo-ionized, diffuse
intergalactic gas lying in the elaborate network of filaments forming the
“cosmic web”.

1.3.4 The missing baryons

Gas in the Lyman-α forest at z > 2 accounts for at least three-quarters of
the total baryon budget as inferred by both cosmic microwave background
anisotropies and big-bang nucleosynthesis predictions when combined with
observed light-element ratios at z > 2.

However, these clouds of photo-ionized intergalactic gas became more
and more sparse moving towards the present and structures (galaxies, galaxy
groups, and clusters) started to be assembled. Anyway, somewhat surpris-
ingly, only a small fraction of the baryons that were present in the intergalac-
tic medium at z > 2 are now found in stars, cold or warm interstellar mat-
ter, hot intracluster gas, and residual photo-ionized intergalactic medium.
Nearly 50% of the baryons are now “missing” (e.g. Fukugita, Hogan & Pee-
bles 1998, Fukugita 2003, Danforth & Shull 2005). Where are they? Is there
something wrong with the big picture?
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Figure 1.8: Spectra of low- and high-redshift quasars showing the thickening
of the Lyman-α forest.

Figure 1.9: Arons explanation of the Lyman-α absorption lines. See text for
further details.



1.3. HISTORICAL REMARKS: THE SEARCH FOR THE IGM 25

Figure 1.10: The cosmic baryon budget emphasizing the missing baryon
problem. See text for details.

1.3.5 The warm-hot IGM

Given the paucity of observational findings, most of what we know about
the IGM is based on numerical simulations. Within the last decade, a pic-
ture of the IGM has emerged whereby the growth of baryonic structure is
regulated by the collapse of primordial perturbations via gravitational insta-
bility. According to this model, baryonic material exists in several different
states. At high redshift, most of the gas is found in the Lyman-α forest,
which is generally distributed and relatively cool at T ∼ 104 K, its temper-
ature governed by photo-ionization heating. As the universe evolves toward
the present and density perturbations grow to form large-scale structures,
baryons in the diffuse IGM accelerate toward the sites of structure forma-
tion under the influence of gravity and go through shocks that heat them
to temperatures of millions of kelvin degrees. Being concentrated in a fila-
mentary web of tenuous (baryon density n ∼ 106 to 105 cm3, corresponding
to overdensities of 1 + δ = n/〈n〉 ∼ 5 to 50. The cooling timescale for this
shock-heated phase is so long that by z = 0 as many as 50% of the baryons
may accumulate in gas with temperatures between 105 to 107 K. This mat-
ter is so highly ionized that it can only absorb or emit far-ultraviolet and
soft X-ray photons, primarily at lines of highly ionized (Li-like, He-like, or
H-like) C, O, Ne, and Fe (e.g. Cen & Fang 2006). Because of the extreme
low density and relatively small size (1 to 10 Mpc) of the WHIM filaments,
the intensity of any observable (either in emission or in absorption) is low.
This makes the search for the missing baryons particularly challenging, if
not impossible, with current facilities. As we will se in the course, a new
generation of astronomical instruments is being developed to specifically de-
tect the WHIM. Hopefully these will lead to a detection and confirm the
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simulation predictions or show a different picture altogether of where the
missing baryons lie.



Chapter 2

Atomic physics

As we already discussed, astrophysical data and models of primordial nucle-
osynthesis indicate that matter which has never been processed by stars is
almost entirely made of Hydrogen and Helium atoms. Hydrogen accounts for
∼ 75% of the mass (i.e. 92% of the number of atoms) while Helium for the
remaining ∼ 25% (8% in number). In other words, there is approximately
one atom of Helium every 12 of Hydrogen.

Before proceeding with the study of the physical processes taking place in
the IGM, it is thus useful to review the basic quantum-mechanical properties
of the Helium and Hydrogen atoms. This is the subject of this Chapter.

2.1 Hydrogen atom

We want to solve the quantum-mechanical problem of an electron and a
proton interacting electromagnetically. As a starting point, we assume that
their motion is non-relativistic.

2.1.1 Hamiltonian

Consider a proton (with charge +e and mass mp) and an electron (with
charge −e and mass me) which interact electromagnetically. The potential
energy of the system is the usual central Coulomb potential,

U(r) = − e2

4πε0r
, (2.1)

where r is the electron-proton distance. The Hamiltonian of the system is
then obtained accounting for the kinetic energy of the two particles:

H =
p2

e

2me
+

p2
p

2mp
+ U(r) , (2.2)

27
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where pe and pp are the (linear) momenta of the particles. The Hamiltonian
can be rewritten in terms of the momentum of the center of mass, P , and
the relative momentum p

H =
P 2

2(me +mp)
+H ′ H ′ =

p2

2µ
+ U(r) , (2.3)

where µ = memp/(me +mp) is the reduced mass of the system. Note that
µ ' me, since me � mp, and the centre of mass nearly coincides with
the proton. We are not interested in the translational motion of the whole
system, therefore we drop the kinetic energy of the center of mass and only
study the relative motion of the electron and the proton.

2.1.2 Schrödinger equation

We pass from a classical to a quantum description by applying canonical
quantization. Dynamical variables (e.g. x, p) become Hermitian operators
(x̂, p̂) acting on a Hilbert space of quantum states and Poisson brackets
are replaced by commutators. In Schrödinger representation, a quantum
state is represented by a complex-valued function of the eigenvalue of the
position operator, ψ(x). The probability that a measurement of position
yields a result between x and x + dx is dP = |ψ|2d3x. In this scheme, the
momentum operator can be written as p̂ = −ih̄∇.

The time-independent Schrödinger equation for the Hydrogen atom is
obtained by requiring:

Ĥ ′ψ = Eψ . (2.4)

Adopting spherical coordinates, ψ = ψ(r, θ, φ), we obtain:

−h̄2

2µ
∇2ψ + U(r)ψ = Eψ (2.5)

with

∇2 =
1

r2 sin θ

[
sin θ

∂

∂r

(
r2 ∂

∂r

)
+

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin θ

∂2

∂φ2

]
. (2.6)

Equation (2.5) is separable. The “spherical harmonic” functions of degree `
and order m, Y`m(θ, φ) = P`m(cos θ) eimφ (with P`m the associated Legendre
polynomials), satisfy the angular part of equation (2.5) with eigenvalue `(`+
1). Thus, substituting the form

ψ(r, θ, φ) = R(r)Y`m(θ, φ) , (2.7)

and writing R(r) = u(r)/r, one obtains

− h̄
2

2µ

[
d2

dr2
− `(`+ 1)

r2
+

2µe2

h̄24πε0r

]
u(r) = E u(r) , (2.8)
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which is the Schrödinger equation of a fictitious particle of mass µ mov-
ing in the uni-dimensional effective potential Ueff(r) = `(` + 1)h̄2/(2µr2) −
e2/(4πε0r). Note that, when ` 6= 0, the “centrifugal potential” proportional
to `(`+1)/r2 counteracts the effect of the attractive Coulomb potential and
becomes the dominant term for r → 0.

2.1.3 Bound states

We are interested in the bound states of the electron-proton system, i.e.
those with E < 0. In this case it is convenient to use the dimensionless radial
variable ρ = r/r0 with r−1

0 = (−2µE/h̄2)1/2 and re-write the differential
equation above in terms of the function w(ρ) defined by u(ρ) = e−ρρ`+1w(ρ).
This gives

ρ
d2w

dρ2
+ 2(`+ 1− ρ)

dw

dρ
+ 2 [ν − (`+ 1)]w = 0 , (2.9)

where 2ν = e2/(4πε0r0E). It can be shown that this differential equation
admits physically acceptable solutions (i.e. where R(r) is finite, single val-
ued, and square integrable) only when ν is a positive integer, n ≥ `+ 1. In
this case, (by using the new radial variable x = 2ρ) the radial equation re-
duces to the associated Laguerre equation xw′′+(1+j−x)w′+kw = 0 (with
j and k integer numbers) which is solved by the generalized (or associated)
Laguerre polynomials w(x) = Ljj+k(x). 1

Thus the Hydrogen atom only admits discrete energy levels for the bound
states where

E = En =
−µe4

8ε20h
2

1

n2
= −13.6

n2
eV = −2.18× 10−18

n2
J = − 1

n2
Ry (2.10)

with n = 1, 2, 3, . . . . The corresponding solutions of the radial equation have
the form2

Rn`(r) ∝
(

2r

na0

)`
L2`+1
n+`

(
2r

na0

)
e
− r
na0 (2.11)

where the Bohr radius

a0 =
4πε0h̄

2

µe2
' 5.29× 10−11 m = 0.529 Å (2.12)

1Unfortunately there exist two different definitions of the associated Laguerre poly-
nomials which can generate some confusion when comparing different texts: Ljk =
dj/dxj [exdk/dxk(xke−x)] and Ljk = exx−jdk/dxk(e−xxj+k)/(k!). We adopt the first defi-
nition. In terms of the second one, the Laguerre equation is solved by Ljk.

2With the alternative definition of the associated Laguerre polynomials, the function
L2`+1
n+` is replaced by L2`+1

n−`−1.
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defines the characteristic length scale. The first few radial eigenfunctions
are:

R10(r) =
2

a
3/2
0

exp

(
− r

a0

)
,

R20(r) =
2

(2a0)3/2

(
1− r

2a0

)
exp

(
− r

2a0

)
, (2.13)

R21(r) =
1

31/2(2a0)3/2

r

a0
exp

(
− r

2a0

)
.

Note that Rn` has n−`−1 nodes (i.e. zero crossings) while Y`m has ` angular
nodes (m of which around the φ direction and `−m in the θ direction), so
that the full wavefunction has n− 1 nodes.

In summary, a bound state of the electron-proton system is fully specified
by 4 quantum numbers:

1. The principal quantum number, n (n = 1, 2, 3, . . . );

2. The orbital quantum number, ` (0 ≤ ` ≤ n− 1);

3. The magnetic quantum number, m (m = −`,−`+ 1, . . . , 0, . . . , `− 1, `
for a total of 2`+ 1 possibilities);

4. The spin quantum number, s (s = −1/2,+1/2).

Since the energy of a given state only depends on the principal quantum
number the degeneracy of each energy level is

n−1∑
`=0

(2`+ 1) = n+ 2
n−1∑
`=0

` = n+ n(n− 1) = n2 (2.14)

(i.e. there are n2 possible states with the same energy). When we take into
account also the two spin states of the electron, the degeneracy of the n-th
energy level becomes 2n2 (and, if you also account for the proton spin, 4n2).

A special notation is commonly used to indicate bound energy levels
in atomic systems. Consider the total orbital angular momentum of the
atom L =

∑
l (i.e. the sum of the orbital angular momenta of all the

electrons). The magnitude of the vector L is
√
L(L+ 1)h̄ where L can

assume non-negative integer values: 0, 1, 2, 3, . . . . Similarly, denote by
S =

∑
s the total electronic spin of the atom (once again summing up the

vector contribution of all its electrons). The magnitude of S is
√
S(S + 1)h̄.

Finally, compute the total angular momentum of the atom J = L + S,
with magnitude

√
J(J + 1)h̄. A given quantum state is then associated

with the letter S, P,D, F,G,H, I,K, . . . according to whether its L value is
0, 1, 2, 3, 4, 5, 6, 7, . . . . The value of 2S + 1 is written as an upper-left super-
script. The value of J is written as a bottom-right subscript. For instance,
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the fundamental state of the hydrogen atom (n = 0, ` = 0) corresponds
to 2S1/2. The first excited level (n = 1) instead includes terms 2S1/2 (i.e.
` = 0), 2P1/2 (i.e. ` = 1 where L and S are antiparallel), and 2P3/2 (i.e.
` = 1 where L and S are parallel).

2.1.4 Fine structure

As a first approximation, we treated the hydrogen atom as a non-relativistic
system subject to Coulomb interaction. However, to achieve higher accuracy,
correction to this model are required. We can distinguish three contribu-
tions.

1. Let us consider first relativistic effects. After factoring out the rest
mass µc2, the energy of the hydrogen bound states with principal
quantum number n can be written as

|En| =
1

2
µc2

(α
n

)2
(2.15)

where

α =
e2

h̄c 4πε0
=

1

137.036
' 7.2974× 10−3 (2.16)

is the dimensionless fine-structure constant. The fact that |En| � µc2

justifies our initial assumption of a non-relativistic system. However,
relativistic corrections are not completely negligible. The kinetic en-
ergy associated with the relative motion of the electron and the proton
is

T = (p2c2 + µ2c4)1/2 − µc2 = µc2

[(
p2

µ2c2
+ 1

)1/2

− 1

]
'

' µc2

[
1

2

(
p

µc

)2

− 1

8

(
p

µc

)4

+ . . .

]
= (2.17)

=
p2

2µ
− p4

8µ3c2
+ . . .

where the series expansion holds for |p| � µc. The contribution of the
term proportional to p4 to the hydrogen energy levels can be computed
perturbatively (i.e. using the unperturbed solution to calculate the
correction). In this case one obtains:

∆En = − E2
n

2µc2

(
4n

`+ 1/2
− 3

)
, (2.18)

which can be rewritten as

∆En
En

= −α
2

n2

(
n

`+ 1/2
− 3

4

)
. (2.19)
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Note that this removes the degeneracy between levels with the same
principal quantum number but different orbital quantum number.

2. The electron has an intrinsic magnetic moment

Me =
gee

2me
Se = −geµB

Se

h̄
, (2.20)

where Se is the electron spin, ge ' 2 is the electron g factor, and
µB = eh̄/(2me) = 9.274×10−24 J/T is the Bohr magneton. In the elec-
tron rest frame there is a magnetic field generated by the current due
to the relative motion of the proton. Therefore, electromagnetic inter-
actions are not limited to pure Coulomb attraction as assumed above.
Rather, the Hamiltonian should contain an extra term ∆H = −Me ·B
where B = −v × E/c2 is the magnetic field felt by a charge moving
with velocity v in the presence of an electric field E = er/(4πε0r

3).
Therefore,

∆H = − gee
2

2mec24πε0r3
Se · (v × r) , (2.21)

and using the definition of the orbital angular momentum L = mer×v,
we obtain the so-called spin-orbit interaction term:

∆H =
e2

4πε0

1

2m2
ec

2r3
L · Se . (2.22)

In reality, the expression above needs to be reduced by a factor of 2 due
to the “Thomas precession” which takes into account the relativistic
time dilation between the electron and the laboratory frames and the
non-inertiality of the electron rest frame. The key idea is that two
successive Lorentz transformations along different directions in the
orbit (as the electron accelerates) are mathematically equivalent to
a single Lorentz transformation plus a rotation in three-dimensional
space. This rotation causes a precession of the spin vector of the
electron.

Given the total angular momentum J = L + S, the scalar product
L ·S can be written as L ·S = (J2−L2−S2)/2. Therefore the energy
eigenstates obtained accounting for the spin-orbit term will be most
easily classified as states of definite total angular momentum where
L · S assumes the values [(j(j + 1) − `(` + 1) − s(s + 1)]h̄/2. The
corresponding energy shift is:

∆En = − 1

2n
α2En

j(j + 1)− `(`+ 1)− 3/4

`(`+ 1/2)(`+ 1)
. (2.23)
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3. Finally one has to consider a special term in the Hamiltonian that is
different from zero only for states with ` = 0.

∆H = 4π
h̄2

8m2
ec

2

(
e2

4πε0

)
δD(r) (2.24)

with δD the Dirac-delta distribution. This is known as the “Darwin
term” and naturally arises in a fully relativistic treatment of the Hy-
drogen atom (Dirac equation). The physical origin of the Darwin term
is a phenomenon in Dirac theory called “Zitterbewegung”, whereby
the electron, on top of its usual steady motion, undergoes extremely
rapid small-scale fluctuations on the order of the Compton wavelength
λC = h/(mec) ' 2.4 × 10−12 m with a period of λC/c ' 4 × 10−21 s.
As a consequence of this “motion” the electron sees a smeared-out
Coulomb potential of the nucleus which is not U(r) but its average
over a patch of size λC. Since the Compton wavelength is much smaller
than the Bohr radius, the Zitterbewegung only matters for electrons
which are very close to the nucleus. We have seen that all radial wave-
functions Rn` vanish at r = 0 except those having ` = 0. This is why
the Darwin term only matters for s states.

The total energy shift (including all 3 effects) of the bound states comes
out to be:

∆En`m = En
α2

n2

(
n

j + 1/2
− 3

4

)
j = `± 1/2 (2.25)

Note that although the three separate contributions depend on `, the total
energy shift does not: it only depends on j. This degeneracy is present even
in the exact solution of the Dirac equation for the Coulomb potential.

In brief, what at first approximation appears to be a single energy level
in the hydrogen spectrum actually consists of two or more closely spaced
level when analysed with high precision. The spacing between the levels of
this “fine structure” is suppressed by a factor α2 ' 104 with respect to the
principal levels.

2.1.5 Hyperfine structure and 21cm radiation

Also the proton, being a spin one-half particle, possesses an intrinsic mag-
netic moment with a g factor gp = 5.586. 3 The interaction between the
magnetic moment of the proton with the magnetic field produced by the
electron spin and the orbital motion of the electron (nuclear spin-orbit in-
teracton) give rise to additional small perturbations in the energy levels of

3Note that the magnetic moment of a proton is much smaller than that of an electron.
The ratio µe/µp is of the same order of mp/me ∼ 1836.
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Figure 2.1: Effect of the fine-structure energy-shift on the n = 1, 2, and 3
states of the Hydrogen atom. Not to scale!

the hydrogen atom. Since the Hamiltonian contains terms which are pro-
portional to the proton spin Sp, the operator that measures the angular
momentum of the electron (J = L + Se) does not commute with the full
Hamiltonian. However, the operators F 2 and Fz (where F denotes the total
angular momentum J + Sp) do. Hence every energy level associated with a
particular set of quantum numbers n, `, and j will be split into two levels of
slightly different energy depending on the relative orientation of the proton
and electron spins. The amplitude of these splittings is typically a factor
me/mp smaller than for the fine structure and for this reason it is dubbed
“hyperfine structure”.

For the specific case of the ground state of the hydrogen atom, the energy
separation between the states f = 1 and f = 0 is 5.9 × 10−6 eV. This
corresponds to radiative transitions with frequency ν = 1420.406 MHz and
wavelength λ = 21.1 cm. This is the source of the “21cm line” which has
been used by astronomers to map the distribution of neutral hydrogen in
our galaxy.

2.1.6 Lamb shift

In 1947 Willis Lamb (1913-2008, Nobel laureate in 1955) and Robert Rether-
ford (1912-) showed that the 2S1/2 (n = 2, ` = 0, j = 1/2) and 2P1/2 (n =
2, ` = 1, j = 1/2) states of the hydrogen atom are not degenerate. The P
state is slightly more bound with an energy difference ∆E = 4.372×10−6 eV
(corresponding to a transition frequency between the two states of 1057.864
MHz).

The effect is now explained by treating the electromagnetic field as a
quantum system. In this case, the ground state of the electromagnetic field
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Figure 2.2: Feynman loop diagrams showing effects that contribute to the
Lamb shift.

has non-vanishing energy (as in the case of the harmonic oscillator) and
thus a non-vanishing field. Radiative coupling of the electron to the vacuum
field produces the Lamb shift. At the lowest perturbative level (one loop)
in quantum electrodynamics one recognizes three contributions to the Lamb
shift (see Figure 2.2). The dominant one (4.2 µeV) comes from the fact that
electrons subjected to the electromagnetic field spontaneously emit photons
and quickly reabsorb them. 4 This “self-interaction” of the electron slightly
changes the energy that binds the electron to the proton (electron mass
renormalization). The second largest contribution (0.28 µeV) comes from
the fact that one-loop corrections produce an anomalous magnetic dipole
moment for the electron with a g-factor g = 2.00232 instead of the standard
Dirac-value of 2. The last contribution (-0.11 µeV) comes from virtual
electron-positron pairs which, in the presence of an electromagnetic field,
align and create electric dipoles counteracting the external field (vacuum
polarization).

For states with ` = 0 the Lamb-shift correction to the energy levels is:

∆ELamb = α5mec
2 k(n, ` = 0)

4n3
(2.26)

where k(n, ` = 0) is a tabulated function which varies slightly with n and
assumes values between 12.7 (for n = 1) and 13.2 (as n → ∞). For ` 6= 0
the Lamb shift is very small. In this case:

∆ELamb = α5mec
2 1

4n3

[
k(n, `)± 1

π(j + 1/2)(`+ 1/2)

]
, (2.27)

for j = ` ± 1/2, where |k(n, `)| < 0.05 is a small numerical factor which
varies slightly with n and `.

4Using the words by Gordon Kane: “Quantum mechanics allows, and indeed requires,
temporary violations of conservation of energy, so one particle can become a pair of heavier
particles (the so-called virtual particles), which quickly rejoin into the original particle as
if they had never been there. But while the virtual particles are briefly part of our world
they can interact with other particles.”
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Figure 2.3: A scheme showing the energy levels of the Hydrogen atoms at
different approximation levels. Moving from left to right one includes more
and more terms in the Hamiltonian.
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Figure 2.4: Energy levels for neutral Helium obtained assuming that the
first electron is in the ground state 1s.

2.2 Helium atom

A Helium atom consists of a nucleus of charge +2e surrounded by two elec-
trons. Although there are eight known isotopes of Helium (containing a
different number of neutrons in the nucleus), only Helium 3 (two protons
and one neutron) and Helium 4 (two protons and two neutrons) are stable.
On Earth only 0.000137% of the Helium atoms are Helium 3 (∼ 1 parts per
million), all the rest is Helium-4. In outer space the Helium 3 abundance is
higher, for instance in the atmosphere of Jupiter it amounts to 100 ppm.

2.2.1 Singly ionized Helium

The He+ atom is just like a hydrogen atom with a nuclear charge +2e
(Z = 2). Since the energy levels depend upon the square of the nuclear
charge, the energy levels of the atom are:

En =
−µe4Z2

8ε0h2

1

n2
= −54.4

n2
eV n = 1, 2, 3, . . . . (2.28)

2.2.2 Neutral Helium

Adding a second electron one obtains the neutral Helium atom. In this
case there is no analytic solution for the energy levels that can however be
computed numerically or using perturbative techniques (Figure 2.4). One
has to distinguish two cases:

1. “Parahelium”: where the spins of the electrons are antiparallel (i.e.
the total spin quantum number is S = 0, a singlet state);
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2. “Orthohelium”: where the spins of the electrons are parallel (i.e. the
total spin quantum number is S = 1, a triplet state).

Parahelium is energetically the lowest state of Helium. In this case, the
ground state of the second electron corresponds to E = −24.6 eV. For
all the other energy levels, however, orthohelium is a slightly more bound
system than parahelium. Let us try to understand why the energy levels of
ortho- and parahelium are different. In the case of orthohelium, the spin part
of the wavefunction is symmetric (i.e. one can exchange the two electrons
without noticing a difference). However, the total wavefunction for electrons
(and, in general, for all fermions) must be anti-symmetric to obey the Pauli
exclusion principle. Note that, neglecting to first approximation the spin-
orbit interaction, the total wavefunction can be written as the product of
the spin and space parts: ψtot = ψr(r1, r2)ψs(s1, s2). Therefore, the space
part of the wavefunction must be anti-symmetric for orthohelium (and for
this reason both electrons cannot be in the 1s state as shown in Fig. 2.4).
An anti-symmetric function of position must vanish at zero separation. This
suggests that electrons tend to be more separated for orthohelium than for
parahelium. Therefore, the second electron in orthohelium will feel less
shielding from the nucleus by the other electron and it will be more tightly
bound. This reasoning is often called “spin-spin interaction” and lies at
the base of the first Hund’s rule for the ordering of energy levels in multi-
electronic atoms.

2.3 Atoms and electromagnetic radiation

In this Section we will discuss how atomic systems interact with radiation.
For simplicity, we will adopt a semi-classical treatment, where the atom
is described quantum-mechanically and radiation is treated classically. We
will stress the limits of this large-photon-number approximation and briefly
discuss where it fails.

To simplify the notation, we adopt Gauss units for the electromagnetic
quantities.

2.3.1 Time evolution

The time evolution of a (non-relativistic) quantum system is described in
terms of its Hamiltonian, H, by the time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ . (2.29)

Let us consider a system (e.g. an atom) with an Hamiltonian H0 that does
not contain time explicitly. At an arbitrary time t0, this system is character-
ized by discrete energy states En corresponding to the wavefunctions ψn (i.e.
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the solutions of the time-independent Schrödinger equation Ĥψn = Enψn)
that satisfy the orthonormality relation∫

ψ∗n ψm d
3x = 〈n|m〉 = δnm ≡

{
1 if i = j

0 if i 6= j
(2.30)

where the first equality introduces the bra-ket notation by Paul Dirac and
defines the inner product in Hilbert space. For a state of defined energy, Eq.
(2.29) gives

ih̄
∂ψn
∂t

= En ψn → ψn(t) = ψn exp

[
− i En (t− t0)

h̄

]
. (2.31)

Suppose that at time t = t0 the state of the system is

φ(t0) =
∑
n

cn ψn (2.32)

where the cn are complex numbers. Its time evolution will thus be

φ(t) =
∑
n

cn exp

[
− i En (t− t0)

h̄

]
ψn (2.33)

and the probability of finding the system in state n at time t is obtained by
projecting the wavefunction φ onto the eigenspace generated by ψn:

Pn(t) = |
∫
φ∗(t)ψn d

3x|2 = |〈φ|n〉|2 = |cn|2 = Pn(t0) . (2.34)

In this case, probabilities do not change with time. In particular, a system
in an energy eigenstate |n〉 indefinitely stays in that state.

2.3.2 Time-dependent perturbations

Let us now perturb our system adding a small time-dependent Hamiltonian
H1(t):

H = H0 +H1(t) . (2.35)

You might recall from your class on quantum mechanics that the eigenfunc-
tions of any Hermitian (self-adjoint) operator form a complete set of func-
tions in Hilbert space. This is known as the “spectral theorem” and means
that we can write any wavefunction as a linear combination of the elements
forming the complete set. We can then still use the eigenfunctions of Ĥ0 to
describe the evolution of the perturbed system but the coefficients of the ex-
pansion, cn, will be time dependent in this case, i.e. φ(t) =

∑
n cn(t)ψn(t).

The initial state φ(t0) will thus evolve according to

ih̄
∑
m

dcm
dt

ψm(t) =
∑
m

cm(t) Ĥ1 ψm(t) (2.36)
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where we have used the unperturbed Schrödinger equation for ψn(t) to elim-
inate Ĥ0 from the equation. Taking the inner product with a given ψn then
gives

ih̄
dcn
dt

=
∑
m

Hnm(t) exp [i ωnm(t− t0)] cm(t) (2.37)

with

Hnm(t) =

∫
ψ∗n Ĥ1(t)ψm d

3x = 〈n|Ĥ1|m〉 (2.38)

the interaction matrix element and

ωnm =
En − Em

h̄
. (2.39)

This is a set of coupled differential equations for the cn(t). In matrix form,
it gives:

ih̄
d

dt


c1

c2

.
cn

 =


H11 H12 e

i ω12 t . H1n e
i ω1n t

H21 e
i ω21 t H22 . H2n e

i ω2n t

. . . .
Hn1 e

i ωn1 t Hn2 e
i ωn2 t . Hnn

 . (2.40)

The probability of finding the system in any particular state at any later
time is |cn(t)|2. We can thus say that a (small) time-dependent perturbation
causes the quantum system to make transitions between its unperturbed
energy eigenstates. Note, however, that the states |n〉 have a definite energy
only for the unperturbed Hamiltonian. They will not be energy eigenstates
for the perturbed one. However, each of them will be representable as a
superposition of the (unknown) “true” eigenstates of the full Hamiltonian.
The energy of each state |n〉 is thus not exactly defined in the presence of
the perturbation.

2.3.3 Harmonic perturbations

Let us now consider a quantum system in an initial state |i〉 perturbed by a
periodic potential H1(t) = V exp (−iωt) (where V does not depend explicitly
on time) switched on at t = 0. We are interested to know the probability
that the system will be in the state |f〉 at time t > 0. To first order (i.e.
for small changes), we can assume that ci ' 1 all the time and neglect
transitions to |f〉 from other states than |i〉. Plugging this into equation
(2.37) we get:

ih̄
dcf
dt
' Hfi(t) exp (i ωfi t) (2.41)

which gives

cf (t) = − i
h̄
〈f |V̂ |i〉

∫ t

0
exp [i (ωfi − ω) t] dt . (2.42)
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Note that the time integral gives the Fourier transform of the pertubation.
The final result is

cf (t) = − i
h̄
〈f |V̂ |i〉

exp [i (ωfi − ω) t]− 1

i (ωfi − ω)
. (2.43)

The transition probability to the state |f〉 is then:

Pi→f = |cf |2 =
2

h̄2

∣∣∣〈f |V̂ |i〉∣∣∣2 1− cos [(ωfi − ω) t]

(ωfi − ω)2 , (2.44)

and, using the identity 2 sin2 (x) = 1− cos (2x), it can be rewritten as

Pi→f =
4

h̄2

∣∣∣〈f |V̂ |i〉∣∣∣2 sin2

[
(ωfi − ω)

t

2

]
(ωfi − ω)2 . (2.45)

The oscillatory function on the right-hand side (see Figure 2.5) has a maxi-
mum at ω = ωfi where it assumes the value t2/4. The corresponding peak
has a width of 2π/t. As time passes, the transition probability integrated
over all possible angular frequencies ω increases proportionally to t (note
that after a short transient this probability mainly comes from the main
peak around ωfi). We are interested in the large t limit, where there are no
effects due to the fact that we artificially “switched-on” the perturbation at
t = 0. It makes sense, therefore, to define a “transition rate per unit time”
as

Ri→f = lim
t→∞

Pi→f
t

. (2.46)

Taking into account that limx→∞ sin2(βx)/(β2x) = (π/2) δD(β), we finally
obtain:

Ri→f =
2π

h̄2

∣∣∣〈f |V̂ |i〉∣∣∣2 δD(ωfi − ω) . (2.47)

This equality is known as the (second) Fermi golden rule. It states that,
to first order in perturbation theory, the transition rate depends only on
the square of the matrix element of the operator V̂ between initial and
final states, |Vfi|2 = |〈f |V̂ |i〉|2. Also it enforces energy conservation via
the Dirac delta distribution. The condition ω = ωfi is equivalent to the
condition Ef = Ei + h̄ω . This means that the transition can only occur if
the frequency of the field is exactly “tuned” to match the energy difference
between the initial and final states.

In this context, it is interesting to address a couple of questions that
might naturally arise.

Why at finite time t transitions are possible also for ω 6= ωfi?
The issue is related to the fact that we suddenly switched on the
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Figure 2.5: The oscillatory function in equation 2.45 at two different times.
The integral of this function over the angular frequency of the incident
radiation ω gives π t/2.

oscillating perturbation at t = 0. Because of this, the frequency spec-
trum of H1 is not exactly monochromatic at the frequency ω/(2π) (i.e.
S(ν)dν ∝ δD[ν − (ω/2π)] dν) at finite times. 5 Rather it follows:

S(ν) ∝
sin2

[(
ν − ω

2π

) t
2

]
(
ν − ω

2π

)2 . (2.48)

Therefore the perturbation contains harmonic modes with ν = ωfi/(2π)
(those that conserve energy during the transition) even though ω 6=
ωfi. The presence of these modes makes the transition possible and
the transition probability is then proportional to S[ωfi/(2π)]. Only
in the limit t→∞ the perturbation will have a truly monochromatic
spectrum.

What does the limit t→∞ in equation (2.47) really mean in practice?
The width of the main peak in Figure 2.5 is ∆ω t/2 = π which we
can write as ∆ω = 2π/t. Requiring that this frequency width is much
smaller that the energy difference between the initial and final states
divided by the Planck constant, gives:

∆ω

ωfi
� 1 → t� 2π

ωfi
=

1

νfi
. (2.49)

5Remember that the frequency spectrum is the square modulus of the Fourier transform
of a time-dependent signal.
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When this is true, one can extend the limit to infinity without ap-
preciably changing the result. On the other hand, in our derivation,
we assumed that the transition probability Pi→f � 1. This condi-
tion allowed us to use first-order corrections (otherwise higher-order
terms should be taken into account). Requiring that the peak of the
transition probability is smaller than unity gives

|Vfi|2

h̄2 t2 � 1 or t� h̄

|Vfi|
. (2.50)

Therefore, our derivation only holds if

2π

ωfi
� t� h̄

|Vfi|
(2.51)

which requires

|Vfi| �
h̄ωfi
2π

=
Ef − Ei

2π
. (2.52)

In brief, the matrix element |Vfi| must be much smaller than the en-
ergy difference between the quantum states involved in the transition.
This generally holds when applied to atomic systems interacting with
electromagnetic radiation in normal conditions.

The Fermi golden rule must be modified when one considers transitions
to a continuum distribution of final states characterized by a (broad and
smooth) density ρ(E) (number of states per unit energy). In this case, it
becomes: 6

Ri→f =
2π

h̄
|〈f |V |i〉|2 ρ(Ef ) . (2.53)

This for instance applies to states of an ionized atom where the electron is
unbound to the nucleus.

2.3.4 Electromagnetic interactions

Let us now consider the special case of an atomic electron interacting with
classical (i.e. non quantized) electromagnetic radiation which is switched on
at time t = 0. In this case

H1 ' −
eA(t) · p
me c

, (2.54)

with A the vector potential of the electromagnetic field. This is obtained as
follows (see any basic quantum mechanics textbook for details):

1. Using the standard prescription p → p + qA, H → H − qφ for writ-
ing the Hamiltonian of a particle of charge q in the presence of an
electromagnetic field with scalar potential φ and vector potential A.

6Remember that δD(ω) = h̄ δD(h̄ω) = h̄ δD(E).
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2. Separating the electromagnetic field in a static component (the Coulomb
potential due to the rest of the atom) and radiation. In the rest frame
of the nucleus, this is done by adopting the Coulomb gauge ∇ ·A = 0
(also known as transverse or radiation gauge). In this case, the radia-
tion field is fully described by the (transverse) vector potential and has
φ = 0. The electric and magnetic fields of the radiation component
are given by E = −(1/c) ∂A/∂t and B = ∇×A, respectively.

3. Supposing that the perturbation corresponds to a monochromatic plane
wave with A = 2A0 u cos (k · r− ωt). The electromagnetic wave prop-
agates along the direction of the wavevector k (whose modulus corre-
sponds to the wavenumber k = |k| = ω/c) whilst the vector potential
is harmonically oscillating along the direction u = A/|A|. Note that
u and k are perpendicular, i.e. u× k = 0.

4. Neglecting a quadratic term in A (since we are after small perturba-
tions):

H2 =
e2

2mec2
A ·A . (2.55)

We will return to this term later, in Section 2.4.1.

Expliciting the time dependence in equation (2.54), we obtain

H1 = − eA0

me c
u · p [exp (ik · r− iωt) + exp (−ik · r + iωt)] . (2.56)

This is the linear superposition of two harmonic perturbations and we can
reason as in Section 2.3.3. The Fermi golden rule then gives

Ri→f =
2π

h̄2

[
|〈f |V |i〉|2 δD(ωfi − ω) + |〈f |V †|i〉|2 δD(ωfi + ω)

]
, (2.57)

where

V = − eA0

me c
u · p exp (ik · r) . (2.58)

Note that the transition rate scales as A2
0 and thus as the square modulus of

the electric field which is directly proportional to the intensity of radiation
(the time average of the Poynting flux along the k direction).

The terms associated with the two delta distributions correspond to
two different physical processes caused by radiation of angular frequency
ω impinging onto an atomic system.

Absorption. The first term on the left describes a process by which the
atomic system gains the energy ∆E = h̄ω from the perturbing field,
whilst making a transition to a final state whose energy level exceeds
that of the initial state by ∆E. This process is known as absorption
(Fig. 2.6).
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Figure 2.6: Schematic representation of stimulated emission, absorption and
spontaneous emission.

Stimulated emission. The latter term on the right describes a process by
which the atomic system gives up energy ∆E = h̄ω to the electro-
magnetic field while making a transition to a final state whose energy
level is less than that of the initial state by ∆E. This process is called
stimulated (or induced) emission (Fig. 2.6).

In both cases, the total energy (i.e. that of the atomic system plus the
perturbing field) is conserved.

2.3.5 The electric dipole approximation

Typically, atomic energy levels have separations of a few eV. A radiative
transition between two energy levels separated by ∆E = 1 eV produces ra-
diation with a wavelength λ = hc/∆E = 12398.44 Å. On the other, photons
with an energy of 13.6 eV (the ionization threshold for Hydrogen in the
ground state) have λ = 911 Å. This is still much larger that the typical size
of a light atom (atomic wavefunctions typically only extend for a few Å).

Now note that the electromagnetic perturbation V in equation (2.58)
scales proportionally to exp [ik · r] where k = 2π/λ. The argument of the
exponential function is therefore expected to be a small number of the order
of the ratio between the atom size and the wavelength of the electromagnetic
wave. It makes thus sense to Taylor expand it:

exp [ik · r] ' 1 + ik · r− 1

2
(k · r)2 + . . . . (2.59)
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Keeping only the leading term (i.e. 1) corresponds to assuming that the
electric field is constant in space (but not in time!) within the atomic volume.
This is known as the electric dipole approximation:

Vfi ' −
eA0

me c
u · 〈f |p̂|i〉 . (2.60)

The electron linear momentum p can be expressed in terms of the com-
mutator [r,H0] as p = i (me/h̄) [r,H0] (where H0 is the usual unperturbed
Hamiltonian including a non-relativistic kinetic term and the Coulomb in-
teraction). Therefore,

〈f |p̂|i〉 = ime ωfi 〈f |r̂|i〉 (2.61)

and

Vfi ' −
eA0

c
i ωfi û · 〈f |r̂|i〉 . (2.62)

The matrix element Vfi is thus proportional to

〈f |d̂|i〉 = −〈f |e r̂|i〉 (2.63)

which gives the (effective) electric dipole moment for the transition.

2.4 Selection rules and forbidden transitions

In the electric dipole approximation, radiative atomic transitions can only
happen if the associated electric dipole moment does not vanish. Consider
a transition from an energy state corresponding to the quantum numbers
n, `,m to one with n′, `′,m′. Using the fact that the position r is a vector
(i.e. a spin-one tensorial operator), it can be shown that the dipole matrix
element vanishes unless the initial and final states satisfy (see any quantum
mechanics book for details):

∆` = `′ − ` = ±1 , ∆m = m′ −m = 0,±1 . (2.64)

Moreover, since the perturbing Hamiltonian does not contain any spin op-
erators, the spin quantum number ms cannot change during a transition.
Hence, we have the additional selection rule that m′s = ms. These are
termed the selection rules for electric dipole transitions. They follow from
the Wigner-Eckart theorem and derive from the properties of the spherical
harmonics.

Strictly speaking the above selection rules are only valid when the spin-
orbit interaction is not considered in the unperturbed Hamiltonian of the
atom. In the general case, the eigenstates ofH0 are classified by the quantum
numbers n, `,m, j,mj . The dipole selection rules then become:

∆J = 0,±1 (except 0→ 0) , ∆MJ = 0,±1 ∆L = ±1 ∆S = 0 ,
(2.65)
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Figure 2.7: Selection rules for radiative transitions.

and express the fact that the photon is a spin-1 particle carrying one unit
of angular momentum.

Transitions that are not allowed are called (dipole) “forbidden”. Among
these we must distinguish two cases.

1. Those for which the true radiative matrix 〈f |u ·p exp [ik · r]|i〉 is zero
are absolutely forbidden at the one-photon level. For instance, the
2S → 1S transition in the Hydrogen atom is one of these and cannot
take place.

2. On the other hand, the dipole-forbidden transitions for which the true
radiative matrix does not vanish are not strictly forbidden. They take
place at a far lower rate than transitions which are allowed according
to the electric dipole approximation. In fact, the higher order terms
in equation (2.59) give rise to transitions with different selection rules.
For instance, the linear correction proportional to r generates two new
families of radiative transitions.

• Magnetic dipole transitions (interactions between the electron
spin and orbital angular momentum with the oscillating mag-
netic field of the incident radiation) are typically 105 times more
unlikely than similar electric dipole transitions.

• Electric quadrupole transitions (interactions between the electric
quadrupole of the atom and the oscillating electric field of the
incident radiation) are typically about 108 times more unlikely
than electric dipole transitions.

The corresponding selection rules are summarized in Figure 2.7.
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2.4.1 Two-photon emission

In “normal” conditions the H2 term in equation (2.55) is negligible. It can
be shown that its contribution matches that of H1 only for very intense
electromagnetic fields (that are not found in the intergalactic medium). In
terms of photon densities, one needs 1024 photons per cm3 for H2 being as
important as H1 (this density corresponds to nearly 1 photon per atomic
volume). Consider, however, that even at the surface of the Sun the photon
density is “only” of ∼ 1014 cm−3.

There are, however, situations in which the contribution of H1 vanishes
because of particular symmetries of the states involved in the transition. In
this cases, H2 becomes the leading term. Being quadratic in A, H2 leads to
two-photon transitions. These make the decay of the 2S state of Hydrogen
possible.

2.5 Spontaneous emission

Contrary to our discussion in Section 2.3.1, an atom in an excited state |i〉
can decay spontaneously (i.e. without the influence of external radiation) to
a lower-energy level |f〉 by emitting a photon of energy Ei −Ef (see Figure
2.6). This is called spontaneous emission.

From the theoretical point of view, spontaneous emission becomes man-
ifest only by treating the electromagnetic field as a quantum-mechanical
entity. In quantum electrodynamics, the electromagnetic field has a ground
state (the vacuum) which couples with the excited levels of the atom. Spon-
taneous emission results from this interaction. In some sense, it can be
considered as a stimulated emission caused by the zero-point energy (i.e.
the energy of the vacuum state7) of the field.

Computing the rate of spontaneous emission from quantum electrody-
namics goes beyond the scope of this course. We will however derive this
quantity in a future class using an elegant method due to Einstein.

Stimulated emission always generates radiation in phase with the inci-
dent one. On the contrary, spontaneous emission takes place with random
phases and directions.

Spontaneous emission takes place at an unpredictable time and thus
requires a statistical treatment.

2.5.1 Radiative decay widths

In reality, radiative atomic transitions are not infinitely sharp, rather they
have finite width. This can be easily understood as follows. Consider an
atomic system in an excited state |i〉. Because of spontaneous emission, the

7For an analogous case, think of the ground state of a quantum harmonic oscillator.
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probability to be in the initial state will satisfy the differential equation

d|ci|2

dt

∣∣∣∣
spont.em.

= −Γ |ci|2 , (2.66)

which is solved by

|ci|2 = e−Γt . (2.67)

The lifetime of the level is defined as τ = Γ−1 and indicates the time needed
to reduce the probablity by a factor e. The lifetime of an excited state
is computed by summing up the allowed spontaneous emission rates to all
possible lower levels. In the presence of external radiation, one should also
add the induced rates to this.

Since the probability of being in a given excited state decays exponen-
tally with time, also the intensity of the emitted radiation will decrease.
It is then evident that the spectrum of the emitted radiation cannot be
monochromatic.

Repeating the calculations in Section 2.3.3 but allowing also for sponta-
neous emission in equation (2.41) gives a Fermi rule where the Dirac distri-
bution is replaced by

φ(ω) =
1

π

Γ

2

(ω − ωfi)2 +

(
Γ

2

)2 , (2.68)

(the Fourier transform of a damped oscillator). This is a Lorentzian line-
shape 8 and it is fully characterized by the central frequency ωfi and its
Full Width at Half Maximum (FWHM) Γ. This lineshape will be observed
whenever the density of final states is nearly constant over the width of the
line. Note that if the final level |f〉 is not the ground state of the system it
will decay as well further broadening the linewidth. In this case,

Γ = Γi + Γf . (2.69)

In summary, since the excited states only live for a finite (random) time,
there is a spread in the frequency (or energy) of the transition lines. For
optical transitions the natural linewidth is typically 10−7 eV (with an as-
sociated lifetime of 0.66 × 10−8 s). Strong lines, which correspond to fast
transitions, are smeared out more that weak lines.

8The distribution [π(1+x2)]−1 is known as Cauchy distribution is statistics, as Lorentz
distribution in spectroscopy, and as Breit-Wigner distribution in nuclear physics.
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2.6 Bound-bound transitions

2.6.1 Hydrogen spectrum

Electromagnetic transitions between bound states of the Hydrogen atom will
emit or absorb photons with energy

E = 13.6

(
1

n2
1

− 1

n2
2

)
eV (2.70)

where n1 and n2 (n2 > n1) are the principal quantum number of the states
involved in the transition (we neglect the fine and hyperfine structure here).
Some transitions are particularly prominent.

Lyman series. Spectral lines from/to the fundamental level (n = 1) form
the Lyman series and lie in the ultraviolet region of the electromagnetic
spectrum. For instance, the Lyman α line (n2 = 2, n1 = 1) corresponds
to a photon energy of 10.2 eV and to a wavelength of 1215.87 Å.
Similarly, the Lyman β line (n2 = 3, n1 = 1) gives 12.09 eV or 1025.18
Å, and so on, up to the Lyman-series limit (or Lyman edge, n2 →
+∞, n1 = 1) with 13.6 eV or 911.267 Å.

Balmer series. Spectral lines from/to the first excited level (n = 2) form
the Balmer series and lie in the visible/ultraviolet region of the electro-
magnetic spectrum (Hα at 6563 Å (the strongest optical line) is red,
Hβ at 4861 Å is blue/green, Hγ at 4341 Å is violet, the Balmer-series
limit at 3646 Å lies in the ultraviolet);

Other series. Spectral lines from/to the excited levels with n > 2 form
the Paschen (n = 3), Brackett (n = 4) and Pfund (n = 5) series and
all lie in the infrared region of the electromagnetic spectrum.

As an example of electric-dipole-forbidden transition, it is important to
mention the 21cm spin-flip transition of neutral hydrogen. This magnetic-
dipole transition happens at the exceptionally low rate of Γ = 2.9×1015 s−1.
This means that the lifetime of the excited level is τ ∼ 107 yr!

2.6.2 Ionized-Helium spectrum

Radiative transitions in singly-ionized Helium atoms will create or absorb
photons with energy

E = 54.4

(
1

n2
1

− 1

n2
2

)
eV . (2.71)

In this case, the Lyman α transition corresponds to an energy of 40.8 eV
and to a wavelength of 303.78 Å. On the other hand, the Lyman edge (54.4
eV) lies at nearly 228 Å.
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Figure 2.8: Electric dipole transitions for the neutral Helium atom (Parahe-
lium on the left and Orthohelium on the right). Most of the labels indicate
wavelengths in nm (with some exceptions, as for the 10830 Å line which is
expressed in units of 10−7 m).

2.6.3 Neutral Helium spectrum

Since radiative transitions from triplet states to singlet states are forbidden
(at the electric dipole level which allows only ∆S = 0), the lowest state of
orthohelium is metastable. This implies that, at very low densities, ortho-
and parahelium behave as two different elements with different spectra. At
higher densities, however, collisions make transitions between the two states
possible.

Electric-dipole transitions for ortho- and parahelium are listed in Figure
2.8. For Parahelium, the equivalent of the Lyman-α line lies at 584.33 Å
(21.22 eV, ultraviolet), the equivalent of Hα at 20581 Å (near infrared),
and the Lyman edge at 504 Å (24.6 eV, ultraviolet). The strongest optical
lines are 3 1D → 2 1S (5015.7 Å, green) and 3 1D → 2 1P (6678.1 Å, red).
For Orthohelium, the equivalent of Hα lies at 10830 Å (near infrared). The
strongest optical lines are 3 3D → 2 3P (5875.7 Å, yellow-orange), 3 3S →
2 3P (7065.2 Å, red), and 4 3D → 2 3P (4471.5 Å, violet).
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Chapter 3

Radiative transfer

Electromagnetic radiation provides most of the information we have on the
astrophysical universe. Electromagnetic waves emitted by cosmic sources
travel through vast distances before being detected by our instruments. The
space they cross is not empty; rather it is filled with an extremely diluted (by
terrestrial standards) mixture of ions, atoms, molecules and larger “dust”
grains (somewhat similar to soot or sand). Typical densities in the interstel-
lar medium (the diffuse material between stars in a galaxy) range between
10−4 and 106 particles per cm3, with typical values of 1 particle per cm3. In
the intergalactic medium, densities are even lower reaching values of 10 to
1000 particles per cubic meter. To appreciate the real meaning of these val-
ues we should remember that the air we breathe has a density of about 1019

molecules per cm3, while the very best laboratory vacuum ever achieved con-
tains about 1000 particles per cm3. Imagine a volume of space big enough to
stretch halfway to the Moon, in intergalactic space such a box would contain
about as many atoms as the air in your refrigerator!

In this course we will discuss the physics of the intergalactic medium.
As you can imagine, the properties of matter at such a low density are
very different from typical Earth conditions (for instance, atomic collisions
are much rarer). We will start by discussing the propagation of energy by
electromagnetic waves through a dilute medium. This goes under the name
of radiative-transfer or radiation-transport problem.

3.1 Radiation fields and the specific intensity

3.1.1 Definitions

In free space or homogeneous media, electromagnetic radiation can be con-
sidered to travel in straight lines called rays (at least on distances that
greatly exceed the wavelength). If one adopts a particle description of elec-
tromagnetic phenomena (where the radiant energy is quantized into fun-
damental units associated with particles named photons), the rays mark

53
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the photon trajectories. We define a radiation field as a region of space
where rays come from all directions at every point. Radiation of different
frequencies ν propagates along each ray.

We can write the radiant energy crossing an infinitesimal area dA within
a solid angle dΩ centred around the direction perpendicular to dA in time
dt and in frequency range dν as

dE = Iν dAdt dΩ dν (3.1)

where Iν is the specific intensity or brightness. This is the fundamental
quantity we will use to describe radiation fields. At a given time, Iν is a
function of position in space, direction with respect to dA, and frequency.
Therefore Iν depends on 7 variables: 3 spatial coordinates, 2 directional
coordinates, frequency, and time. A radiation field is called isotropic if Iν
does not depend on the direction while it is called homogeneous if Iν does
not depend on the spatial location.

The mean intensity of radiation, Jν , is defined by averaging Iν over all
solid angles

Jν =
1

4π

∫
4π
Iν dΩ (3.2)

and is a function of 5 variables (position, frequency and time). For an
isotropic radiation field Jν = Iν .

The differential energy flux along some arbitrary direction forming an
angle θ with the normal to dA is

dFν = Iν cos θ dΩ (3.3)

and the net flux (per unit frequency) is found by integrating dFν over
the solid angle. Note that for an isotropic radiation field Fν = 0 since∫

4π cos θ dΩ = 0. This means that equal amounts of energy cross dA per
unit time in opposite directions.

The linear momentum of a photon is p = E/c and lies along its direction
of propagation (i.e. its ray). Then the momentum flux along a ray at angle
θ is dFν/c and the specific (i.e. per unit frequency range) radiation pressure
(flux of linear momentum in the perpendicular direction to dA) is

Pν =
1

c

∫
Iν cos2 θ dΩ . (3.4)

The radiant energy density can also be written in terms of Iν . Consider
an infinitesimal area dA and, on one side of it, build a cylinder of length c dt
along the perpendicular direction. The radiant energy within the cylinder
due to rays in the direction dΩ is be dE = uν dA c dt dΩ dν. However, since
in the time dt all this energy will cross dA, we also have dE = Iν dAdΩ dt dν.
Equating these two expressions one derives

dE

dV dΩ dν
=
Iν
c
, (3.5)
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and, integrating over angles, one obtains the specific energy density

uν =
1

c

∫
Iν dΩ =

4π

c
Jν . (3.6)

The total intensity, flux, pressure, and energy density are obtained by
integrating the corresponding specific quantities over frequency:

I =

∫
Iν dν , (3.7)

F =

∫
Fν dν , (3.8)

P =

∫
Pν dν , (3.9)

u =

∫
uν dν . (3.10)

3.1.2 The photon distribution in phase space

Let fε(x,p, t) be the photon distribution in phase space for particles of elicity
ε (remember that photons are spin-one particles but, being fully relativistic
objects, have only two polarization states: spin parallel or anti-parallel to
the direction of propagation). The total phase-space distribution function
is obtained summing over the different polarizations:

f(x,p, t) =
2∑
ε=1

fε(x,p, t) . (3.11)

Then the number density of photons with linear momentum in the infinites-
imal element d3p is

dn = f d3p = f p2 dp dΩ = f

(
h

c

)3

ν2 dν dΩ , (3.12)

and the associated energy flux through a normal unit surface is

hν dn c = f
h4

c2
ν3 dν dΩ . (3.13)

The latter quantity can also be expressed in terms of the specific intensity
as Iν dν dΩ, implying that:

Iν =
h4 ν3

c2
f . (3.14)

It is often convenient to define the occupation number for each photon spin
state as Nε = h3 fε so that

Iν =
h ν3

c2

2∑
ε=1

Nε . (3.15)
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The occupation number is a dimensionless quantity expressing the mean
occupation of a phase-space cell of volume h3 (the fundamental unit of action
in quantum mechanics).

3.2 The equation for radiative transfer

3.2.1 Radiative transfer in vacuum

Consider a light ray in vacuum and select two random points along it sep-
arated by the distance r. Now consider the infinitesimal surfaces dA1 and
dA2 orthogonal to the ray in these points. The energy of the rays that
cross both surfaces in the frequency range dν and time dt can be written
as dE1 = Iν(1) dA1 dt dΩ12 dν and dE2 = Iν(2) dA2 dt dΩ21 dν where dΩij

indicates the solid angle subtended by dAj at point i. Energy conservation
requires dE1 = dE2 and geometry gives dΩij = dAj/r

2. Therefore we ob-
tain that Iν(1) = Iν(2) or, equivalently, that the specific intensity is constant
along a ray. This is the reason why we choosed to describe radiation fields
in terms of this quantity. We can express the constancy of Iν in differential
form by writing:

dIν
ds

= 0 , (3.16)

where ds is the differential element of length along the ray. This is the
radiative-transfer equation in vacuum.

This equation can be derived also starting from the photon phase-space
density. Liouville theorem states that for Hamiltonian systems, the phase-
space density is constant along trajectories of the system (i.e. phase space
is incompressible). This implies that, along a ray, df/dt = 0. Hence, using
equation (3.14) and the fact that ds = c dt,

d

ds

Iν
ν3

= 0 → Iν
ν3

= const (3.17)

which at any given frequency is equivalent to equation (3.16).

3.2.2 Radiative transfer through matter

In our summary of quantum mechanics, we have shown that the presence
of matter leads to emission and absorption of radiation. We have identified
three processes: spontaneous emission, absorption, and stimulated emission.
Therefore the specific intensity of radiation which propagates through mat-
ter cannot be expected to remain constant.

We define the monochromatic (spontaneous) emission coefficient jν such
that the energy emitted by matter per unit volume, per unit solid angle, per
unit time and per unit frequency is:

dE = jν dV dΩ dt dν . (3.18)
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In travelling a distance ds, a beam of rays of cross section dA travels through
a volume dV = dAds. Thus the intensity added to the beam by spontaneous
emission is:

dIν = jν ds . (3.19)

Similarly, we define the absorption coefficient αν by considering the loss
of intensity in a beam as it travels a distance ds. Since the quantum-
mechanical probability of absorption was found proportional to the intensity
of the incident radiation, we write:

dIν = −αν Iν ds . (3.20)

However, also the process of stimulated emission is proportional to the in-
tensity of the incoming beam. It is thus customary to include its effects in
α. In consequence, the absorption coefficient may be positive or negative,
depending on whether absorption or stimulated emission dominates. Note
that αν has the dimensions of (length)−1.

Collecting all the pieces together we can write the fundamental equation
for radiative transfer (in the absence of scattering processes that will be
discussed separately)

dIν
ds

= −αν Iν + jν . (3.21)

It can be easily solved in two ideal limiting cases.

Medium that only emits radiation. If αν = 0, the equation becomes

dIν
ds

= jν , (3.22)

and the solution is

Iν(s) = Iν(s0) +

∫ s

s0

jν(x) dx . (3.23)

In words, the integral of the emission coefficient along the line of sight
is added to the brightness.

Medium that only absorbs radiation. If jν = 0, we have

dIν
ds

= −αν Iν , (3.24)

and the solution is

Iν(s) = Iν(s0) exp

[
−
∫ s

s0

αν(x) dx

]
. (3.25)

In words, the brightness is attenuated by a factor that coincides with
the exponential of the integral of the absorption coefficient along the
line of sight.
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3.2.3 Optical depth

The transfer eqution takes a particularly simple form if, instead of the path
length along the line of sight s, we use another variable defined by

dτν = αν ds or τν(s) =

∫ s

s0

αν(x) dx . (3.26)

This is called the optical depth and it is measured along the path of a ray.
Its zero point, s0, is arbitrary.

Note that equation (3.25) can be written as Iν(s) = Iν(s0) exp(−τν). If
you think of the radiation as composed by a stream of photons (so that Iν
is simply proportional to the number of quanta of frequency ν) then this
equation says that the probability of a photon travelling an optical depth τν
without being absorbed is exp(−τν).

A medium is called optically thick or opaque when τν across the medium
changes by ∆τν > 1. This means that, on average, a photon of frequency
ν cannot traverse the entire medium without being absorbed. On the other
hand, a medium with ∆τν < 1 is said to be optically thin or transparent.
In this case, photons of frequency ν are generally able to cross the entire
medium without being absorbed.

3.2.4 Mean free path

It is useful to introduce the concept of mean free path of a photon as the aver-
age distance a photon can travel through a material without being absorbed.
Remember that the probability of a photon to be absorbed at optical depth
τν is exp(−τν), so that the mean optical depth travelled by a photon is

〈τν〉 =

∫ ∞
0

τν exp(−τν) dτν = 1 . (3.27)

The mean free path in a homogeneous medium is thus

λ =
1

αν
. (3.28)

3.2.5 Formal solution of the radiative-transfer equation

After dividing by αν , the radiative-transfer equation can be rewritten as

dIν
dτν

= −Iν + Sν , (3.29)

where the source function Sν is defined as the ratio of the emission and the
absorption coefficients:

Sν =
jν
αν

. (3.30)

Equation (3.29) is the most used form of the radiative-transfer equation.
This is for two reasons:
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1. The optical depth maps more clearly the important intervals along a
ray where changes in the radiation field happen with respect to the
physical path length.

2. In many cases, the source function has a simpler form than the emission
coefficient.

We can now give a formal solution of the radiative-transfer problem.
Multiply equation (3.29) by exp(τν) and define the auxiliary quantities H =
Iν exp(τν) and K = Sν exp(τν). In this case the RT equation becomes

dH

dτν
= K (3.31)

with the solution

H(τν) = H(0) +

∫ τν

0
K(x) dx . (3.32)

Expressing the solution in terms of Iν and Sν we finally have:

Iν(τν) = Iν(0) exp(−τν) +

∫ τν

0
exp[−(τν − x)]Sν(x) dx . (3.33)

This is composed of two terms:

1. The first term on the left gives the initial intensity attenuated by
absorption;

2. The second term gives the sum of all the source terms along the line
of sight, each attenuated by the corresponding absorption.

As an example, consider the case of a medium with a constant source func-
tion (i.e. assuming the same value everywhere). Then, the solution (3.33)
becomes

Iν(τν) = Iν(0) exp(−τν) + Sν [1− exp(−τν)] . (3.34)

As τν → ∞, Iν → Sν i.e. the radiation field looses memory of its initial
intensity and becomes more and more determined by the properties of the
surrounding medium. Note that if Iν > Sν then dIν/dτν < 0 and Iν de-
creases along the ray (net absorption). On the other hand, if Iν < Sν then
dIν/dτν > 0 and Iν increases along the ray (net emission). Therefore the
source function is the quantity that the specific intensity relaxes to if given
sufficient optical depth.

3.2.6 Blackbody and thermal radiation

A blackbody is an ideal construction referring to an object that absorbs all
the electromagnetic radiation impinging onto it. Radiation in thermal equi-
librium with a blackbody enclosure at temperature T has special properties.
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As you certainly have learned during your previous studies, simple argu-
ments of thermodynamics can be used to show that the specific intensity of
radiation in a blackbody cavity is a universal function of temperature and
frequency, Iν = Bν(T ). Based on similar reasonings, one can also show that
for any material in thermal equilibrium Sν = Bν(T ) (Kirchoff’s law).

The correct analytic form of the blackbody spectrum has been derived
by Planck in 1900 and is now known as the Planck function:

Bν(T ) =
2hν3/c2

exp(hν/kBT )− 1
. (3.35)

His model required that the energy of radiation in the cavity had to be
quantised in small packets each of energy hν. Einstein built upon this idea
and proposed the quantisation of electromagnetic radiation itself in 1905
to explain the photoelectric effect. All this triggered the development of
quantum electrodynamics.

In modern language, the Planck function corresponds to the specific
intensity of a photon gas where the occupation number of each spin state at
energy E follows [cf. equation (3.15)]

Nε =
1

exp(E/kBT )− 1
(3.36)

i.e the Bose-Einstein distribution with vanishing chemical potential.
Among the properties of Bν(T ), it is worth remembering that

1. At low frequencies, such that hν � kBT ,

Bν(T ) ' 2ν2

c2
kBT , (3.37)

which is known as the Rayleigh-Jeans regime. Note that the Planck
constant does not appear in the asymptotic form of Bν(T ), indicat-
ing that quantum physics is not relevant when the number density of
photons with a given energy is high. Equation (3.37) coincides with
what one would obtain assuming energy equipartition for the classical
electromagnetic modes inside the cavity. Extrapolating this behaviour
to arbitrarily high frequencies produces an “ultraviolet catastrophe”
where the energy density would diverge.

2. At high frequencies such that hν � kBT ,

Bν(T ) ' 2hν3

c2
exp

[
−
(
hν

kBT

)]
. (3.38)

This is the Wien limit and describes the quantum regime where the
number density of photons with a given energy is low.
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Figure 3.1: The specific intensity of blackbody radiation at different tem-
peratures.

3. Two blackbody curves at different temperatures never cross. The spec-
trum at higher temperature lies entirely above the other one (see Fig-
ure 3.1).

4. The frequency νmax at which the peak of Bν(T ) occurs is related to T
by hνmax = 2.82 kBT (which gives νmax = 5.879× 1010 Hz/K T ). This
is the Wien displacement law.

5. The total energy radiated per unit area and per unit time by the
surface of a blackbody is σ T 4 with σ = 5.67 × 10−5 erg cm−2 deg−4

s−1 the Stefan-Boltzmann constant.

6. The energy density of radiation within a blackbody enclosure is u(T ) =
a T 4 with a = 4σ/c = 7.56×10−15 erg cm−3 deg−4 (Stefan-Boltzmann
law).

It is important to stress that blackbody radiation has Iν = Bν while
thermal radiation is characterized by Sν = Bν . Only in optically thick
media thermal radiation becomes blackbody radiation (see equation 3.34).

Note that the source function for thermal radiation not only has a partic-
ular frequency distribution but also a fixed amplitude for every temperature.
For this reason, it is useful to introduce the concept of a graybody as an
object emitting with a source function Sν = QBν(T ) with Q a real number
such that 0 < Q < 1. Hence, the source function of a graybody has the same
frequency distribution of blackbody radiation but a different amplitude.
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3.3 Connecting macro and microscopic models

The formal solution of the radiative-transfer equation is a powerful tool but
cannot be used in practice until we know how to compute the absorption
and emission coefficient for a given material. To do this one has to link
the macroscopic description of radiation transport given by the radiative-
transfer equation with the microscopic modelling of matter-radiation inter-
actions in terms of quantum probabilities for absorption and emission.

3.3.1 Cross-sections

It is often convenient to picture absorption processes as follows. Consider a
medium composed by some randomly distributed “particles” (for instance
hydrogen atoms) with number density n (number per unit volume). Imagine
that each particle is able to completely absorb radiation of frequency ν
within a sphere of cross section σν . Now consider a beam of radiation of
area dA and length ds passing through the medium. The total (transverse)
absorbing area presented by the absorbers is dΣ = σν dN = σν ndAds with
dN the number of particles in the beam.1 Therefore, a fraction dΣ/dA of
the incident energy will be absorbed out of the beam or, equivalently,

dIν = −nσν Iν ds . (3.39)

Using the definition of the absorption coefficient - Eq. (3.20) - we obtain

αν = nσν , (3.40)

and the photon mean free path is

λ =
1

nσν
. (3.41)

In reality atoms and molecules are not opaque spheres. We can anyway
use this microscopic model for absorption after replacing the geometric cross
section of the spheres with a (frequency dependent) effective cross section.
As we will see later, this quantity can be computed using the quantum
probabilities for absorption discussed in the previous Chapter.

3.3.2 Einstein coefficients

In 1917 Einstein provided a beautifully simple interpretation of the Planck
spectrum for blackbody radiation based on matter-radiation interactions. In

1We are assuming here that the radius of the absorbing spheres, ∼ σ1/2
ν , is much smaller

than the mean interparticle distance, n−1/3, so that overlapping of cross-sections can be
neglected. This corresponds to the condition: ανn

−1/3 � 1 which holds in nearly all
astrophysical conditions.
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particular, he showed that the analytic form of the Planck function implies
the existence of spontaneous emission (which was unknown at the time)
beyond stimulated emission and absorption. He also derived two equations
linking the rates of these three phenomena so that, if one knows one of
them, it is easy to derive the remaining two. It would have taken another
decade before the quantum mechanics of Heisenberg and Schrödinger for
the quantized energy levels of atoms, and the time-dependent perturbation
theory of Dirac for radiative transitions would verify by direct computation
the relations derived by Einstein. The argument develops as follows.

Consider transitions involving atoms in the bound states |i〉 and |j〉 with
energies Ei < Ej and statistical weights (i.e. degeneracy factors) gi and gj .
For a single atom, the transition probabilities per unit time are 2

• Bij Jν for absorption,

• Bji Jν for stimulated emission,

• Aji for spontaneous emission,

with ν = (Ej − Ei)/h. The quantities Aji, Bji, and Bij are called Einstein
coefficients for bound-bound phototransitions.3 For each pair of energy lev-
els, the Einstein coefficients are 3 real numbers quantifying transition-rate
probabilities. They can be either measured experimentally or computed
using quantum mechanics.

Let us now consider a system with many atoms of the same chemical
element such that ni and nj indicate the number density (number per unit
volume) of atoms in level |i〉 and |j〉, respectively. In this case, the total
number of transitions per unit time is

• niBij Jν for absorption,

• nj Bji Jν for stimulated emission,

• nj Aji for spontaneous emission.

3.3.3 Detailed balance

This atomic gas is now put inside a cavity with black walls, and the system
is kept at temperature T until thermodynamic equilibrium between matter

2In this section we are implicitly assuming (as Einstein did in his original derivation)
that atomic transitions are infinitely narrow in frequency. As we have already discussed,
real transitions always have a line shape φ(ν) (such that

∫
φ(ν) dν = 1) with a finite width.

One should then write the transition probabilities as Bij J̄ν with J̄ν =
∫∞

0
Jν φ(ν) dν. This

would slightly complicate the derivation but the final results would be unchanged with
respect to the simpler version given here.

3Sometimes the Einstein coefficients are defined using the radiant energy density uν
instead of the mean intensity of radiation Jν . This leads to definitions differing by a factor
c/4π.
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and radiation is reached. We assume that the gas is so rarefied that the
atoms only interact with the radiation filling the cavity and not directly
with one another. In thermodynamic equilibrium,

1. upward and downward transitions should be equally frequent;

2. the level populations ni and nj should follow the Boltzmann distribu-
tion;

3. the specific intensity of radiation coincides with the blackbody solu-
tion.

Condition 1) requires that

niBij Jν = nj Bji Jν + nj Aji , (3.42)

i.e. the mean intensity of radiation

Jν =
Aji/Bji

(ni/nj)(Bij/Bji)− 1
. (3.43)

Condition 2) means that

ni
nj

=
gi
gj

exp

(
hν

kBT

)
, (3.44)

so that, together with 1), gives

Jν =
Aji/Bji

(giBij/gjBji) exp(hν/kBT )− 1
. (3.45)

Finally, the fact that Jν = Bν implies that, for all temperatures,

giBij = gjBji (3.46)

Aji =
2hν3

c2
Bji . (3.47)

If we determine any one of the Einstein coefficients, these relations allow us
to derive the other two. These are examples of detailed balance equations
connecting the rates of a microscopical process and its inverse. Although we
have assumed thermodynamic equilibrium to derive them, these equations
connect intrinsic atomic properties and must have general validity.

3.3.4 Absorption and emission coefficients

We want to express the absorption and emission coefficients in terms of the
Einstein ones.

Let us start from the emission coefficient. Each atom which undergoes
the transition j → i emits the energy hν in a random direction. Therefore,
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the amount of energy emitted per unit volume, solid angle, frequency, and
time is

jν =
hν

4π
nj Aji φ(ν) . (3.48)

Similarly, the probability per unit time for absorption is

α(unc)
ν =

hν

4π
niBij φ(ν) . (3.49)

this gives the absorption coefficient uncorrected for stimulated emission and
is a strictly positive coefficient. However, the full absorption coefficient also
includes the “negative absorption” due to stimulated emission. By reasoning
entirely analogous to that above, one finds

αν =
hν

4π
φ(ν) (niBij − njBji) . (3.50)

Finally, using the detailed balance relations derived by Einstein, this gives

αν =
hν

4π
φ(ν) giBij

(
ni
gi
− nj
gj

)
(3.51)

and

Sν =
2hν3

c2

ginj
gjni − ginj

. (3.52)

In brief, the emission and absorption coefficients are determined by:

• the quantum probabilities of a given transition as quantified by the
Einstein coefficients;

• the ratio between the statistical populations of the energy levels in-
volved in the transition.

These populations are determined by both collisional and radiative transi-
tions between the levels |i〉 and |j〉 but also by radiative transitions to/from
other levels. Collisions tend to drive the population ratio to the equilibrium
value at the kinetic temperature of the gas. Radiative transitions, instead,
relate the population ratio with the frequency spectrum of the radiation
field. In order to compute ni for a given physical system one has to consider
all possible transitions to and from level |i〉 and solve a complex network of
coupled differential rate equations.

In general, one can distinguish three cases.

Local thermodynamic equilibrium (LTE). If the matter is in thermal
equilibrium with itself (but not necessarily with the radiation) at the
kinetic temperature T then equation (3.44) holds and we have

αν =
hν

4π
φ(ν)niBij

[
1− exp

(
− hν

kBT

)]
, (3.53)

Sν = Bν(T ) . (3.54)
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This represents the situation where collisions are a very efficient way
to exchange energy between the atoms thus maintaining thermal equi-
librium (i.e. a Maxwellian velocity distribution).

Non thermal emission with normal populations. This is the case when
equation (3.44) does not hold (and/or the velocity distribution of the
atoms is not Maxwellian) but

ni
gi
>
nj
gj

(3.55)

i.e. there are, on average, more atoms in each of the lower energy
levels and the absorption coefficient is positive.

Inverted populations: lasers and masers. When it happens that the
number of atoms in the upper state is such that

ni
gi
<
nj
gj

(3.56)

one speaks of inverted populations. In this case, the absorption coef-
ficient is negative as can be seen from equation (3.51). Therefore the
intensity of radiation increases along a ray due to stimulated emission.
This is the phenomenon at the base of laser (Light Amplification by
Stimulated Emission of Radiation) and maser (Microwave Amplifica-
tion by Stimulated Emission of Radiation) phenomena.

3.3.5 Natural linewidth revisited

Following directly from its definition, the natural linewidth for a transition
between the levels i→ f can be expressed in terms of the Einstein coefficient
for spontaneous emission as

Γif =
∑
n<f

Afn +
∑
n<i

Ain . (3.57)

The demonstration is left as an exercise.

3.3.6 Putting all together

We have described the “strength” of an atomic transition in three different
ways. For instance, speaking of absorption,

1. In Chapter 2, we used the transition rate Ri→j which is proportional
(through the Fermi golden rule) to the perturbation matrix element
|〈i|Ĥ1|j〉|2.

2. In Section 3.3.1, we used the cross section σij .
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3. In Section 3.3.2, we used the Einstein coefficient Bij .

All these coefficients quantify the rate of the same physical phenomenon and
must therefore be related. In this Section we present the equations linking
the different coefficients. 4

There are two main differences between the models we adopted in Chap-
ter 2 and in this Chapter:

1. In Chapter 2, we obtained Ri→j by considering a single, linearly po-
larized, plane electromagnetic wave. On the other hand, in Chapter 3,
σij and Bij have been defined in the case of broadband, unpolarized,
and isotropic radiation.

2. In Chapter 2, the intensity of electromagnetic radiation was described
using the amplitude of the vector potential A, while the mean specific
intensity Jν was adopted in Chapter 3.

Therefore, the transition rate deriving from the Fermi golden rule has to
be revised if we want to compare it with the calculations presented in this
Chapter. This can be done as follows.

Let us start by finding out the relation between A and Jν . In classical
terms, the energy density of the radiation field is

uem =
1

8π
(|E|2 + |B|2) . (3.58)

In the Coulomb gauge (after a little algebra), it can be shown that the
energy density of radiation with propagation vector k and polarization state
ε corresponds to

uem =
1

2π
k2|Aε(k)|2 , (3.59)

where Aε(k) is the amplitude of the corresponding vector potential. The to-
tal energy density of radiation is obtained by summing up the contributions
of the different wavevectors k and polarization states (2 values of ε for each
k):

uem =
1

2π

∫
d3k

∑
ε

k2|Aε(k)|2 . (3.60)

On the other hand, in quantum terms, the radiant energy density is repre-
sented by the sum over the contributions of all photons

uem =
1

V

∫
d3k

∑
ε

hνNε(k) , (3.61)

4The following calculations are not easy and it is not necessary to remember them for
successfully attending the class. If you are curious, however, you might want to glimpse
through them and gain some deeper understanding.
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where V is the volume of the system. Comparing the last two expression
for the radiant energy density, we may identify |Aε(k)| as

|Aε(k)| =
[

2πhνNε(k)

V k2

]1/2

= c

[
hNε(k)

V ω

]1/2

(3.62)

(remember that ω = 2πν and k = ω/c). This equation allows us to eliminate
the amplitude of the vector potential from the expression of the transition
rate obtained from the semi-classical perturbation theory presented in Chap-
ter 2.

Now we want to derive the transition rate for photoabsorption in the
presence of radiation with different polarizations and wavevectors. This is
obtained by summing up the contributions of each polarized plane wave. In-
tegration over the photon angular frequency ω leads to the following version
of the Fermi golden rule:

Ri→f =

2∑
ε=1

∫
wε dΩ , (3.63)

with

wε =
2π

h̄
|〈f |Ĥ1(k)|i〉|2 ρε,ω(k) (3.64)

the probability rate per unit solid angle of making the transition with pho-
tons with polarization state ε, angular frequency ω, and propagation di-
rection k (indicated by the variable Ω). Note that, for each direction of
propagation, the number of photon states within an infinitesimal energy
interval centred at h̄ω = Ef − Ei is (see also equation 3.12)

ρε,ω(k) d(h̄ω) =
V

h3

d3p

dE dΩ
dE =

V

(2π)3

ω2

c3
dω . (3.65)

For electric dipole transitions and in the presence of an isotropic and un-
polarized radiation field (N1 = N2 = Ntot/2), one can perform the angular
integral in equation (3.63) and obtain

Ri→f =
4πe2ω3

fi

3hc3
Ntot(ωfi) |〈f |r̂|i〉|2 . (3.66)

Eventually one can use equation (3.15) to express the transition rate in
terms of the mean specific intensity of radiation

Ri→f =
8π2

3

e2

h̄c

1

h̄
Jνfi |〈f |r̂|i〉|

2 . (3.67)

Note that the second fraction on the right-hand side is the fine-structure
constant. The transition rate is therefore proportional to the intensity of
radiation and to the square modulus of the matrix element 〈f |r̂|i〉 measuring
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the distance of the “jumping” electron from the nucleus. Allowing for a finite
line width, one finally finds:

Ri→f =
8π2

3

e2

h̄c

1

h̄
|〈f |r̂|i〉|2

∫ ∞
0

Jν φ(ν) dν . (3.68)

We are now ready to connect transition rates, cross sections and Einstein
coefficients.

Quantum transition rate and cross section. We can think that the tran-
sition rate |i〉 → |f〉 arises from a flux of photons Φν as they encounter
an atom of radiative cross section σν . In this case:

Ri→f =

∫ ∞
0

dν σν Φν =

∫ ∞
0

dν
Jν
hν

σν

∫
4π
dΩ , (3.69)

where the factor hν at the denominator is needed to pass from the pho-
ton energy to the photon counts. Finally, matching equations (3.68)
and (3.69), we find for electric dipole transitions:

σν =
4π2

3

e2

h̄c
|〈f |r̂|i〉|2 ν φ(ν) . (3.70)

Note that σν has the dimensions of a surface.

Cross section and Einstein coefficient. Matching equations (3.40) and
(3.49), one directly obtains:

σν =
hν

4π
φ(ν)Bij . (3.71)

Quantum transition rate and Einstein coefficient Combining equations
(3.70) and (3.71), we have:

Bij =
8π2

3

e2

h̄c

1

h̄
|〈f |r̂|i〉|2 , (3.72)

which, inserted in equation (3.68), gives:

Ri→f = Bij

∫ ∞
0

Jν φ(ν) dν . (3.73)

3.3.7 Oscillator strength

In order to facilitate the comparison between different lines, it is customary
to quantify the strength of atomic transitions using a dimensionless number
called the oscillator strength. This is defined by comparing the emission or
absorption rates of an atomic transition with those of an ideal, classical,
single electron, harmonic oscillator.
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A classical oscillator of charge e and mass me invested by a plane electro-
magnetic wave extracts some energy from the wave. One can then define the
absorption cross-section as the ratio of the power absorbed by the oscillator
to the incident power per unit area in the electromagnetic field. This comes
out to be

σosc =
πe2

mec
δD(ν − ν0) , (3.74)

with ν0 the natural frequency of the oscillator.
The oscillator strength for a given transition |i〉 → |j〉 is then defined as

fij =

∫
σν dν∫
σosc dν

=
2

3

me

h̄2 (Ej − Ei) |〈j|r̂|i〉|2 , (3.75)

where we have assumed that the linewidth is negligibly small. Note that the
oscillator strength is positive for transitions from a lower-energy state to an
upper-energy state (i.e. for absorption processes).

The Einstein coefficients can then be written as (for i < j)

Bij =
4π2e2

me hνij c
fij (3.76)

Bji =
4π2e2

me hνij c

gi
gj
fij (3.77)

Aji =
8 ν2

ij π
2e2

mec3

gi
gj
fij . (3.78)

For transitions between degenerate states, it is conventional to use oscil-
lator strengths obtained averaging over initial substates and summing over
final substates. Sometimes it is convenient to define oscillator strengths for
emission processes as:

f̃ji = − gi
gj
fij , (3.79)

(for i < j). In other words, the oscillator strengths have been defined so
that, if gj = 3, gi = 1 and the Einstein coefficient Aji is equal to the classical
decay amplitude of the harmonic oscillator, then the absorption f12 = 1 and
the emission f̃21 = −1/3.

Atomic transitions cannot be arbitrarily strong. For electric dipole tran-
sitions involving a single electron, the sum of the oscillator strength from
one state to all other states must exactly equal 1:∑

j 6=i
fij = 1 . (3.80)

This relation is known as the Thomas-Reiche-Kuhn sum rule and can be gen-
eralized to transitions involving N electrons where the value 1 is replaced
by N . The summation is made over both the discrete and the continuum
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Figure 3.2: The oscillator strength and the lifetime for radiative transitions
of the hydrogen atom.

energy states (this is an integral, of course). For instance, for the funda-
mental state of hydrogen, a contribution of 0.564 comes from transitions to
bound states while the remaining 0.436 comes from transitions to unbound
states.

The oscillator strengths of atomic transitions are available in tabulated
form. A stronger transition is associated with a higher value of f . In general,
for hydrogen-like atoms, oscillator strengths of transitions between states
with principal quantum numbers i and j (corresponding to the absorption
of radiation) are approximately given by

fij '
32

3π
√

3

1

i5 j3

1

(i−2 − j−2)3 (3.81)

(Menzel & Pekeris 1935; Bethe & Salpeter 1957) which is accurate within
a factor of 2. For instance, for the Lyman α transition, the formula above
gives 0.5808 while the correct value is 0.4162. Note that, for a fixed initial
state, the oscillator strength rapidly decreases with the principal quantum
number of the final state, j.

The exact oscillator strengths and lifetimes for the principal levels of the
hydrogen atoms are listed in Figure 3.2. Note that fij depends upon the
principal and the orbital quantum numbers of the energy levels. Therefore,
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caution should be taken in computing the total oscillator strength associated
with a transition between degenerate levels. In general,

fnn′ =
1

n′2

∑
`,`′

(2`+ 1) fn,`→n′,`′ , (3.82)

(remember that oscillator strengths are conventionally computed by averag-
ing over initial substates and summing over final substates). For instance,
for the Hα line in absorption,

f23 =
1

4
[1 · f2s→3p + 3 · (f2p→3s + f2p→3d)] = (3.83)

=
1

4
[1 · 0.4349 + 3 · (0.014 + 0.696)] = 0.6407 .



Chapter 4

Spectral lines

In 1835, Auguste Comte, a prominent French philosopher, stated the humans
would never be able to understand the chemical composition of astronomical
objects. He was soon proven wrong. In the latter half of the 19th century,
the work of the pioneers of spectroscopy as Fraunhofer, Bunsen, and Kir-
choff (and many others like Huggins, Secchi, Pickering) helped bring about
a revolution in people’s understanding of the cosmos. For the first time,
scientists could investigate what the universe was made of. The advent of
spectroscopy marked the birth of astrophysics as an observational science.

A hot thermal source emits a continuum spectrum of electromagnetic
radiation with a particular frequency distribution. If this radiation crosses
a cloud of cooler gas, it will be partially absorbed. In particular, since atoms
and molecules have discrete energy levels, the gas will absorb radiation at
a set of given frequencies. Therefore, the spectrum of the thermal source
seen through the gas cloud will present a series of absorption lines (narrow
wavelength regions with reduced intensity). At the same time, since a given
atom will absorb and emit the same frequencies of electromagnetic radiation,
a spectrum containing emission lines will be detected along lines of sight that
intersect the gas cloud but not the background thermal source (see Figure
4.1).

The physics of spectral lines is the subject of this class.

4.1 Line broadening

4.1.1 Thermal broadening

Let us consider the absorption feature produced by a specific atomic transi-
tion in a medium in LTE. Atoms are in thermal motion and the frequency
of emission or absorption in their own rest frame corresponds to a different
frequency for an observer. The change in frequency associated with an atom

73
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Figure 4.1: Schematic description of the production of absorption and emis-
sion lines.

with velocity component vz along the line of sight is, to first order in vz/c,

ν(vz) ' ν0

(
1 +

vz

c

)
, (4.1)

where ν0 indicates the rest-frame frequency of the transition. Each atom
has its own Doppler shift, so that the net effect is to spread the line out
without changing its total strength.

When LTE is established or, more generally, when the velocity distribu-
tion of the atoms is Maxwellian, the fraction of atoms having velocities in
the range vz to vz + dvz follows a Gaussian distribution:

P (vz) dvz =

(
ma

2πkBT

)1/2

exp

(
−mav

2
z

2kBT

)
dvz (4.2)

=
1√
π bth

exp

(
− v

2
z

b2th

)
dvz , (4.3)

where ma is the mass of an atom and

bth =

(
2kBT

ma

)1/2

(4.4)

is the Doppler parameter (which has the dimension of a velocity and is
normally measured in km s−1).1

1The amplitude of the three-dimensional velocity, v = (v2
x + v2

y + v2
z )1/2, follows the

Maxwell-Boltzmann distribution P (v) dv = 4π (1/πbth)3/2 v2 exp[−(v/bth)2] dv. It is easy
to show that bth corresponds to the most probable speed, the mean velocity is 〈v〉 =√

4/π bth, and the root mean square (rms) speed is vrms = 〈v2〉1/2 =
√

3/2 bth.
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The resulting line profile is then

φ(ν) =

∫ +∞

−∞
P (vz)φint[ν(vz)] dvz (4.5)

where φint(ν) indicates the absorption profile in the rest-frame of the atom.
If φint = δD(ν − ν0) (i.e. the rest-frame line profile is infinitesimally sharp)
and bth/c� 1, then

φ(ν) =
1√
π∆ν

exp

[
−
(
ν − ν0

∆ν

)2
]

(4.6)

where

∆ν =
bth
c
ν0 (4.7)

is the Doppler width. A medium in LTE thus produces Gaussian absorption
lines with a width which is proportional to the characteristic speed of the
atoms at temperature T . This phenomenon is called thermal (or Doppler)
broadening of spectral lines.

In addition to thermal motions there can also be turbulent velocities
associated with macroscopic velocity fields. When the scale of the turbulence
is small in comparison with the photon mean free path (microturbulence),
these motions can be accounted for by an effective Doppler parameter

b =
(
b2th + b2turb

)1/2
(4.8)

where bturb is the rms of the turbulent velocities. This assumes that the
turbulent velocities also have a Gaussian distribution (which might or might
not be true).

4.1.2 Natural broadening

We have already shown in Section 2.5.1, that radiative bound-bound tran-
sitions in atoms are not infinitely sharp. Because of spontaneous emission,
the wavefunction of a given state |n〉 decays over time as exp(−Γt/2) and
the line profile is of the form [see equation (2.58)]

φ(ν) =
1

π

Γ

4π

(ν − ν0)2 +

(
Γ

4π

)2 . (4.9)

This is called a Lorentz (or natural) profile. Remember that in terms of the
Einstein coefficient Aij one has:

Γij =
∑
n<j

Ajn +
∑
n<i

Ain . (4.10)
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4.1.3 Collisional broadening

The Lorentz profile applies more generally to certain types of collisional
broadening mechanisms. For example, if the atom suffers collisions with
other particles while it is emitting, the phase of the emitted radiation can
be altered suddenly. If the phase changes completely randomly at collision
times, then it can be shown that the emerging line profile is Lorentzian with

Γeff = Γ + 2νcoll (4.11)

where νcoll indicates the mean number of collisions experienced by an atom
per unit time.

As we have already mentioned, collisions are hardly important in the
intergalactic medium. To substantiate this, we provide an example for the
Lyα line of hydrogen. Consider a medium in LTE containing ne electrons
per cm3 at temperature T . The quantum-mechanical cross section of the
Lyα transition induced by electron collisions is σ ∼ 6 × 10−21 m2 (slightly
dependent on the electron energy). Therefore, the collisional Lyα transition
rate per hydrogen atom is

νcoll = ne 〈v〉σ = 3.7× 10−7
( ne

100 cm−3

) ( T

10, 000 K

)1/2

s−1 , (4.12)

where we have used 〈v〉 = 621.25 (T/10, 000 K)1/2 km s−1 (note that the
above rate roughly corresponds to one collisionally induced transition per
month). This must be compared with the natural linewidth Γ = 6.265×108

s−1 (corresponding to a lifetime τ ' 1.6 ns). Therefore, collisional Lyα
broadening will be important only when

neT
1/2 ' 1015cm−3K1/2 , (4.13)

(or larger) which is commonly found in stellar interiors but not in the inter-
galactic medium.

4.1.4 The Voigt profile

In general, one has to take simultaneously into account thermal and natural
broadening. From equation (4.5) the line profile will then be

φ(ν) =
Γ

4π5/2 b

∫ +∞

−∞

exp[−(vz/b)
2]

[ν − ν0(1 + vz/c)]2 + (Γ/4π)2
dvz , (4.14)

which is known as the Voigt profile. This can be written more compactly
introducing the Hjerting function (the convolution of a Gaussian and a
Lorentzian distribution which has no closed analytical form)

H(a, u) =
a

π

∫ +∞

−∞

exp(−y2)

a2 + (u− y)2
dy (4.15)
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(several fast and accurate numerical algorithms for calculating the Hjerting
function are available). Then, the line profile can be written as

φ(ν) =
1√
π∆ν

H(a, u) (4.16)

with

a =
Γ

4π∆ν
=

∆vnat

b
(4.17)

u =
ν − ν0

∆ν
, (4.18)

where ∆vnat = Γc/4πν0.

Generally, the natural linewidth is much smaller than the Doppler one
(i.e. a� 1; for instance ∆vnat = 6.06× 10−3 km s−1 for hydrogen Lyα and
a ' 2− 3× 10−4 for intergalactic absorption lines). In this case,

• for |ν − ν0| < 3 (b/c) ν0 (the “core” of the line) the Voigt profile is
dominated by the Doppler (Gaussian) profile;

• for |ν − ν0| > 3 (b/c) ν0 (the “wings” of the line) the Voigt profile is
dominated by the natural (Lorentz) profile.

Examples are shown in Figures 4.2 and 4.3.

4.1.5 Spectral resolution

What is recorded by an instrument is the convolution of the line shape with
the instrumental response. The resolving power of a spectrograph is usually
expressed as

R =
λ

∆λ
=

c

∆v
(4.19)

where ∆λ is the Full Width at Half Maximum (FWHM) of the instrumental
broadening function in wavelength. Roughly speaking, ∆λ is the smallest
difference in wavelength that can be distinguished by the spectrograph at a
wavelength λ. Similarly ∆v gives the minimum velocity difference that can
be distinguished.

Lines which are intrinsically narrower than ∆λ will be distorted by the
instrument and seen with a FWHM of ∆λ. For these unresolved lines, one
looses most of the information encoded in the line profile. Substantially
broader lines, instead, will be resolved and will show their intrinsic profile.

Modern spectrographs are classified as:

• Low resolution: R ∼ 100;

• Medium resolution: R ∼ 1, 000;
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• High resolution: R > 20, 000.

Typical values for b of intergalactic Lyα absorption lines are b ∼ 20− 30
km s−1. These correspond to a FWHM of 1.665 b ∼ 35 − 50 km s−1. To
resolve these lines an instrument with R > 6, 000− 10, 000 is required. This
only became possible in the mid 1990s with the advent of echelle spectro-
graphs on 8-10m telescopes, particularly the High Resolution Echelle Spec-
trometer (HIRES, 25, 000 < R < 85, 000 depending on configuration) at the
W.M. Keck Observatory (Mauna Kea, Island of Hawai’i) and the Ultravio-
let and Visual Echelle Spectrograph (UVES, 40, 000 < R < 110, 000) on the
Very Large Telescope (VLT, Cerro Paranal, Chile).

4.2 Spectral lines and gas properties

4.2.1 The column density

The optical depth of a gas cloud is proportional to the number of atoms
(in the initial energy level of the transition) per unit area around the line
of sight. This is so whether or not the cloud is homogeneous. The number
of atoms per unit area (i.e. the number density integrated along the line of
sight through the absorbing material) is called the column density,

N =

∫
nds . (4.20)

The optical depth is then τν = σν N .

4.2.2 The equivalent width

In order to compare the strength of different spectral lines it is useful to
introduce the concept of equivalent width. Ideally, this is done in three
steps (see also Figure 4.2):

1. We first estimate the continuum intensity level in the spectral range
covered by the line.

2. We then measure the area A of the spectral line below (for absorption)
or above (for emission) the continuum intensity level.

3. Finally, we replace the spectral profile with an artificial one where
the continuum light is fully absorbed and there are sharp boundaries
jumping back to the unabsorbed level. We make sure that the new
profile covers the area A and we define the equivalent width (EW) as
the width of this “rectangular” profile.
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Figure 4.2: The equivalent width (EW) of an absorption line corresponds
to the width of the shaded area. Note that the four Lyα lines shown have
the same EW but different column densities and Doppler widths.

In formula,

Wλ =

∫
|Icont − Iλ|

Icont
dλ =

∫
[1− exp(−τλ)] dλ , (4.21)

where the second equality holds for absorption lines.2 The equivalent width
has the dimension of length (it is generally measured in Å) and is indepen-
dent of the instrumental resolution of the spectrograph (modulo complica-
tions in the case of spectra measured with low signal-to-noise ratio). This
property makes it a particularly useful quantity to compare the intensity of
spectral lines.

4.2.3 The curve of growth

The relation between the equivalent width of a spectral line and the column
density of the absorbing atoms is known as the curve of growth. The precise
functional dependence of Wλ on N is sensitive to the optical depth at the
line core, τ0 (i.e. to the oscillator strength f of the transition).

We can distinguish three regimes which are obtained integrating equation
(4.14).

1. When the column density is low and the line is optically thin, τ0 < 1,
the equivalent width is directly proportional to N irrespectively of the
value of the Doppler parameter b.

2We are using here the specific intensity of radiation per unit wavelength Iλ instead of
the usual Iν . Since ν = c/λ, dν = −c/λ2 dλ, and Iλ = Iν |dν/dλ| = (c/λ2) Iν .
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Figure 4.3: The curve of growth (COG) for a hydrogen Lyα line with b = 30
km s−1. The line profiles corresponding to the points marked with filled
dots on the COG are shown in the small panels. Note that the x-axis scale
on the rightmost panel has been expanded to illustrate the large extent of
damping wings.

2. For a high enough abundance of atoms, the line becomes optically thick
and saturates (i.e. it completely removes all the light at the center of
the line). In these conditions, the equivalent width of the line increases
only moderately, and only by growing the wings (note that growing
the wings means broadening the line). At first, Doppler broadening
dominates the increase in the line strength and Wλ ∝ b

√
ln(N/b). In

this regime the equivalent width is NOT a good measure of the column
density but is sensitive to the Doppler parameter (see Figure 4.4).

3. Eventually, as the density of atoms increases even more, the Lorentzian
wings start dominating the growth of the equivalent width. In this
regime, Wλ ∝ N1/2 and the equivalent width provides an accurate
measure of the column density.

4.3 Retrieving information

What physical information about the intervening medium can we retrieve
from absorption lines? The presence of a given chemical element can be
determined by detecting its characteristic lines in a spectrum. Similarly,
the physical conditions of the absorbing gas cloud (temperature, density,
velocity) can be inferred from the line profile of the spectral lines.
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Figure 4.4: The curve of growth for the hydrogen Lyα transition with dif-
ferent b parameters.

4.3.1 Unresolved lines

For a single, unresolved line the relationship between N and Wλ is degener-
ate as it depends of the exact value of the Doppler parameter. Higher values
of b combined with lower values of N produce the same Wλ (see Figure 4.4).

However, if several atomic transitions with different values of fλ originat-
ing from the same atomic level are available, one can construct an empirical
curve of growth and measure both N and b. An example is shown in Figure
4.5.

Many of the most commonly observed absorption lines are doublets (i.e.
transitions between the ground state and an excited state consisting of two
closely spaced sublevels). The ratio of the equivalent widths of such pairs
of lines (the doublet ratio) can be a useful pointer to the region of the curve
of growth where the lines fall.

4.3.2 Resolved lines

For resolved lines, we can avoid to use the equivalent width as we can mea-
sure the optical depth directly at each velocity (or wavelength). Each ve-
locity bin (defined by the instrumental resolution) then gives a contribution
to the column density of

dN

dvz
(vz) = 3.77× 1014 τ(vz)

fλ
cm−2 (km s−1)−1 . (4.22)
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Figure 4.5: Top: The far-ultraviolet spectrum of the star ζ Ophiuchi showing
several absorption lines of molecular hydrogen, H2. Bottom: Empirical
curve of growth obtained from the H2 lines in the spectrum of ζ Ophiuchi.
The best-fitting model represents a single absorbing cloud with a Doppler
parameter b = 3.8 km s−1.
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Integration over the absorption line profile then leads to the column density

N =

∫
dN

dvz
(vz) dvz . (4.23)

This is known as the optical depth method.
For the Lyα line

dN

dvz
(vz) = 7.45× 1011 τ(vz) cm−2 (km s−1)−1 . (4.24)

The Doppler parameter can be derived by fitting the observed spectrum
with a linear superposition of Voigt profiles. The Voigt Profile FItting Pro-
gram (VPFIT by R. F. Carswell, J. K. Webb, A. J. Cooke, M. J. Irwin) is
a widespread code that enables us to do this. This is particularly useful to
deblend lines that overlap in wavelength (see for example the region around
1049.5 Å in Figure 4.5).

4.3.3 A note on density measurements

There are two possible ways to increase the optical depth of a gas cloud of
size L:

• increasing the number density of atoms within L;

• increasing the thickness of the cloud while keeping the number density
constant.

The resulting absorption lines will be undistinguishable as long as they corre-
spond to the same column density. This example shows that it is impossible
to directly estimate the number density of atoms in a gas cloud just based on
the absorption feature they generate. The only information we can extract
is the column density. To measure the density one needs an independent
estimate of the size of the cloud.

Also note that from a spectral line we can only determine the abundance
of an element in the initial state of the transition. The total number of atoms
can be determined only by knowing the fraction of atoms in the absorbing
state, e.g. by using the Boltzmann distribution when LTE holds.
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Chapter 5

The expanding universe

Observations suggest that we live in an expanding Universe and the cosmic
expansion is expected to affect in many ways the physics of the intergalactic
medium. Therefore, before discussing observational data and models for
the IGM, we need to learn how to describe mathematically an expanding
Universe. This is the subject of today’s class.

5.1 Building a world model for the Universe

5.1.1 The cosmological principle

The observable Universe exhibits a wealth of structures on “small” spatial
scales (in cosmic terms) as like as galaxies and clusters of galaxies. However,

• Temperature fluctuations of the cosmic microwave background (CMB)
are of order ∆T/T ∼ 10−5 on scales of a few degrees;

• The galaxy distribution is rather smooth on scales much larger than
100 Mpc;

• The X-ray background and the distribution of radio galaxies are highly
isotropic.

We can summarize these statements as follows: When smoothed on large
scales, the Universe is isotropic as seen from the Earth. At the same time,
it seems reasonable to accept the Copernican principle which states that:
The Earth is not a privileged location in the Universe. Therefore we are
forced to conclude that: The universe, when viewed on sufficiently large
distance scales, has no preferred directions or preferred places. Or, in other
words, on large scales the Universe looks the same in all directions for an ob-
server at any place. This statement is usually referred to as the cosmological
principle and in mathematical terms says that the Universe is homogeneous
and isotropic on large scales. It is interesting to note that the cosmological

85
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principle was first adopted by Arthur Milne in 1933 when observational cos-
mology was in its infancy. At that time, it was little more than a conjecture,
embodying Occam’s razor for the simplest possible model. The cosmologi-
cal principle had hard times in the 1930s, very distinguished scientists (like
Eddington) were not ready to accept models based on philosophical specu-
lation. Nowadays the cosmological principle is considered a useful working
hypothesis which no observation has contradicted.

5.2 The Friedmann-Robertson-Walker metric

In this section we will assume that space-time forms a Riemannian man-
ifold (a differentiable space in which each tangent space is equipped with
a scalar product which varies smoothly across the manifold) and that the
local geometry of our Universe can be fully described by the corresponding
metric tensor (that we will express in terms of the proper time element dτ).
Note that this does not imply that we are assuming General Relativity as
the theory of gravitation.

The cosmological principle puts very tight constraints on the geometry
of spacetime. Actually the functional form of the metric can be entirely
determined by symmetry considerations. In mathematical terms one says
that if the cosmological principle holds there exists a natural 1+3 foliation
of spacetime in three-dimensional uniform (i.e. homogeneous and isotropic)
hypersurfaces. In this section we will explain what is the meaning of this
sentence.

The cosmological principle implies that there exists a set of fundamental
observers which are at rest relative to the mean motion of the nearby matter
and for which the CMB radiation is isotropic.1 These observers can syn-
chronize their clocks (e.g. by using the local density of the Universe or the
CMB temperature and exchanging light signals). We can then introduce a
cosmic time coordinate t, which is the proper time measured by the clocks of
these fundamental observers. By definition, then, the time-time component
of the metric is g00 = 1 (since the time coordinate coincides with the proper
time).

Let us consider one spatial hypersurface containing all the events with
a given value of t and choose a three-dimensional coordinate system xj to
labels these points. Focus on the particle of the cosmological fluid which lies
at xi on the surface and use the same three spatial coordinates to label the
location of that particle at all times. For obvious reasons, the coordinates
xj are called comoving coordinates.

1Sometimes the existence of this set of fundamental observers is called “Weyl’s pos-
tulate”. Actually this postulate states that there is one and only one geodesic passing
through each point of spacetime. Hence fundamental observers possess a unique velocity
at each point and form a sort of “cosmological perfect fluid”.
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Now consider another hypersurface of homogeneity to the future of the
first. Suppose one fundamental observer reaches the second surface after
a proper time t. Not to violate the assumption of homogeneity, all other
observers starting from different spatial positions must reach the second
surface in the same proper time. Proper time of fundamental observers can
thus be used as the coordinate that labels the spacelike hypersurfaces (since
it assumes a constant value on each of them).

The four-velocity of a fundamental observer at x = (ct, x1, x2, x3) is u =
dx/dτ = (ut, 0, 0, 0). This must be orthogonal to the surface of homogeneity
at cosmic time t. Were it not, its component in the surface would single out
some direction violating the assumption of isotropy. Mathematically, we
must have that the scalar product 〈u,v〉 = 0 for any tangent vector to the
hypersurface (v = (0, v1, v2, v3)). This corresponds to requiring g0iu

tvi = 0
and implies that g0i = 0.

The conclusion is that the cosmological principle allows us to write the
line element in the form

c2dτ2 = (cdt)2 − dΣ2(t) (5.1)

where dΣ2 denots the separation between events lying on a spatial hyper-
surface at constant cosmic time t.

Let us now consider a specific reference time t1 and compute the spatial
distance between two fundamental observers at xk and xk + ∆xk: ∆Σ2 =
γij(x

k)∆xi∆xj with γij the three-dimensional metric tensor. Not to violate
the assumption of homogeneity, the ratio of the distance between the same
observers at a different time t2 must be independent of xk and of ∆xk

(i.e. considering all different pairs). The only form of the three-dimensional
metric tensor which allows this is γij(t, x

k) = a2(t)σij(x
k). In other words

the time evolution of the three-dimensional metric is uniform in space.
Therefore, the line element of a homogeneous and isotropic spacetime is

c2dτ2 = (cdt)2 − a2(t)σij(x
k) dxi dxj (5.2)

where σij(x
k) defines a time independent homogeneous and isotropic spatial

geometry. From the mathematical point of view, using Schur’s theorem, it
is relatively easy to show that one must have

dσ2 =
dr2

1− kr2/R2
+ r2

(
dθ2 + sin2(θ) dφ2

)
=

dr2

1− kr2/R2
+ r2 dΩ2 , (5.3)

with k = 0,±1. Therefore we can distinguish three cases:

• Positive curvature Geodesics “accelerate” (in second derivative sense)
towards each other. Initially parallel geodesics converge. The sum of
the angles of a triangle is larger than 180o. Visual example in 2D:
great circles on a sphere.
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• Flat space No geodesic acceleration. Initially parallel geodesics stay
parallel. The sum of the angles of a triangle equals 180o. Visual
example in 2D: straight lines on a plane.

• Negative curvature Geodesics “accelerate” away from each other.
Initially parallel geodesics diverge. The sum of the angles of a triangle
is smaller than 180o. Visual example in 2D: geodesics on a saddle.

We can then conclude that: any spacetime obeying the cosmological prin-
ciple is (locally) uniquely characterized by an integer number, k, a real num-
ber R, and a time-dependent function a(t).

Note that the coordinates in eq. (5.2) have been chosen in such a way
to make the symmetries of space-time self-evident. It is easy to show that
the world lines with xi =constant are indeed geodesics (as assumed to build
the metric).

Independently, Robertson (1935) and Walker (1936) demostrated that
this is the most general form for the line element in a spatially homogeneous
and isotropic space-time, (independent of general relativity theory). This
metric was first used by Friedmann in 1922 and for this reason it is often
called the Friedmann-Robertson-Walker (FRW) metric.

5.2.1 Some comments

The FRW metric has been derived assuming perfect isotropy and homo-
geneity at constant cosmic time. On the other hand, strictly speaking, we
measure isotropy only from a specific point (the Earth). Can then we confi-
dently use the FRW metric for our everyday applications? In 1968, Ehlers,
Geren & Sachs proved that if a family of freely falling observers measure self-
gravitating background radiation to be everywhere exactly isotropic, then
the universe is exactly FRW. However, we know that the CMB is not exactly
isotropic, should we then expect strong deviations from the FRW form in
the real Universe? In the 1990s, Stoeger, Maartens & Ellis have shown that
if one observer sees a nearly isotropic background radiation (for all times)
then

gµν ' ηµν + hµν (5.4)

where ηµν is the FRW background metric and hµν is a small perturbation
about it.2

5.2.2 Topology

The metric provides information on the local geometry of a manifold but
does not say anything regarding its global properties. Therefore, from the
metric we cannot say whether a given space is finite or infinite. Similarly, we

2Strictly speaking this results is limited to universes dominated by pressure-free matter.
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cannot answer questions like: Has the universe holes or handles? Is it con-
nected or not? To do this one needs to know the topology of the space under
analysis. Most cosmology books assume the simplest topology (known as
“simply-connected”). In this case, positively curved spaces are finite (from
this the definition of “closed universes”) while flat and negatively curved
ones are infinite. However, by considering “multi-connected” topologies it
is possible to consider universe models where space is finite whatever its
curvature.

To build multi-connected spaces, mathematics teach us that one can start
from one of the three types of “ordinary” (simply connected) spaces. Then,
identification between some points change the shape of space and makes it
multi-connected. From this one can build universe models where space is
finite (although the curvature can be negative or zero) and of a really small
volume. They are called “small universes”. The simplest example is when
our space would be a hypertorus having a radius lower than (say) ∼ 1000
Mpc. In this case, the light rays would have had time to turn a few times
“around” the universe. That would imply that each cosmic object (each
galaxy for example) should produce many “ghost” images on the sky. The
observed universe thus appears made up of the repetition of a same set of
galaxies, although viewed at different look-back times.

An active branch of cosmology looks for signature of special topologies in
the pattern of temperature fluctuations of the cosmic microwave background.

5.3 Kinematics of the FRW metric

We have shown that in a universe where the cosmological principle holds it
is possible to choose a comoving set of coordinates (t, r, θ, φ) such that the
spacetime metric assumes the form:

c2dτ2 = c2dt2 − a2(t)

 dr2

1− k r
2

R2

+ r2
(
dθ2 + sin2 θ dφ2

) . (5.5)

Here k is a constant which determines the geometry of the the three-dimensional
hypersurfaces at constant t:

• if k = +1 the hypersurfaces of homogeneity are positively curved with
curvature radius a(t)R;

• if k = 0 the hypersurfaces of homogeneity are flat (i.e. Euclidean);

• if k = −1 the hypersurfaces of homogeneity are negatively curved with
curvature radius a(t)R.
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The dimensionless factor a(t) denotes the overall scale of the spatial part of
the metric and, in general, can be a function of the time coordinate (which
coincides with the proper time measured by fundamental observers).

Since only the product a(t)r gives the radial coordinate distance on the
hypersurface at cosmic time t, all the variables a(t), r and R can be arbitrar-
ily normalized up to a constant scaling factor. In observational cosmology,
it is customary to normalize the expansion factor such that, at the present
epoch t0, a(t0) = 1.3 In this case, the FRW metric assumes the form

c2dτ2 = c2dt2 − a2(t)

 dr2

1− k r
2

R2
0

+ r2
(
dθ2 + sin2 θ dφ2

)
 . (5.6)

where the radial coordinate r is measured on the homogeneity hypersurface
at t0 (which has curvature radius R0).

5.4 Observations in a FRW universe

In this section we discuss several phenomena related to the propagation of
radiation in a FRW universe. These results are independent of the explicit
functional form of a(t).

5.4.1 Light propagation in a FRW universe

Cosmological observations are mainly based on electromagnetic radiation
that is received from faraway sources. Since light travels at a finite speed,
we observe all astronomical sources along our past light cone. In other words,
the radiation we receive at time t0 must have been emitted at some earlier
time te such that the two events (photon emission and photon observation)
are connected by a null geodesics. Therefore, given that cosmological dis-
tances are quite large, telescopes can be considered powerful time machines.

To describe this phenomenon in a quantitative way, let us consider two
fundamental observers in a FRW universe (the light source and the “real”
observer) and adopt the coordinate system (t, r, θ, φ). It is convenient to
associate the origin of the coordinate system (r = 0) with the observer
(the Cosmological Principle guarantees that we can do it) and consider an
electromagnetic wave emitted at (te, rg, θg, φg) and traveling along the −r
direction, with constant θ and φ. Since light travels along null geodesics
(dτ = 0), one has

c dt = −a(t)
dr√

1− kr2/R2
0

c dt

a(t)
= − dr√

1− kr2/R2
0

. (5.7)

3From now on the subscript 0 will always indicate quantities evaluated at the present
cosmic time.
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It is convenient to introduce the new radial coordinate r̃ such that dr̃ =
dr/
√

1− kr2/R2
0. Therefore, integrating between emission and observation,∫ to

te

c dt

a(t)
=

∫ rg

0

dr√
1− kr2/R2

0

≡ r̃g = (5.8)

=


R0 arcsin(rg/R) if k = +1

rg if k = 0

R0 arcsinh(rg/R) if k = −1

.

Using r̃ as the radial coordinate, the FRW metric can be written as

c2dτ2 = c2dt2 − a2(t)

[
dr̃2 + S2

k

(
r̃

R0

)(
dθ2 + sin2 θ dφ2

)]
, (5.9)

with

Sk(r̃) =


R0 sin(r̃/R0) (k = +1)

r̃ (k = 0)

R0 sinh(r̃/R0) (k = −1)

(5.10)

Although the metrics in equations (5.5) and (5.9) look different, they rep-
resent the same spaces. They apper different just because of the different
choice of radial coordinates. With r̃ as radial coordinate, radial distances
are “Euclidean” but angular distances are not (unless k = 0). With r as
radial coordinate, the reverse is true.

5.4.2 Cosmological time dilation and redshift

Consider a wave packet emitted within the coordinate-time interval (te, te +
∆te) by a distant galaxy (intended as a fundamental observer). This wave
packet is received by another fundamental observer in the cosmic time in-
terval (to, to +∆to). Using the same emitter-observer configuration as in eq.
(5.7), we get (since we are using comoving coordinates):∫ to

te

c dt

a(t)
= r̃g and

∫ to+∆to

te+∆te

c dt

a(t)
= r̃g , (5.11)

which, assuming that a(t) changes very little during a short time interval,
implies

c∆to
a(to)

− c∆te
a(te)

= 0 =⇒ ∆to =
a(to)

a(te)
∆te . (5.12)

If the Universe is expanding (as indicated observationally by the Hubble’s
law), distant galaxies emitted the light we receive now at an epoch when
the expansion factor was smaller. Therefore phenomena are observed to
take longer in our reference frame than they do in that of the source. This
phenomenon is called cosmological time dilation and provides a direct way
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of testing the FRW formalism. As we have already mentioned in our intro-
ductory class, Goldhaber et al. measured this effect in 1997 by studying the
light-curve of SNae Ia.

Consider now the emission of a monochromatic electromagnetic wave,
and indicate with ∆te = λe/c the time interval between the emission of two
wave crests. Because of the cosmic time dilation effect, the observer would
detect radiation at a different wavelength

λo = c∆to =
a(to)

a(te)
λe . (5.13)

In an expanding universe, the observed wavelength is always longer (i.e.
shifted towards the red) with respect to λe. This is conventionally expressed
in terms of a redshift parameter z defined as the fractional increase with
wavelength:4

z =
λo − λe

λe
=
νe − νo

νo
. (5.14)

Therefore, we can write

1 + z =
a(to)

a(te)
. (5.15)

In simple terms, the cosmological redshift is a measure of the ratio between
the scale factors of the Universe at to and at te. Note that the cosmological
redshift does not depend on the functional form of a(t) (i.e. on whether it is
monotonic or oscillates or jumps suddenly) but only on its initial and final
values at emission and observation.

Cosmological redshift is an observational phenomenon discovered by V.
M. Slipher in 1912 when taking spectra of distant galaxies. If we identify
the time of observation with the present, we can then write

1 + z =
a(t0)

a(te)
=

1

a(te)
. (5.16)

When a cosmologist says that a given galaxy is “at redshift 3” he/she means
that the photons we now receive have been emitted by the galaxy when
the universe was a factor of 4 smaller than today. Note that this is only
a statement regarding the size of the universe at emission and not about
cosmic time at emission.

5.4.3 Measures of distance

In this section we discuss how we can define (and measure) distances between
fundamental observers in a FRW universe. For analytical convenience, we
place the origin of the coordinate system on the Milky Way (that we consider
a fundamental observer).

4Note that if z < 0 one speaks of a blueshift.
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Proper distance

Imagine that all the fundamental observers of the FRW metric measure the
distance to their closest neighbour at the same cosmic time t (for instance
by measuring the travel time for a light signal). We call proper distance the
distance obtained by summing up all these contributions. For instance, the
proper distance of a galaxy with radial comoving coordinate rg at cosmic
time t is

dprop = a(t)

∫ rg

0

dr√
1− kr2/R2

0

= a(t)


R0 arcsin(rg/R0) if k = +1

rg if k = 0

R0 arcsinh(rg/R0) if k = −1

.

(5.17)
This is more easily expressed in terms of the radial coordinate r̃:

dprop = a(t) r̃g . (5.18)

In simple words, the proper distance is the actual physical distance that
separates two events on the same hypersurface of homogeneity at constant
cosmic time. Due to the expansion (or contraction) of the universe, dprop

scales proportionally to the expansion factor a(t).
Note that the proper distance is impossible to measure in practice and

therefore its notion is not very relevant for observational cosmology.

Hubble’s law

It is interesting to study how the proper distance of a galaxy evolves with
time. From eq. (5.18) we obtain

ḋprop = ȧ r̃g =
ȧ

a
dprop = H(t) dprop , (5.19)

where the dot denotes derivatives with respect to cosmic time t. Eq. (5.19)
encodes the Hubble’s law and H(t) is called the Hubble parameter. Note
that H(t) is constant on a hypersurface at constant t but evolves with cosmic
time.

The Hubble’s law is very well established observationally and constitutes
one of the pillars of the standard big bang model.

Comoving distance

The comoving distance between two fundamental observers of the FRW
spacetime is the proper distance intercurring between them at a given (pre-
fixed) cosmic time tref . For analytical convenience, it is common practice to
identify tref with the present epoch t0. In this case:

dcom =
a(t0)

a(t)
dprop = (1 + z) dprop . (5.20)
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Therefore the comoving distance of a galaxy at redshift z is the proper
distance that the galaxy would have at redshift 0 (i.e. at the present time) if
it would move following the overall expansion of the Universe. Note that the
comoving distance of a galaxy from the Earth coincides with its r̃-coordinate
distance.

Angular diameter distance

In Euclidean space, we can measure the distance d of an object by comparing
its angular apparent size ∆θ to its proper length perpendicular to the line of
sight ∆l (also called the transverse size). For small angles, this simply gives
∆θ = ∆l/d. In cosmology, we can define an angular diameter distance, dA,
such that the relation between dA and ∆θ looks like the standard Euclidean
relation:

dA =
∆l

∆θ
. (5.21)

The fact that we see an object with transverse size ∆l means that there
are two null geodesics connecting the opposite extremes of the object to
us. By construction, in a FRW universe, world lines with constant spatial
coordinates are geodesics. Therefore, we can rotate the coordinate system
to place the two extremes of the object at coordinates (tg, rg,∆θg/2, 0) and
(tg, rg,−∆θg/2, 0). According to the FRW metric, the proper distance be-
tween these events is ∆l = a(tg) rg ∆θ so that

dA = a(tg) rg . (5.22)

Remember that tg and rg are not independent: t0 − tg is the cosmic time
interval during which light travels a coordinate distance rg as in eq. (5.8). In
an expanding universe, a(tg) decreases as rg increases. In particular, using
the redshift

dA =
rg

1 + z
(5.23)

Therefore, in some models, dA does not monotonically increase with rg and
the angular size of very distant objects (with fixed proper size) can increase
with their distance.

Equations (5.22) and (5.23) show that the coordinate distance rg acts
as a sort of “comoving angular-diameter distance” which can be used to
associate angle sizes to the comoving transverse size of an object.

Luminosity distance

In Euclidean space, we can determine the distance d of a light source by
comparing its flux f (energy received per unit time per unit surface) with
its absolute luminosity L (energy emitted per unit second): f = L/4π d2.
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In cosmology, we can define a luminosity distance, dL, such that f and L
follow the same relation as in Euclidean space:

dL =

√
L

4π f
. (5.24)

Consider a light source at coordinate distance rg.

• Due to the expansion of the Universe, each photon emitted with energy
E will be redshifted to energy

E a(te)/a(t0) = E/(1 + z) ,

• At the same time, photons emitted at time intervals ∆te will be re-
ceived at time intervals

∆te a(t0)/a(te) = ∆te (1 + z) ;

• Moreover, at t0, the photons from the source will be distributed over
a sphere of proper surface area 4π r2

g.

In summary, the observed flux at t0 will be

fν(νo) =
Lν [(1 + z)νo]

4π r2
g (1 + z)

. (5.25)

Integrating over frequencies one obtains

fbol =
Lbol

4π r2
g (1 + z)2

. (5.26)

which, combined with eq. (5.24), gives

dL = rg (1 + z) . (5.27)

When expressed in terms of the r̃ radial coordinate, the luminosity distance
assumes the form

dL = Sk(r̃g/R0) (1 + z) . (5.28)

Finally, the observed flux density can be written as:

fν(νo) =
(1 + z)Lν [(1 + z)νo]

4π d2
L

. (5.29)
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Surface brightness

Astronomers often deal with extended (i.e. non point-like) sources of light.
To characterize the emission properties from these sources it is convenient to
use their absolute luminosity per unit transverse area, Iν , (emitted energy
per unit time per unit surface per unit frequency per unit solid angle). On
the other hand, the photon flux we receive from them is quantified in terms
of the specific intensity of radiation, Iν , (received energy per unit time per
unit surface per unit frequency per unit solid angle). As we have shown
in the class dedicated to radiative transfer, in Euclidean space these two
quantities coincide numerically and are generally indicated with the term of
surface brightness. What happens in a FRW universe? Consider an extended
source with proper transverse area ∆S⊥ which subtends a solid angle ∆Ω.
Therefore, combining our previous results for the luminosity distance and
for the angular diameter distance, we obtain

Iν(νo) =
fν(νo)

∆Ω
=

(1 + z) d2
A Lν [(1 + z) νo]

4π d2
L ∆S⊥

=
Iν [(1 + z)νo]

(1 + z)3
, (5.30)

and

Ibol =
Ibol

(1 + z)4
. (5.31)

These results have been first derived by Tolman in the 1930s. Cosmological
surface brightness dimming effects play a dominant role in setting what is
observed at high redshifts.

5.4.4 Radiative transfer in the expanding universe

Consequently, the equation of cosmological radiative transfer in comoving
coordinates is:

1

c

∂Iν
∂t

+
n̂ · ∇Iν
ā

− H(t)

c

(
ν
∂Iν
∂ν
− 3Iν

)
= −αν Iν + jν , (5.32)

where ā = (1+zem)/(1+z) is the ratio of cosmic scale factors between photon
emission at frequency ν and the time t. With respect to the non-expanding
case we recognize two modifications:

• the denominator in the second term, which accounts for changes in the
path length along a ray due to cosmic expansion;

• the third term, which accounts for cosmological redshift and dilution.
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5.4.5 The age of the Universe

Let us consider eq. (5.16) and take the first derivative with respect to cosmic
time:

da

dt
= − 1

(1 + z)2

dz

dt
=⇒ 1

a

da

dt
= − 1

1 + z

dz

dt

=⇒ dt = − dz

(1 + z)H(z)
. (5.33)

This equation relates cosmic time to redshift. Consider two galaxies at red-
shifts z1 and z2 > z1, what is the time lag between the epochs at which they
emitted the light that we now receive from them? This is easily computed
by integrating our last equation:

t1 − t2 =

∫ z2

z1

dz

(1 + z)H(z)
. (5.34)

Note that, contrary to redshift itself, this depends on the expansion history
of the Universe which is encoded in the function H(z). Similarly, assuming
that redshift can assume all positive values (i.e. that the Universe started
from a state with extremely high density), we can compute the age of the
Universe as:

tage =

∫ ∞
0

dz

(1 + z)H(z)
. (5.35)

5.4.6 Distance-redshift relations

It is often convenient to express all the distances we have defined in terms
of the redshift parameter. This is easily done by using eq. (5.8) which gives

dcom = r̃ = c

∫ z

0

dz′

H(z′)
. (5.36)

This is the comoving distance of source at redshift z. The corresponding
proper distance is:

dprop =
c

1 + z

∫ z

0

dz′

H(z′)
, (5.37)

while the luminosity and angular diameter distances can be written as

dL = (1 + z)Sk

(
dcom(z)

R0

)
dA =

1

1 + z
Sk

(
dcom(z)

R0

)
. (5.38)
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Volume and galaxy number counts

The proper volume element of an hypersurface of homogeneity can be de-
rived directly from the FRW metric:

dVprop = a3(t)
r2 dr√

1− k(r/R0)2
sin θ dθ dφ =

= a3(t)S2
k(r̃/R0) dr̃ sin θ dθ dφ =

= a3(t)
d2

L

(1 + z)2
ddcom sin θ dθ dφ . (5.39)

The comoving volume on our past light-cone (up to redshift z) is there-
fore given by:

Vlc = 4π c

∫ z

0
S2
k

(
dcom(z′)

R0

)
dz′

H(z′)
. (5.40)

To proceed any further we need to know the form of H(z), which is turn
depends on the functional form of a(t).

5.5 Dynamics of the FRW universe

We have seen that, in full generality, a homogeneous and isotropic universe
is described by the FRW metric. This metric is completely specified by three
quantities: the curvature sign (k), the present-day curvature radius (R0) of
the spatial section at constant cosmic time, and the expansion parameter
a(t) (that we have decided to normalize so that a(t0) = 1). In this section we
will study how these quantities relate to the energy content of the Universe.

5.6 The Friedmann equations

If we use general relativity as our theory of gravity, we obtain an evolution
equation for the expansion factor of the Universe. Combining Einstein’s field
equations (which equate space-time curvature as embodied by the Einstein
tensor to the energy-momentum tensor of the Universe),

Gµν =
8πG

c4
Tµν , (5.41)

with the FRW metric requires the energy-momentum tensor of the Universe
to be:

Tµν =
(
ρ+

p

c2

)
Uµ Uν − p gµν (5.42)

with Uµ = dxµ/dτ = (c, 0, 0, 0). In the comoving frame this gives

T νµ =


ρ c2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (5.43)
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This is the form of the energy-momentum tensor for a perfect fluid (no
shear stresses, viscosity or heat conduction) which is, on average, at rest
in the comoving coordinate system. Therefore we can interpret ρ and p
as the proper mass density and pressure (intended as the flux density of
x-momentum in the x-direction etc.) of the “cosmic fluid”.

With this energy-momentum tensor, the time-time component of Ein-
stein equation gives

ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
, (5.44)

while the space-space components give the single equation

aä+ 2ȧ2 + 2
kc2

R2
0

= 4πG
(
ρ− p

c2

)
a2 (5.45)

and, finally, the space-time components give 0 = 0. By eliminating ä from
eqs. (5.44) and (5.45) one obtains a first-order differential equation for a(t):(

ȧ

a

)2

=
8πG

3
ρ(t)− kc2

R2
0

1

a2(t)
. (5.46)

which has been first derived by Alexander Alexandrovich Friedmann (a Rus-
sian mathematician and metereologist) in 1922 and is now known as (first)
Friedmann equation (eq. (5.44) is often called the second Friedmann equa-
tion or the acceleration equation).

5.6.1 Adiabatic expansion

Equations (5.44) and (5.46) can be combined together to obtain5

d

dt

(
ρ c2 a3

)
= −p da

3

dt
(5.47)

or, equivalently,
d

da

(
ρ c2 a3

)
= −3p a2 . (5.48)

Note that this relation embodies the first law of thermodynamics

δQ = dE + p dV (5.49)

where δQ is the heat flow into a region, dE is the change in internal energy,
p is the pressure and dV is the change in volume of the region. If the
Universe is homogeneous, then for any volume δQ = 0. In other words, the
expansion process must be adiabatic and does not change the total entropy
dS = δQ/T = 0:

dE

dt
+ p

dV

dt
= 0 . (5.50)

5Multiply eq. (5.46) by a2 and differentiate the result with respect to t. Then substitute
ä from eq. (5.44) and finally multiply by a c2.



100 CHAPTER 5. THE EXPANDING UNIVERSE

5.7 The equation of state

Let us summarize where we got so far. We have derived three equations
that describe how the Universe expands(

ȧ

a

)2

=
8πG

3
ρ(t)− kc2

R2
0

1

a2(t)
, (5.51)

ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
, (5.52)

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 , (5.53)

but only two of them are independent: whichever two you pick, the third
necessarily follows. These equations, however, include three unknown func-
tions of cosmic time: a(t), ρ(t) and p(t). We thus need another equation to
close our system. It is convenient to express this additional relation in terms
of an equation of state, p = p(ρ), i.e. a mathematical relation between the
pressure and energy density of the stuff that fills up the Universe.

In general, equations of state can be extremely complicated. Many cases
are known where the pressure is a daunting non-linear function of the density
(these are most commonly encountered in condensed-matter physics and in
the astrophysics of compact objects). However, cosmology deals with very
low densities (dilute gases) where the equation of state is very simple. In
most cases of interest, the equation of state is linear

p = w ρ c2 (5.54)

where w is a dimensionless number. Some values of w are of particular
interest.

• Non-relativistic matter: w = 0. A non-relativistic ideal gas obeys
the perfect-gas law p = nkB T (where n is the particle number density,
T the gas temperature and kB the Boltzmann constant). The energy
density of a non-relativistic gas is almost entirely contributed by the
rest mass of gas particles: ε = ρ c2 ' ρrest c

2. The temperature T , the
particle rest-mass mp and the root-mean-square thermal velocity 〈v2〉
are associated by the relation 〈v2〉 = 3kB T/mp. Thus, the equation of
state for a non-relativistic gas can be written in the form p = w ε with
w ' 〈v2〉/(3c2) � 1.6 Cosmologist and relativists often refer to all
forms of “pressureless”, non-relativistic matter using the term “dust”
(not to be confused with dust grains present in the interstellar and
intergalactic medium).

6For ionized hydrogen, electrons are non-relativistic as long as T � 6× 109 K and the
protons when T � 1013 K.
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• Relativistic matter and radiation: w = 1/3. A gas of photons
(or other massless particles) is fully relativistic. You might recall from
your studies of statistical mechanics that the corresponding equation
of state is p = ε/3 = ρ c2/3. Cosmologists and relativists often refer to
all forms of relativistic matter with the generic term of “radiation”.

When energy exchanges between different components (e.g. non-relativitic
matter and radiation) are negligible (as we will see, barring some very early
phases of the life of the Universe, this is always the case), eq. (5.47) holds
for each component separately.

• For non-relativistic matter (p ' 0), this implies ρ ∝ a−3 which ex-
presses the conservation of the number of particles;

• for ultra-relativistic components (p = ρ c2/3) the energy-conservation
equation gives ρ ∝ a−4 which embodies the conservation of the number
of particles together with the cosmological redshift which reduces the
energy of each particle proportionally to a−1.

In general, for an equation of state p = w ρ c2 with constant w, the energy
density evolves as

ρ ∝ a−3 (1+w) . (5.55)

Note the particular case w = −1, where ρ keeps constant with the expansion
of the Universe. In Section 5.9, we will discuss a form of energy which
behaves this way.

5.8 Friedmann models

In general, a world model which is based on

1. the cosmological principle (and thus the FRW metric);

2. general relativity (and thus the Friedmann equation);

3. the energy-conservation equation;

4. an equation of state for the cosmological fluid;

is called a Friedmann model of the Universe.

5.9 The cosmological constant

The state of observational astronomy in 1917 (when Einstein published his
first cosmological model based on general relativity) was such that:

• the Kapteyn model of the Milky Way was favoured by some (but not
all) astronomers;
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• there was no agreement on the origin of “spiral nebulae”.

• there was no evidence of cosmic expansion.

Therefore, it is not surprising that Einstein was interested in finding a static
(ȧ = 0) solution. Actually, his hope was also that general relativity would
embody Mach’s principle that distant matter determines local inertia and
for this reason he was looking for a finite model with positive curvature..

Note that a static universe with a positive energy density is compatible
with the first Friedmann equation if the spatial curvature is positive (k =
+1) and the density is appropriately tuned. However, eq. (5.44) implies that
ä will never vanish in such a spacetime if the pressure p is also non-negative
(which is true for most forms of matter, and certainly for ordinary sources
such as stars and gas). Einstein therefore proposed a modification of his
field equations

Gµν − Λ gµν =
8πG

c4
Tµν , (5.56)

where he introduced a new fundamental constant of nature (the cosmological
constant) to balance the attractive force of gravity. 7 With this modification,
the Friedmann equations become(

ȧ

a

)2

=
8πG

3
ρ(t)− kc2

R2
0

1

a2(t)
+

Λ c2

3
, (5.57)

and
ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
+

Λ c2

3
, (5.58)

These equations admit a static solution. Considering a universe dominated
by non-relativistic matter and imposing ȧ = ä = 0, one finds

Λ c2 = 4πGρ k = +1 R0 =
c√
Λ
. (5.59)

This solution is called “Einstein static universe”. Some years later, Willem
de Sitter (but also Friedmann and Eddington noted it) pointed out that
Einstein’s static universe was unstable against an overall expansion or con-
traction. A tiny perturbation of the solution ends in runaway exponential
expansion or in a Big Crunch. Einstein agreed, and together they published
a paper in 1932 proposing the Einstein-de Sitter model of the universe.

It was later discovered by Edwin Hubble (1929) that other galaxies ap-
pear to be moving away from us, i.e. that the universe is actually expanding.
This discovery prompted Einstein to abandon the cosmological constant but

7The left-hand side of (5.56) is the most general local, coordinate-invariant, divergence-
less, symmetric, two-index tensor we can construct solely from the metric and its first and
second derivatives.
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caused other scientists to embrace it. Hubble badly underestimated the dis-
tances to galaxies and hence overestimated the value of the Hubble constant.
Hubble’s value of H0 = 500 km s−1 Mpc−1 corresponds to an Hubble time of
tH = H−1

0 = 2 Gyr which is less than half the age of the Earth as estimated
from radioactive dating. It was soon realized that if the value of Λ is large
enough to make ä > 0, then ȧ was smaller in the past than it is now and
consequently the universe is older than the Hubble time.

Since those times, the cosmological constant has gone in and out of
fashion. Nowadays, there are reasons to believe that Λ may still be a viable
part of cosmology. A common interpretation is that Λ measures the energy
density of the quantum vacuum state. Alternatively, it might embody an
exotic form of energy associated with an unknown field.

5.10 The Friedmann equations in terms of observ-
ables

In order to apply the Friedmann equations to the real universe, we must
have some way of tying them up to observational properties. We start by
noticing that the left-hand side of eq. (5.57) coincides with the Hubble
parameter H(t). Therefore, the first Friedmann equation evaluated at the
present time can then be written as:

H2
0 =

8πG

3
ρ0 +

Λ c2

3
− kc2

R2
0

. (5.60)

We can rearrange the terms of this equation to get:

kc2

R2
0

=
8πG

3
ρ0 +

Λ c2

3
−H2

0 (5.61)

which shows that the sign of k (i.e. the geometry of the three-dimensional hy-
persurfaces of homogeneity at constant cosmic time) depends on the present
energy density of the Universe and on the value of the cosmological con-
stant.8 In particular, if Λ = 0, there is a critical density (which depends on
the value of the Hubble constant)

ρcrit(t) =
3H2(t)

8πG
(5.62)

such that

• k > 0 if ρ0 > ρcrit;

8This might not seem surprising given that Einstein’s field equations relate space-
time curvature to energy density. Remember, however, that here we are talking of space
curvature at constant cosmic time which is a very different concept from the curvature of
space-time.
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• k = 0 if ρ0 = ρcrit;

• k < 0 if ρ0 < ρcrit.

There is then a direct correspondence between the energy density of the Uni-
verse and the curvature of its homogeneity hypersurfaces. It is convenient
to parameterize the Hubble constant through the dimensionless parameter
h such that H0 = 100h km s−1 Mpc−1. In this case,

ρcrit = 1.88× 10−29 h2 g cm−3 = 2.778× 1011 h2M�Mpc−3 . (5.63)

Cosmologists often measure the mean energy density of the Universe in
units of the critical density by introducing the density parameter

Ω(t) =
ρ(t)

ρcrit(t)
. (5.64)

If different components are contributing to the energy budget (for instance
non-relativistic matter and radiation), it is convenient to define a density
parameter for each of them

Ωi(t) =
ρi(t)

ρcrit(t)
. (5.65)

Similarly, we can define a density parameter for the cosmological constant
and one for the curvature

ΩΛ =
Λ c2

3H2(t)
(5.66)

Ωk = − kc2

R2
0H

2(t)
(5.67)

so that the first Friedmann equation becomes

Ωr(t) + Ωm(t) + ΩΛ(t) + Ωk(t) = 1 . (5.68)

This holds at any cosmic time including the present one. If combined with a
simultaneous measure of Ωr(t0), Ωm(t0), ΩΛ(t0) and Ωk(t0), eq. (5.68) would
then provide a challenging test for the Friedmann models.9 On the other
hand, assuming that the models are correct, if you know Ωm and ΩΛ, you
can derive sign of the curvature k.10 If, in addition, you know the Hubble
radius, c/H0, you can compute the present radius of curvature R0

R0 =
c

H0
|1− Ωtot|−1/2 (5.69)

9Note, however, that at present we cannot measure Ωk directly.
10Committing a little abuse of notation, in the cosmological literature it is customary

to use the symbols Ωr, Ωm, ΩΛ to indicate the present-day values of the functions Ωr(t),
Ωm(t), ΩΛ(t). From now on we will adopt this notation. The time-dependent functions
will be always written expliciting their time dependence.
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where Ωtot = Ωr + Ωm + ΩΛ.
As we have already stressed, the first Friedmann equation gives the evo-

lution of the Hubble parameter. Combining it with the results of the energy-
conservation equation we find

H2(a)

H2
0

=
Ωr

a4
+

Ωm

a3
+

Ωk

a2
+ ΩΛ , (5.70)

which can be re-written as an evolution with redshift

H2(z)

H2
0

= (1 + z)4 Ωr + (1 + z)3 Ωm + (1 + z)2 Ωk + ΩΛ . (5.71)

This equation provides the fundamental element to compute how the co-
moving, luminosity and angular-diameter distances evolve as a function of
redshift.

5.11 Constraints on the cosmological parameters

Currently, the combination of different datasets (mainly CMB temperature
anisotropies, Hubble diagram of Type Ia supernovae, and galaxy clustering)
gives the following constraints:

Ωm = 0.239± 0.018

Ωb = 0.0416± 0.002

ΩΛ = 0.761± 0.018

Ωtot = 1.003± 0.010

Ωr < 0.024 including neutrinos

H0 = 73± 2 km s−1 Mpc−1 .

The age of the Universe comes out to be tage = 13.76 ± 0.15 Gyr and the
age-redshift relation can be easily computed using the integral given above.

This provides the background that we will use to interpret the observa-
tions of the IGM and model its evolution with time.
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Chapter 6

Quasar absorption lines:
observations

6.1 Quasar spectra

Quasars are amongst the most luminous objects in the universe and can
therefore be observed out to very high redshift. Figure 6.1 shows a typical
quasar spectrum in the optical waveband taken with a high-resolution in-
strument and long integration time (corresponding to high signal-to-noise
ratio, i.e. to high precision). The following features are evident

• The spectrum of a quasar consists of a power-law continuum (typically
Fλ ∝ λ−1) and broad emission lines (with a Doppler parameter of
several thousand km s−1). If the spectrum contains more than one
emission line, it might be possible to identify the atomic transitions to
which they correspond (using the ratio of their wavelengths and also
their strengths). This allows us to measure the redshift of the quasar
via 1 + zqso = λobs/λem where λobs is the observed wavelength of
the emission line and λem is the corresponding rest-frame wavelength.
One way this is done in practice is by fitting the observed data with
template quasar spectra with varying redshift.

• On the blue side of the hydrogen Lyα (emission) line, many narrow
absorption lines are visible.

• On the red side of the hydrogen Lyα (emission) line, a few narrow
absorption lines are visible.

What is the origin of these spectral features? We believe that quasars are
the active nuclei of distant galaxies where super-massive black holes (with
a mass of 108 − 109M�) grow by swallowing gas through an accretion disk.
Models show that both the quasar continuum and the emission lines are
produced by gas within the “central engine” of the active galaxy. What

107
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Figure 6.1: The optical spectrum of the quasar Q1422+231 (at redshift
z = 3.622) taken with the HIRES spectrograph on the Keck telescope.

about the absorption lines, then? The light from the quasar traverses vast
distances before reaching our telescopes on Earth. Any atom which happens
to lie along the line of sight leaves its signature on the spectrum of the quasar
in the form of absorption lines. It was soon realized (Lynds 1971) that the
rich series of absorption lines blueward the quasar Lyα emission line is due
to individual gas “clouds” containing neutral hydrogen. Imagine to live in
one of these clouds, at redshift zc such that 0 < zc < zqso. For you, the
quasar would have a redshift

1 + zqc =
ac

aqso
=
ac

a0

a0

aqso
=

1 + zqso

1 + zc
. (6.1)

Therefore, you would see the quasar spectrum redshifted and dimmed by the
corresponding amount [see equation (5.29)]. In particular, neutral hydrogen
atoms which are in the ground energy level will absorb Lyman-series photons
from the quasar spectrum. Let us consider just the strongest line of the
series: the Lyα transition. The cloud will thus remove photons from the
quasar spectrum at a a wavelength of ∼ 1216 Å (with a Voigt profile also
depending on the gas temperature and turbulent motion in the cloud). This
in its rest frame, in the quasar rest-frame the absorption would correspond to
a lower wavelength 1216/(1+zqc). Let us now go back on Earth and observe
the cloud-quasar system. The Lyα emission line will be seen at (1+zqso)·1216
Å and the Lyα absorption line at 1216 · (1+zqso)/(1+zqc) = 1216(1+zc) Å.
Since zc < zqso (no absorption would take place otherwise), the absorption
line must lie on the blue side of the emission line. The clouds that generate
absorption features are generally indicated with the name of Lyman alpha
systems. The simultaneous detection of higher order lines of the Lyman
series confirmed that most of the absorption comes from hydrogen Lyα (see
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Figure 6.2: A portion of the spectrum of the quasar Q1422+231 (bottom
panel) with the corresponding Lyβ (middle) and CIV λ = 1548 Å (top)
shifted in wavelength so that they lie above Lyα if they are originated at
the same redshift. Dotted lines mark absorption systems that are saturated
both in Lyα and Lyβ.

Figure 6.2).

What about the absorption lines which are observed on the red side of
the Lyα in emission? Actually, they can be identified with the strongest
resonance lines of the most abundant metals in different ionization states
(as like as OI, OVI, CII, CIII, CIV, MgII, SiII, SiIV, FeII).

1 These metal line
systems are formed exactly as the Lyα lines but, since the rest wavelength
of their transitions is redder, they end up on the red side of the Lyα in
emission. Note that only a small fraction (< 1/50) of the Lyα absorbers
can be associated (i.e. have the same redshift) with metal line transitions
(see Figure 6.2). This happens because most of the single Lyα lines arise in
clouds where the column density of metals is too low to produce the other
absorption lines.

The study of quasar absorption line spectroscopy is the main observa-
tional tool at our disposal for detecting and studying the IGM.

6.1.1 Classification of Lyman alpha systems

Lyα systems are usually classified based on the column density of neutral
hydrogen.

1. Systems with 1012 < N(HI) < 1017 cm−2 are known as the Lyman al-
pha forest. Most of the systems with N(HI) > 1015 cm−2 and roughly

1We adopt the classical astrophysical notation for ionized elements: OI means neutral
oxygen, OII singly-ionized oxygen, OIII doubly-ionized oxygen, and so on.
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Figure 6.3: A Lyman-limit system simultaneously showing Lyman α ab-
sorption and continuum absorption beyond the Lyman limit, λ < 912 Å.

half of the systems with N(HI) > 3× 1014 cm−2 have associated CIV

lines corresponding to a typical metallicity of Z ∼ 10−2Z� (rarely ob-
jects with Z ∼ 10−3Z� have been detected). For lower hydrogen col-
umn densities and similar metallicities, metal lines are not detectable
with current instruments.

2. Systems with column densities 1017 < N(HI) < 1020 cm−2 exhibit a
conspicuous discontinuity at the Lyman limit (the gas becomes op-
tically thick to ionizing radiation) and are thus called Lyman-limit
systems. These systems frequently are associated with metal lines of
the most abundant chemical elements with several ionization stages.
They also have complex velocity structure.

3. At even higher column densities (N(HI) > 1020 cm−2), the damping
wings of the Lyα line become prominent. These systems are always
associated with metal absorbers and are dubbed damped Lyman alpha
systems. Their typical metallicities range between 0.02 and 0.1 Z�.

Note that current technology does not allow the detection of systems with
N(HI) < 1012 cm−2.

6.2 Observational properties

6.2.1 Wavelength and redshift ranges

Due to the presence of the atmosphere and the Galaxy, only certain spectral
windows are accessible to our telescopes. Spectra with wavelengths λobs >
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Figure 6.4: A damped-Lyman-alpha system (characterized by prominent
damping wings) with its associated metal-line systems.

3200 Å are observable with ground-based telescopes, whereas spectra at
shorter wavelengths must be obtained with telescopes above the atmosphere.
On the red end, the optical CCDs become transparent to photons at ∼ 9000
Å. For Lyα absorbers, this correspond to the redshift range 1.6 < zabs < 6.4.

Higher redshift absorbers can be detected in the near infrared but the
sky background makes it difficult to detect faint quasars from the ground.

The HST can be used for spectroscopy in the range 1150 < λobs < 3200 Å
(corresponding to zabs < 1.6 for Lyα absorbers) where the short wavelength
limit arises from the physical properties of the MgFl coatings for the optics.
Specialized missions like the Hopkins Ultraviolet Telescope (HUT) and the
Far Ultraviolet Spectroscopic Explorer (FUSE) have been built to get spectra
in the 911 < λobs < 1150 Å range. The Milky Way is opaque between 911
Å and 62 Å (corresponding to a photon energy of 0.2 keV, in the X-ray
regime). The Chandra X-ray observatory can then be used to study quasar
absorption lines at short wavelengths.

6.2.2 Observational challenges

Taking the electromagnetic spectrum of a faint source as like as a high-
redshift quasar requires compromising between two competing needs:

1. High spectral resolution is needed to resolve the narrower lines and
thus to measure the column density of the absorbing atoms and their
Doppler parameter.

2. At the same time, in order to obtain high signal-to-noise spectra, one
needs to collect many photons per resolution element. The total num-
ber of photons scales with the collecting area of the telescope and the
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integration time of a given observation.

The conflict between these limiting factors has characterized the history of
absorption-system studies.

The study of absorption systems started in the late 1960s when spec-
troscopy was done dispersing light of different frequencies on a photographic
plate. The typical spectral resolution was of ∆λ =10-20 Å, not enough to
resolve most of the absorption lines. A major revolution in the field hap-
pened in the 1980s when echelle spectrographs and CCD detectors allowed
to take spectra with resolutions as high as R ∼ 50, 000 (corresponding to
resolution elements of ∼ 0.1 Å). This, however, made quasar spectroscopy
very costly in terms of observing time. Taking a high-resolution spectrum
with high signal-to-noise ratio required very many nights on a 4m telescope
(the standard of the time). It was only with the advent of 10m telescopes (in
the 1990s) that high-resolution spectra with signal-to-noise ratios above 100
became common. Recent progress has come from extending the wavelength
regime into the ultraviolet band with the HST and its high-resolution spec-
trographs. This allowed us to study the absorber properties at low redshifts
(z < 1.6) and the helium Lyα forest at high redshift. At variance with the
past, the new limiting factor of current studies is not technology but man-
power as it is difficult to keep up with the amount of data streaming of all
available telescopes.

6.2.3 Observational techniques

At the dawn of quasar-absorption-systems studies only low-resolution spec-
trographs were available and the only observable that could be considered
was the flux decrement (Oke & Korycansky 1982):

D(z) =

〈
1− fobs[(1 + z) · 1216 Å]

fcont[(1 + z) · 1216 Å]

〉
= 〈1− e−τ(z)〉 = 1− e−τeff(z) , (6.2)

where fobs is the observed flux, fcont the flux of the unabsorbed continuum
and τ is the line optical depth as a function of observed wavelength (or red-
shift). The average above is done over the lines of sight towards different
quasars. The continuum level is usually taken to be a power law in wave-
length extrapolated from the region redward of the Lyα line. This is the
main source of error in the measure of D or τeff . Additional errors stem from
the absorption contributed by metal lines which often cannot be identified
as such.

With the introduction of higher-resolution instruments (in the 1980s),
it became possible to distinguish between discrete absorption lines. In this
case, the main observables for each line were the equivalent width, W , and
the redshift z. Observational data were, however, seriously affected by line
blending (which is impossible to correct at medium-low resolution) which
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Figure 6.5: Voigt-profile fits to a quasar spectrum. The log column density
(in log cm−2 and the velocity dispersion (in km s−1) of each Lyα line are re-
ported above a tick mark indicating the centre of the line. Metal transitions
are indicated together with the redshift of the metal system. The pixel size
is 2 km s−1. The 1σ error of the spectrum is shown with a continuous line
just above the zero level.
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often made it impossible to use the curve of growth in order to derive the
more meaningful physical parameters N(HI) and b.

The field has been revolutionized with the advent of high-resolution spec-
trographs. It has been shown that real absorption lines are reasonably well
approximated by Voigt profiles. In this case, the basic observable of each
absorption feature are the Doppler parameter b, the column density N(HI)
and the redshift z. These are usually determined by Voigt-profile fitting as
follows.

1. Because of some peculiarities of echelle spectrographs, the quasar con-
tinuum is estimated locally from polynomial fits to spectral regions
deemed free of absorption. This tends to underestimate the contin-
uum and it is the main drawback of the method.

2. Then the whole absorption pattern is fitted with a linear superposition
of Voigt profiles. In order to deblend complex lines (made of multiple
components overlapping in wavelength), additional Voigt profiles are
added until the residuals from the fitted function become compatible
with random fluctuations.

3. For the stronger Lyα lines, additional constraints are usually obtained
by simultaneously fitting the lines from higher order transitions of the
Lyman series.

4. Eventually, a catalog of absorption lines is produced listing their red-
shifts, equivalent widths, column densities and Doppler parameters.
The catalog thus constitutes the basis for any subsequent analysis.

An open question is whether the number of independent components nec-
essary to fit a line converges with increasing the signal-to-noise ratio of the
spectrum.

Also note that density and velocity gradients in the gas responsible of
the absorption can create line profiles which depart from the Voigt one.
Rotating, collapsing or expanding clouds can generate a wide variety of
profiles that encode information on the dynamical state of the gas.

The alternative to Voigt-profile fitting is measuring the optical depth of
each line on a pixel-by-pixel basis. This keeps much more information than
a Voigt-profile fit but makes comparison with models more complicated.

6.2.4 Mean absorption

Measurements of the mean absorption show a strong redshift evolution (see
Figure 6.6). Parameterizing the distribution as

τeff = A(1 + z)γ+1 (6.3)
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Figure 6.6: Lyα effective optical depth inferred from Lyα and Lyβ absorp-
tion.

and using 29 low-resolution spectra, Press et al. (1993) found γ = 2.46±0.37
and A = 0.0175 − 0.0056γ ± 0.0002 for 2.5 ≤ z ≤ 4.3. Recent re-analyses
based on larger datasets (thousands of spectra from the Sloan Digital Sky
Survey) and more sophisticated techniques for continuum fitting and line
blending give steeper slopes, τ ' 0.0018 (1 + z)3.92, in the redshift range
z < z < 4 (Bernardi et al. 2003; McDonald et al. 2006; Faucher-Giguère et
al. 2009). The most recent data show an upturn at redshift z ∼ 6 (Figure
6.6). We will see that has important implications for the history of the
intergalactic medium.

6.2.5 Abundance: line counting

The observations can be fit with a function

d2N

dW dz
=

W

W∗
e−W/W∗ (1 + z)γ . (6.4)

Integrating above a given equivalent width, one then has

dN

dz
= N0 (1 + z)γ . (6.5)

Typically observed values of the parameters at z ∼ 3 are 1.5 < γ < 3.0 and
W∗ ' 0.27 Å. The redshift evolution flattens at z < 1.5 (see Figure 6.7)
where γ ∼ 0.5 and there is some indication that it steepens for z > 4.

Note that the number of absorption lines (above a given equivalent
width) per unit redshift can be written as

dN

dz
= n0(z)σ(z) (1 + z)2 drcom

dz
(6.6)
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Figure 6.7: Evolution of the Lyα forest as observed from space (filled
squares) and from the ground (all the other points). Two power-law fits
with slopes of γ = 0.5 and 1.85 are shown.

where n0(z) is the comoving density of absorbers, σ(z) is the proper geo-
metric cross-section for absorption (i.e. the area of the cloud over which an
absorption feature of the required equivalent width is created) and rcom is
the comoving distance along the line of sight to the quasar.2 In our summary
of the FRW cosmology, we have shown that in a flat universe dominated by
matter plus a cosmological constant,

drcom

dz
=

c

H0 [Ωm(1 + z)3 + ΩΛ]1/2
. (6.7)

Therefore interpreting the redshift evolution of dN/dz is not straightfor-
ward as this number encodes information on the abundance and size of the
absorbers plus on the cosmological model. In order to isolate the intrinsic
evolution of the absorbers by removing the cosmological redshift dependence
it is often convenient to introduce the “redshift path”

X(z) =

∫ z

0

(1 + z′)2

[Ωm(1 + z′)3 + ΩΛ]1/2
dz′ (6.8)

2Remember that comoving lengths are a factor 1+z longer than proper lengths. There-
fore the factor (1 + z)2 can be seen:

• either as the conversion coefficient between the proper cross section and the comov-
ing one;

• or as the result of the product between the proper density, (1 + z)3 n0(z) and the
proper length rcom/(1 + z).

In perfect analogy with the radiative transfer case, the product [n0(z)σ(z) (1 + z)2]−1

gives the comoving mean free path to absorption.
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Figure 6.8: Number of absorbers per unit redshift for LLs, DLAs and some
metal absorbers.

so that
dN

dX
=

c

H0
n0(z)σ(z) . (6.9)

Note, however, that to compute dN/dX out of some data one has to assume
a cosmology while dN/dz is calculated only using observed quantities.

The low exponent, γ ∼ 0.5, for the evolution of the Lyα forest at z < 1
suggests very little evolution in the population of absorbers. On the other
hand, the rapid upturn at higher redshifts points towards an evolving pop-
ulation of absorbers.

The degree of evolution of the Lyα absorbers depends on their column
density (see Figure 6.8). In particular, the abundance of damped systems
shows very little evolution from z = 0 to z = 5 thus suggesting that they
are of a different nature than the forest.

6.2.6 Line-width distribution

The distribution of Doppler parameters at z ∼ 3 is well approximated by a
Gaussian with a mean of 30 km s−1 and rms value of 8 km s−1, truncated
below a cutoff of 15 km s−1 (see Figure 6.9).

The same functional form describes the distribution of Doppler param-
eters at other redshifts. However it appears that there is a trend towards
lower values of b at higher redshifts. For instance, the median Doppler
parameter passes from 41 km s−1 at z ∼ 2.3 to 31 km s−1 at z ∼ 3.7.
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Figure 6.9: The distribution of b-values of the Lyα forest derved from Voigt-
profile fitting.

Note that the b-distributions must be corrected slightly for blending
using simulated spectra.

6.2.7 Column density distribution

The number of absorbers per unit HI column density can be parameterized
as

dN

dN(HI)
∝ N(HI)

−β , (6.10)

with β ∼ 1.5. This law approximately extends over ten orders of magnitude
in column density from 1012 cm−2 to 1022 cm−2 (see Fig. 6.10). Observa-
tional results are often reported in terms of the function

f =
∆N

∆N(HI)
∑NQSO

i=1 ∆Xi

, (6.11)

where ∆N is the observed number of systems with column density between
N(HI) and N(HI) + ∆N(HI) and ∆X the sum of the observed “redshift
paths” towards each quasar.

To higher accuracy, there is strong evidence for departures from a pure
power-law scaling. A steepening of the counts appears to be present at
N(HI) ∼ 1014 cm−2 (where β ∼ 1.8) and a flattening (β ∼ 1.3) is manifest
for the damped systems. This means that damped systems are more abun-
dant than expected by extrapolating the power-law fit of the lower column
densities.
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Figure 6.10: The column density distribution of neutral hydrogen in quasar
absorption systems. The dashed line is a power law with exponent -1.46
which fits the data reasonably well over 10 orders of magnitude in column
density.

6.2.8 Clustering

A number of statistics have been used to demonstrate that the distribution
of absorbers in velocity space is not random (i.e. Poissonian) and shows
some degree of clustering. The most commonly used one is the two-point
correlation function along the line of sight, ξ(∆v). This is defined as the
excess probability (with respect to random) of finding a pair of clouds sep-
arated by a velocity interval ∆v

∆p = n0 σ∆v [1 + ξ(∆v)] . (6.12)

Observational data indicate that there is weak small-scale clustering (ξ ∼ 1
at ∼ 100 km s−1) in the forest at z ∼ 3 (results might be affected by line
blending, though). Anyway, the clustering amplitude seems to increase with
N(HI). On the other hand metal absorption systems are found to be strongly
clustered at velocity separations of a few hundred km s−1 (see Figure 6.11).

The presence of voids (large regions with no absorption) has also been
used as a measure of clustering. Results show that Lyα absorption does not
present void regions as large as those apparent in the galaxy population.
However, some individual large gaps extending for a few tens of Mpc have
been found.
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Figure 6.11: Two-point correlation function of quasar absorption systems at
z ∼ 2.5. The top panel refers to CIV absorbers and the bottom one to Lyα
absorbers.

6.2.9 Characteristic sizes

One of the main shortcomings of high-redshift quasar spectroscopy is the
lack of multi-dimensional information about the absorbers. This fact makes
it hard to understand their geometry and to disentangle velocity effects. The
only information on the size and geometry of the absorbers can be retrieved
using the observation of common absorption systems along multiple, closely
separated lines of sight. Two cases must be distinguished.

Gravitationally lensed QSOs. One can use the multiple images of a grav-
itationally lensed quasar to probe different lines of sight. The typi-
cal angular separation between the multiple images is of a few arcsec
which, at the redshift of the absorbers, correspond to less than 100
kpc. Generally all the lines seen in one image are seen in the other
with very strongly correlated equivalent widths.

Close QSO pairs. Close quasar pairs have typical separations on the sky
ranging from 10 arcsec to a few arcmin. Common absorption lines are
seen only for the quasar pairs with the smallest separations.

This indicates that Lyα absorbers have characteristic sizes of 200-500 h−1

kpc.

6.3 Counterparts in emission

Deep imaging surveys in the optical waveband have been undertaken in or-
der to identify possible counterparts in emission to the absorbers. With
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Figure 6.12: Deep HST image of the field around the quasar 3C 336 (at z =
0.927) obtained with a 24,000 s exposure. The labels indicate the redshift
of all galaxies for which it has been measured. Bold numbers mark galaxies
that give rise to metal-line absorption systems in the quasar spectrum.

few exceptions, galaxies have been found at the redshift of intervening MgII

absorbers thus suggesting that strong metal lines are generated by interstel-
lar clouds in intervening galaxies. Overall it appears that low-redshift MgII

absorbers lie in normal galaxies (some in the halos of disk galaxies). Some
galaxies do not produce absorption in background quasars at all. Similar
conclusions can be drawn for other metal absorbers. What changes is the
characteristic cross section for absorption around a galaxy (see e.g. Figure
6.13).

Deep galaxy redshift surveys in the optical typically find galaxies only
up to z ∼ 1.5 − 2 (color selection – like the Lyman-break technique – is
normally employed to target special classes of galaxies at higher redshift)
so galactic counterparts of Lyα absorbers have to be searched differently.
Infrared surveys identified counterparts of damped Lyα absorbers via direct
imaging and Hα emission. In brief, they appear to be associated with small,
star-forming galaxies that constitute the bulk of the galaxy population at
high redshift.

While high-column-density absorbers appear to be associated with galax-
ies, no such a correspondence is seen for the Lyα forest.
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Figure 6.13: The inferred sky-projected cross sections of damped Lyα ab-
sorbers (DLAs), MgII absorbers, Lyman limit systems, and CIV systems are
shown (in kpc).



Chapter 7

Ionization and recombination

7.1 The Gunn-Peterson effect

In 1965 Gunn and Peterson pointed out that any generally distributed neu-
tral hydrogen would produce a broad depression in the spectrum of high-
redshift quasars at wavelengths shortward of 1216 Å. Since such a depression
is not seen we conclude that the intergalactic medium must be mostly ion-
ized.

The argument proceeds as follows. Let us compute the optical depth for
Lyα absorption due to a smoothly distributed “sea” of neutral hydrogen in
the expanding universe. At the observed frequency ν, this reads:

τ(ν) =

∫ zs

0
σLyα [ν(1 + z)]nHI

(z)
drprop

dz
(z) dz , (7.1)

where zs denotes the redshift of the light source against which absorption is
detected and

σLyα(ν) =
πe2

mec
f φ(ν) , (7.2)

is the cross section for Lyα absorption (neglecting stimulated emission) with
f = 0.4162 the oscillator strength. As the cross-section is sharply peaked
around the central frequency and its broadness is negligible in redshift units,
we can replace the line profile φ with the Dirac delta function δD[ν(1 + z)−
νLyα ] and obtain (for ν > νLyα):

τ(ν) =
πe2

mec

f

ν
nHI

(z̃)
drprop

dz
(z̃) = (7.3)

=
πe2

mec

f

νLyα

(1 + z̃)nHI
(z̃)

drprop

dz
(z̃) , (7.4)

with 1 + z̃ = νLyα/ν (i.e. only one specific redshift contributes for each
observed frequency).
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In a flat universe dominated by matter and cosmological constant,

drprop

dz
(z) =

c

H0

1

1 + z

1√
ΩM(1 + z)3 + ΩΛ

, (7.5)

so that

τ(ν) =
πe2

mec

f

νLyα

c

H0

nHI
(z̃)√

ΩM(1 + z̃)3 + ΩΛ

. (7.6)

Introducing the hydrogen neutral fraction,

fneut(z) =
nHI

(z)

nH(z)
, (7.7)

and keeping into account the expansion of the universe,

nH(z) = nH(0) (1 + z)3 , (7.8)

one obtains

τ(ν) =
πe2

mec

f

νLyα

c

H0
nH(0)

fneut(z̃) (1 + z̃)3√
ΩM(1 + z̃)3 + ΩΛ

(7.9)

with

nH(0) = 0.76
Ωbρcrit(0)

mp
' 0.188

(
Ωbh

2

0.022

)
m−3 =

= 1.88× 10−7

(
Ωbh

2

0.022

)
cm−3 (7.10)

where 0.76 is the mass fraction in hydrogen atoms from primordial nu-
cleosynthesis. Replacing all the constants (remember that e2/(mec

2) '
2.818× 10−13 cm is the classical electron radius), one eventually gets

πe2

mec

f

νLyα

= 4.472× 10−18 cm2 , (7.11)

and

τ(ν) = 7777h−1

(
Ωbh

2

0.022

)
fneut(z) (1 + z)3√
ΩM(1 + z)3 + ΩΛ

. (7.12)

The equation applies to all parts of the source spectrum to the blue of the
Lyα emission line. If fneut ∼ 1 then τ � 1 at all observable frequencies
(i.e. redshifts), and an absorption trough should be detected in the level of
the rest frame UV continuum of quasars. This is called the Gunn-Peterson
effect. Current upper limits at z ' 5 are τ < 0.1 and this implies fneut(z =
5) < 4.3×10−7 h. Even assuming that 99% of cosmic hydrogen is in the Lyα
forest (or in galaxies), with only 1% in a smoothly distributed component,
still fneut(z = 5) < 4.3 × 10−5 h. In summary: since we see the quasar
continuum between the discrete absorption lines in a quasar spectrum the
smooth component of the IGM must be highly ionized.
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7.2 Bound-free transitions

The lack of Gunn-Peterson troughs in quasar spectra at z < 5 shows that
ionization processes are very important in the IGM. For this reason, we will
spend some time to describe how we can model them. Let us start from
the photoionization process, where the absorption of a photon results in an
electron being liberated from the atom. Since the electron passes from an
initial bound state to a final free state, this is also known as a bound-free
transition. Contrary to their bound-bound counterparts, bound-free transi-
tions are not sharply defined in energy since the ionized electron can have
anything from zero energy (if it was barely ionized) to a large energy (if
it was ejected from the atom with a large velocity). There is, however, a
minimum photon energy required to ionize the atom (the ionization poten-
tial, χ). Therefore the characteristic absorption coefficient for bound-free
transitions is an edge: no absorption below some energy, then a sharp onset
in the absorption above that critical energy.1

The differential quantum mechanical transition rate (per unit direction
and per unit modulus of the momentum, p, of the emerging electron) for
ionizing an atom with radiation of specific intensity I(ω) is

d2w

dp dΩ
=

4π2e2

m2
ec

I(ω)

ω2
|〈f | exp (ik · r) u · ∇ |i〉|2 d2n

dp dΩ
(7.13)

where d2n/(dp dΩ) is the density of available states in the continuum and
h̄ dω = p dp/me to ensure energy conservation. Note that here i denotes a
bound state and f is a continuum state for the electron. Similarly to the
bound-bound case, we can express the transition rate in terms of a total
bound-free cross section, σbf , which is obtained by summing up over all
possible velocities of the emerging electron. For hydrogenoid atoms with
atomic number Z, ionized from the level of quantum numbers (n, `), the
cross section can be written as:

σbf(n, `) =
512π7mee

10Z4

33/2c h6n5

g(ω, n, `, Z)

ω3
(7.14)

where g is the bound-free Gaunt factor (which is unity within 20% near
the ionization threshold). Note that σbf is zero for ω < ωn = χn/h̄ =
α2mec

2Z2/(2h̄n2) with χn the ionization potential from the bound level n.
The absorption coefficient of the radiative transfer equation due to ion-

ization is
αν =

∑
n

nn σbf(n) , (7.15)

where nn is the number density of atoms at the absorbing level. The absorp-
tion coefficient thus presents a series of absorption edges corresponding to

1This is the reason why Lyman-limit systems present an absorption edge in quasar
spectra.
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Figure 7.1: Schematic illustration of the frequency dependence of the absorp-
tion coefficient due to bound-free transitions. The sharp rises (absorption
edges) occur at the photoionization threshold of a particular atomic level.

the ionization potentials from the different levels (see, however, Section 7.4
for a simplification valid for the IGM). The relative strength of the edges de-
pends on the number of atoms in each level and on the quantum-mechanical
cross sections. On the other hand their location in frequency only depends
on atomic physics.

7.2.1 Other sources of ionization

Beyond photoionization there are other physical processes that can ionize
atoms and ions.

1. Collisional ionization is the ionization of an atom induced by the col-
lision with an energetic particle (typically an electron). On energetic
grounds, it is normally the outermost electron which is removed. The
rate of collisional ionization per unit volume, per unit time from the
energy level n may be written as ne ni qn(X, T ) where the coefficients
qn(X, T ) are available in tabulated form for the most important atomic
species, X. Collisional ionizations are normally unimportant in the
IGM (densities are too low).

2. Autoionization (also known as Auger effect) is a process in which an
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atom with a vacant electron in an inner shell spontaneously readjusts
itself to a more stable state by ejecting one or more electrons instead of
radiating a photon. In the IGM this process is important to determine
the relative abundances of highly ionized metals.

7.3 Radiative recombination

The inverse process to photoionization is radiative recombination, in which
an electron is captured by a ion into a bound state with emission of a photon.
The number of recombinations per unit time per unit volume can be written
as

n+ ne σfb f(v) v dv (7.16)

where n+ is the ion density, ne the electron density, v the electron speed
and f(v) its probability distribution. There are connections between the
cross sections for photoionization and radiative recombination, analogous to
the relations between the Einstein coefficients. Detailed balancing gives the
so-called Milne relation:

σbf

σfb
=
m2

ec
2v2

ν2h2

ge g+

2 gn
(7.17)

with hν = (1/2)mev
2 + χ and where the g coefficients are the quantum

degeneracy factors of electrons, ions and of the recombined atom.

The recombination coefficient at a particular quantum level n is defined
as

αn = 〈v σfb(n)〉 =

∫
v f(v)σfb dv (7.18)

and requires knowledge of the velocity distribution of the electrons. The
recombination rate at the level n is therefore n+ ne αn. If the velocity dis-
tribution is thermal, then αn is only a function of the electron temperature
T : αn(T ). These coefficients are available in tabulated form for the most
important elements. The total recombination coefficient for the ion X is
usually indicated with the symbol

αA(X, T ) =
∑
n

αn(X, T ) . (7.19)

For hydrogen at T ∼ 104 K, αA = 4.18× 10−13 cm3 s−1 and roughly scales
as T−1/2.

In a pure hydrogen gas cloud at temperature T with no sources of ion-
ization, the number density of ionized atoms np follows

1

np

dnp

dt
= −ne αA(HI, T ) (7.20)
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so that we can define the recombination timescale as

trec =
1

neαA(HI, T )
, (7.21)

which, for ne ∼ 10−5 cm−3 (corresponding to the mean proper cosmic den-
sity of hydrogen at z ∼ 3), gives trec ∼ 7.6 × 109 yr at T = 104 K. Out of
ionization equilibrium, the recombination timescale is generally longer com-
pared with the ionization timescale and with the electron thermalization
timescale (see below for the precise definition of these quantities).

7.3.1 Other recombination processes

There are other physical processes that lead to the recombination of ions
and electrons beyond radiative recombination.

1. Three-body recombination is the reverse process of collisional ioniza-
tion, and it is unimportant in low-density astrophysical plasmas be-
cause its rate is proportional to the square of the density.

2. Dielectronic recombination is the inverse process of autoionization,
and it takes place when the captured electron excites an inner core
electron. The excited atom then relaxes via a two-step process: one of
the valence electrons radiatively de-excites, then the atom radiatively
cascades like in radiative recombination. Dielectronic recombination
is important for metals in two temperature regimes: at relatively low
temperature (T ∼ 1, 000 − 3, 000 K) and at very high temperatures
(T > 20, 000 K).

7.4 The nebular approximation

When an electron recombines with a proton, it can end up in a highly
excited bound state, followed by a radiative cascade into the ground level
of the hydrogen atom. The lifetime of the excited levels (which depends on
the Einstein coefficients Aij) is typically of the order of 10−4 s and reaches
0.12 seconds for the metastable 2s 2S state. These timescales are negligibly
small with the typical photoionization timescale (typically, at least 1012 s, see
below). Thus, to extremely good approximation, we may consider that all
hydrogen atoms are in the ground level at the moment of ionization. This
is known as the nebular approximation and greatly simplifies calculations
of physical conditions in the IGM. It also implies that, when ionization
equilibrium is established, photoionization from the ground level is balanced
by recombinations to all levels as each recombination to any excited level is
followed very quickly by radiative transitions downward, leading ultimately
to the ground level.
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Figure 7.2: Cartoon showing the process of dielectronic recombination. This
process is important in determining the elemental abundances of cosmic gas
clouds that are photoionized by very energetic ultraviolet light. Only re-
cently have accurate dielectronic-recombination rates from theory and lab-
oratory experiments become available.
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Similar reasoning applies to atomic species different from hydrogen.
From now on we will indicate the photoionization cross-section from the
ground level with the symbol aν(X) where X denotes a given ion or atom.
This quantity is available in tabulated form. For hydrogen aν(HI) = 6.3 ×
10−18 cm2 at the ionization threshold and approximately decreases as ν−3

(see Figure 7.3).

7.4.1 Ionization and recombination rates

The discussion above makes it possible to compute the ionization structure
of a pure hydrogen cloud. The photoionization rate per unit volume (i.e.
the number of ionization events per unit volume per unit time) is:

nHI

∫ ∞
ν0

4π
Jν
hν

aν(HI) dν (7.22)

(where ν0 = χ/h is the frequency corresponding to the hydrogen ionization
potential of 13.6 eV) and we can define a photoionization timescale as

tion = Γ−1
ion =

(∫ ∞
ν0

4π
Jν
hν

aν(HI) dν

)−1

(7.23)

(Γion is the photoionization rate per unit HI atom, we will see in the following
classes that typical values for the IGM range between 10−14 < Γion < 10−12

s−1). Note that both quantities are fully determined by the spectral shape
and amplitude of the radiation intensity at frequencies above ν0. On the
other hand, in thermal equilibrium, the recombination rate is:

np ne αA(HI, T ) . (7.24)

Putting everything together, one obtains the equation for the ionization
balance:

dnp

dt
= nHI

∫ ∞
ν0

4π
Jν
hν

aν(HI) dν − np ne αA(HI, T ) . (7.25)

Note that this equation couples the radiation field at frequencies ν > ν0

with the density of the ionized species. The ionization equilibrium is reached
when the right-hand-side equals zero. In this case, tion = trec.

7.4.2 Optically thick clouds

Radiative recombinations to the ground level produce photons with energies
E > 13.6 eV that can potentially ionize hydrogen atoms. The emission
coefficient for this radiation is

jν =
2hν3

c2

(
h2

2πmekBT

)3/2

aν exp

[
−h(ν − ν0)

kBT

]
np ne , (7.26)
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(for ν > ν0 and zero otherwise) which is strongly peaked around ν = ν0.
Therefore, diffuse radiation generated by recombinations within the cloud
contributes to the specific intensity of radiation Jν and we can distinguish it

from that coming from external sources by writing Jν = J
(ext)
ν + J

(diff)
ν . For

an optically thin gas cloud (at ν = ν0), a good first-order approximation is

to take J
(diff)
ν = 0 as the diffuse photons will likely escape the cloud. On the

other hand, in an optically thick cloud, diffuse photons will not be able to
escape and will lead to further ionization. In this case, every photon of the
diffuse radiation field is absorbed elsewhere in the gas cloud:

4π

∫
V

jν
hν

dV =

∫
V
nHI

aνJ
(diff)
ν

hν
dV , (7.27)

where the integration is over the volume of the cloud. In the most extreme
cases (where the medium is very optically thick), the photons will be ab-
sorbed very close to the point where they have been generated and it makes
sense to assume that

J (diff)
ν =

jν
nHI aν

, (7.28)

which automatically satisfies eq. (7.27). This is known as the “on-the-
spot approximation” and holds true when the mean free path of the diffuse
photons is very small. Since the total number of photons generated by re-
combinations to the ground level is np ne α1(HI, T ) (at thermal equilibrium),
we can thus write:

dnp

dt
= nHI

∫ ∞
ν0

4π
J

(ext)
ν

hν
aν(HI) dν − np ne αB(HI, T ) , (7.29)

where

αB(HI, T ) = αA(HI, T )− α1(HI, T ) =

∞∑
n=2

αn(HI, T ) . (7.30)

The physical meaning is that in optically thick clouds, the ionizations caused
by external sources are balanced by recombinations to excited levels of H,
while recombinations to the ground level generate ionizing photons that are
quickly re-absorbed and have no effect on the overall ionization balance.
Thus, using the on-the-spot approximation, the only difference between the
optically thick and thin cases lies in the value of the recombination coefficient
(αB(HI, T = 104 K) = 2.59 × 10−13 cm−3 s−1). Note, however, that this is
only an approximation, the exact result can only be found by numerically
solving the radiative transfer problem within the cloud.

7.4.3 Helium ionization

So far we have considered pure hydrogen. Helium is the second most
abundant element after hydrogen, with typical abundances by number of
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Figure 7.3: Ionization cross sections from the ground levels of neutral hy-
drogen, neutral helium and singly-ionized helium.

He/H∼ 0.1. The atomic physics of He is made more complex by its two
electrons and three possible ionic forms. All equations above can be easily
generalized to Helium by simply replacing the appropriate coefficients.

The ionization potentials for HeI and HeII are, respectively, 24.6 eV and
54.4 eV. All the corresponding cross sections decrease as ν−3 for frequencies
above the threshold. However, the cross section for HeI at its threshold is
nearly 10 times larger than that for HI at the same frequency (see Figure 7.3).
This compensates for the different abundance of the elements and implies
that photons with energy ∼ 24.6 eV will be partially used to ionize HeI

instead of HI. This phenomenon has a significant impact on the ionization
structure of a gas cloud which will be strongly dependent on the details of
the radiation spectrum.



Chapter 8

Thermal balance

We have now developed the tools to derive the ionization structure of in-
tergalactic gas assuming a given temperature. However, this is not a self-
consistent approach. The temperature of the gas is fixed by the balance
among a series of heating and cooling processes. In this Chapter we wil
discuss the most important ones.

8.1 Adiabatic cooling and heating of an ideal gas

The entropy of an ideal gas made of N monoatomic particles contained in
a volume V can be written as

S = kBN

[
ln
V

N
+

3

2
ln
U

N
+X

]
(8.1)

where U = (3/2)NkBT denotes the internal energy of the gas at temperature
T and X is a constant (known as the Sackur-Tetrode constant). Let us now
define the entropy per unit mass s = S/(mN) (with m the mass of the gas
particles) and compute its differential in terms of the variations in number
density n = N/V and temperature T . After some simple algebra, we obtain:

ds = d

(
S

mN

)
=
kB

m

(
−dn
n

+
3

2

dT

T

)
. (8.2)

The energy exchanged by the gas with the ambient per unit volume per unit
time can be written as ρ T ds/dt, where d/dt ≡ ∂/∂t+v ·∇ denotes the total
(Lagrangian) derivative following each fluid element along its trajectory with
velocity v. Taking into account that ρ = mn, we find that

ρ T
ds

dt
=

3

2
nkB

dT

dt
− kBT

dn

dt
. (8.3)

By definition, the left-hand side vanishes for adiabatic processes so that:

n
d

dt

(
3

2
kBT

)
− kBT

dn

dt
= 0 . (8.4)
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In an expanding universe, it is convenient to express the number density
of particles as

n =
n0

a3
(1 + δ) (8.5)

with n0 the comoving number density, and δ the density contrast (accounting
for spatial density fluctuations). If the total number of particles does not
change with time ( i.e. n0 = const.), then equation (8.4) gives

n
d

dt

(
3

2
kBT

)
− nkBT

(
−3

ȧ

a
+

δ̇

1 + δ

)
= 0 , (8.6)

where ẋ ≡ dx/dt. If we just consider the expansion of the universe with no
spatial fluctuations (i.e. impose δ = 0), we obtain

d lnT

dt
= −2

d ln a

dt
(8.7)

which gives T ∝ a−2. Remember that the temperature of the cosmic mi-
crowave background scales as T ∝ a−1 as the energy of each photon is
redshifted by the cosmic expansion factor. Therefore, when baryonic matter
are radiation are decoupled they follow different thermal histories.

On the other hand, if we consider the growth of spatial perturbations
(and keep a fixed), we get

d lnT

dt
=

2

3

d ln(1 + δ)

dt
, (8.8)

or T ∝ (1+δ)2/3. The collapse (expansion) of adiabatic perturbations makes
the gas hotter (colder). This phenomenon is known as adiabatic heating
(cooling).

8.2 Cooling and heating functions

A number of physical processes can inject or subtract energy from a gas. The
heating function, H, gives the total energy gained per unit volume per unit
time. Similarly, the cooling function, Λ, quantifies the energy lost per unit
volume and unit time. The kinetic temperature of the gas in a steady state
is determined by the condition that H = Λ. More generally, the heating and
cooling functions are related to the change of temperature with time:

n
d

dt

(
3

2
kBT

)
− nkBT

(
−3

ȧ

a
+

δ̇

1 + δ
+
ṅ0

n0

)
= H− Λ , (8.9)

(we are assuming here that all the components in the gas – i.e. electrons,
ions, molecules – have the same temperature; we will see in Section 8.2.2
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that this is a good approximation). This equation simply states that the net
thermal input per unit volume and time, H−Λ, equals the rate of increase
of thermal energy, plus the work done by the gas.

Ionization and recombination processes change the comoving number
density of cosmic gas. Therefore an extra term proportional to ṅ0 appears
in the equation above with respect to equation (8.6). In fact, n0 depends
on the number density and ionization status of the different ionic species.
For instance, in a cloud containing only hydrogen, n0 = nHI

+ np + ne =
(2− fneut)nH.

Equation (8.9) does not consider thermal conduction (the flow of inter-
nal energy from a region of higher temperature to one of lower temperature
by the interaction of adjacent gas particles), which is negligible in the IGM
at low temperatures (T < a few × 104 K), as the conductivity of an ideal
plasma is κ = 5 × 10−7 T 5/2 erg s−1 cm−1 K−1 (the so-called Spitzer con-
ductivity). For much higher temperatures(for instance those found in the
intracluster medium) and no magnetic fields, the long mean free path of par-
ticles gives a high thermal conductivity κ and an additional term ∇· (κ∇T )
must be added on the right hand side of the equation above. Since heat-
conducting electrons spiral around magnetic-field lines, the presence of a
magnetic field is sufficient to markedly reduce the conductivity transverse
to the field lines. In the presence of tangled magnetic fields, heat conduc-
tion is further reduced as: 1) electrons travelling along tangled magnetic field
lines must cover longer distances between hot and cold regions of space; 2)
electrons, while they are traveling along the field lines, become trapped and
untrapped between magnetic mirrors, regions of strong magnetic field.

8.2.1 Energy input by photoionization

A primary mechanism for heating the IGM is photoionization. It is simplest
to begin by considering a gas cloud made of pure H. The kinetic energy
of each newly created photoelectron is given by the energy of the ionizing
photon as

1

2
me v

2
e = h(ν − ν0) . (8.10)

At any specific point in the gas distributuion, the energy input per unit
volume per unit time is

Hpi(H) = nHI
4π

∫ ∞
ν0

Jν
hν

h(ν − ν0) aν(HI) dν . (8.11)

The mean kinetic energy of photoelectrons right after ionization is then∫ ∞
ν0

Jν
hν

h(ν − ν0) aν(HI) dν∫ ∞
ν0

Jν
hν

aν(HI) dν

=
3

2
kBTi . (8.12)



136 CHAPTER 8. THERMAL BALANCE

The quantity (3/2)kBTi represents the mean energy of the newly created
photoelectrons expressed in terms of an initial temperature. Note that
Ti does not depend on the normalization of the intensity of radiation but
only on its spectral distribution. For any Jν the integration can be carried
on numerically. Radiative transfer effects slightly complicate the picture.
The higher energy photons penetrate more into the gas (remember that
aν ∝ ν−3) and the mean energy of photoelectrons produced at larger optical
depths from the source of the radiation field is higher.

The photoheating rate for other elements than hydrogen can be described
with equations analogous to (8.11).

8.2.2 Thermalization

Photoelectrons are rapidly thermalized, and on a short time scale the ve-
locity distribution of atoms, electrons, and molecules are closely Maxwellian
with a single temperature applicable to all these components. Typical de-
viations from a Maxwellian distribution are of a part every 106. This cir-
cumstance results mainly from the enormous predominance of H and He
relative to the other elements. Collisions at energies of 10 eV or less among
these atoms or between their ions and the free electrons are almost perfectly
elastic and thus translational kinetic energy is exchanged back and forth
many times before an anelastic collision can occur with an heavier atom or
a molecule. This is just the condition for the establishment of a Maxwellian
distribution and for equipartition of translational kinetic energy between
different particles. For time reasons we will not derive the thermalization
timescale from first principles (Coulomb scattering and collisions between
neutral atoms), the interested reader can study Chapter 2 in the famous
book by Spitzer (“Physical processes in the interstellar medium”). We will
simply mention here that the timescale for electron-electron collisions is of
the order of 105/ne s (when the electron density is expressed in cm−3) for
the energetic particles released by photoionization. For electron-ion colli-

sions, the corresponding timescale is 22 AiT
3/2
e /(neZ

2
i ) s, where ai and Zi

are the ion mass and charge in atomic units. These timescales are much
shorter than the ionization and recombination timescales and this validates
our previous results.

8.2.3 Other sources of energy input

Photoionization is the most important heating process in the IGM. However,
other processes might give relevant contributions especially at high redshift
(z > 2). For instance,

• Compton heating of electrons by photons of the hard X-ray back-
ground;
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• Photoelectric emission from dust grains hit by hard background pho-
tons.

It is still an open question how important these processes are to explain the
thermal properties of the IGM.

8.2.4 Compton cooling/heating against the CMB

Compton scattering of CMB photons off free electrons couples the kinetic
temperature of cosmic gas with the temperature of the photon background.
Note that the spectrum of the CMB remains close to a blackbody because
the heat capacity of radiation is very much larger than that of matter (i.e.
there are vastly more photons than baryons).

Due to the rapid cosmic expansion, Compton scattering keeps Tgas =
TCMB = 2.726 (1 + z) K only down to a redshift z > 150 (Ωbh

2/0.022)2/5.
Subsequently, for a smooth background, the gas expands adiabatically Tgas ∝
(1 + z)2 while TCMB ∝ (1 + z).

However, in the presence of density fluctuations, Compton scattering can
provide an important cooling mechanism down to z > 2− 3 while, at lower
redshifts, adiabatic cooling dominates. The Compton cooling rate can be
written as:

Λcom = 5.406×10−36erg cm−3 s−1 K−1 (1 + z)4 (Tgas−TCMB)
ne

ntot
. (8.13)

8.2.5 Recombination cooling

The energy lost by the thermal electron plasma (per unit volume per unit
time) when electrons recombine with protons to form neutral hydrogen is:

Λr(H) = ne np kBT βA(H, T ) , (8.14)

where

βA(H, T ) =
∞∑
n=1

βn(H, T ) =
∞∑
n=1

n−1∑
`=0

βn`(H, T ) (8.15)

with

βn`(H, T ) =
1

kBT

∫ ∞
0

veσn`(H, T )
1

2
mev

2
e f(ve) dve . (8.16)

This is effectively a kinetic-energy averaged recombination coefficient. Note
that since the recombination cross sections are approximately proportional
to v−2

e , the electrons of lower kinetic energy are preferentially captured, and
the mean energy of the captured electrons is somewhat less than (3/2)kBT .
If recombinations were the only cooling mechanism available, the resulting
electron temperature would actually be slightly hotter than the “radiation
temperature” after recombination cooling. This is because the slower elec-
trons are preferentially recombined out the free electron plasma, skewing the
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velocity distribution of the remaining free electrons towards higher energies
and hence higher temperatures.

8.2.6 Continuum radiation and free-free cooling

Free-free, free-bound and two-photon processes emit a continuum spectrum
of radiation and contribute to the gas cooling. By far, the dominant pro-
cess is free-free radiation: thermal electrons can scatter off ions and emit
bremsstrahlung radiation. The free-free cooling rate for an ion with nuclear
charge Z is

Λff(Z) =
32πe6Z2

33/2hmec3

(
2πkBT

me

)1/2

gff ne n+ , (8.17)

where n+ is the number density of ions with nuclear charge Z, and gff is
the free-free Gaunt factor, which is a slowly varying function of density
and temperature. For UV-to-NIR wavelengths and typical conditions of the
IGM, gff ranges between 1.0 and 1.5. Substituting the values of all the
physical constants, the free-free cooling rate becomes (in cgs units):

Λff(Z) = 1.42× 10−27 Z2 T 1/2 gff ne n+ . (8.18)

Overall, the free-free cooling is fairly inefficient in the IGM but it becomes
important at high temperatures.

8.2.7 Collisionally excited line emission

Metal ions like OII, OIII, NII, and a few others, while relatively underabun-
dant compared to H or He, turn out to be the most important coolants in
the IGM. In the ground-state, the fine-structure levels of these ions have
typical excitation potentials of a few eV. The thermal energies of the elec-
trons are also in the same ball park for typical temperatures of 104 K. This
makes electron-ion impact excitations of the metal ions very efficient. By
contrast, the first excited levels of H and He are ∼ 10 eV above the ground
state, so that collisional excitation of these elements is very inefficient at
typical densities and temperatures of the IGM. Proton-ion and ion-ion im-
pact excitation are inefficient because the Coulomb repulsion between the
ions is too large. However, some important collisional processes do occur
between neutral atoms and ions (e.g. charge-exchange reactions between
O and H that happen to have nearly identical ionization potentials) that
can contribute to the cooling. Electron-ion impact excitation of metal ions
followed by radiative line emission is the dominant cooling mechanism in
ionized gas with metallicities greater than a few percent of the solar value.
The abundance of metals relative to H in the IGM thus plays a crucial role
in determining its thermal structure.
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8.2.8 The cooling function

For a cosmic plasma, we can define a cooling timescale as the ratio

tc =
ugas

ne ntot Λ(T )
, (8.19)

where Λ is obtained summing up over all the relevant processes, ugas =
(3/2)ntotkBT is the energy density of the plasma, and ntot the total number
density.

In the absence of any significant radiation field, ionization fractions and
level populations can be computed assuming collisional ionization equilib-
rium (CIE). Under this condition, the only terms that significantly con-
tribute to the cooling function are: collisional line radiation, continuum ra-
diation, and recombination cooling. The resulting cooling function obtained
by Sutherland and Dopita (1993) is shown in Figure (8.1) for different chem-
ical compositions of the plasma. Its main features are as follows.

1. When the temperature of the gas is larger than 106−107 K, the cooling
function is dominated by free-free radiation, and the cooling function
increases slowly;

2. For temperatures between 104 and 106 K, the energy loss is dominated
by atomic line cooling. The peak at temperatures slightly above 104 K
is due to Lyα emission from atomic hydrogen. At very low metallicities
a second peak arises near 105 K due to recombination of atomic He.
Metals give rise to a higher peak at ∼ 105 K and slightly above, due
to line emission from the heavier atoms.

3. For lower temperatures, cooling becomes extremely inefficient and
cooling times start approaching the age of the universe. Basically,
gas at T ∼ 104 K stays at constant temperature for very long time
(see, however, the discussion in Section 8.2.9).

The cooling properties of the gas are very different in the presence of a
strong radiation field, when level populations and ionization fractions are
far from the CIE value. One particular example is provided in the bottom
panel of Figure 8.1. Note that the cooling function substantially differ from
the CIE case.

We often characterize the cooling coefficient with a single parameter,
the temperature. These cooling functions are determined by assuming either
that the ionization state at a given temperature is characterized by collisional
equilibrium or that all gas follows a particular ionization history. Since the
cooling of a plasma depends on the ionization history of the constituent ions
(and thus on the thermal history of the plasma itself), there can actually be a
range in the value of Λ at a given T , depending on the details of the ionization
evolution (compare top and bottom panels in Figure 8.2). Moreover, the
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Figure 8.1: Cooling functions of low-density cosmic gas in CIE (top) and in
the presence of a particular radiation field (bottom). Different lines refer to
different metal abundances as indicated in the labels.
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Figure 8.2: Processes and chemical elements contributing to the cooling
functions in the previous figure (for solar metallicity).

cooling function will also depend on geometric factors (e.g. the shape of
the gas cloud) that will affect (through the radiative transfer equation) the
degree of radiation coupling in the ionization balance calculations.

All these effects are generally accounted for in the most accurate models
of the IGM. In particular, cooling functions are computed following the
specific ionization and thermal history of each fluid element.

8.2.9 Molecular cooling

In the absence of metals, collisional excitation of roto-vibrational molecu-
lar transitions followed by radiative decay is effective in cooling metal-free
gas below a temperature of ∼ 104 K. At these low temperatures, simple
molecules (such as H2, H+

2 , HD, HeH+, LiH) can be produced in the gas
phase (without the catalyzing effect of dust grains). Collisions with other
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molecules or with H and He atoms thus excite molecular line transitions and
provide an additional channel which dominates the cooling of metal-free gas
at T < 104 K. The main coolant is molecular hydrogen, H2, which is anyway
very inefficient (see Figure 8.3). Cooling at these temperatures is thus very
slow.

Note that:

1. Molecules are very fragile and can be easily dissociated by ambient
radiation. For instance, the H2 molecule can be destroyed by the
so-called Solomon process. In this case, UV photons in particular
transition lines in the Lyman (hν > 11.2 eV, λ < 1108 Å) and Werner
(hν > 12.3 eV, λ < 1008 Å) bands can excite electronic states of
the H2 molecule. Radiative decay from the excited states leads to
molecular dissociation in 15% of the cases. It has been estimated that
a radiation intensity of Jν > 10−23 (in cgs units) in the Lyman-Werner
bands is sufficient to make molecular cooling inefficient.1

2. As soon as the IGM is polluted with material expelled from stars,
metals become the main coolants.

1Photons with λ < 912 Å are more likely to ionize HI, only photon energies between
11.2 and 13.6 eV are of interest here.
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Figure 8.3: Cooling function of primordial gas in the presence of molecules.
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Chapter 9

The extragalactic UV
background

The absence of a Gunn-Peterson trough in quasar spectra at z < 5 indicates
that intergalactic hydrogen is highly ionized. A key factor in determining the
ionization state of the baryons is the intensity of the cosmic UV background.
What are the main sources of UV photons in intergalactic space? Do they
produce enough photons to maintain the intergalactic diffuse gas in a highly
ionized state? This is the subject of today’s class.

9.1 Models

A radiation background arises as the integrated emission from all sources
along a given line of sight. Due to the expansion of the universe, more
distant sources contribute to the background with light emitted at earlier
epochs and higher frequencies. Mathematically, the mean specific intensity
of the UV background as seen at frequency νobs by an observer at redshift
zobs can be written as

Jνobs
(zobs) =

1

4π

∫ ∞
zobs

(
1 + zobs

1 + z

)3

εν(z) exp [−τeff(νobs, zobs, z)]
dl

dz
dz

(9.1)
where ν = νobs(1 + z)/(1 + zobs), εν is the mean (proper) volume emissivity
of UV radiation, τeff is the effective optical depth at νobs of the IGM between
redshifts zobs and z, and dl/dz is the proper line element. Equation (9.1)
gives the formal solution of the radiative-transfer equation in an expanding
universe.

The function εν(z) gives the energy emitted in radiation of frequency
ν per unit time and unit proper volume by all possible cosmic sources at
redshift z. As we will see in greater detail below, εν includes two terms:
a contribution from the IGM itself (due to recombination radiation that
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escapes the clouds) and one from direct sources of UV radiation (galaxies
and quasars). For the latter case, the proper emissivity can be estimated
by taking into account the evolution in luminosity, number density and
spectrum of all sources in the universe. Needless to say, it is a challenge to
accurately determine this function.

The effective optical depth is defined as exp (−τeff) = 〈exp (−τ)〉 where
the mean is taken over all the lines of sight from the redshift of interest.
This term accounts for the radiative transfer through the clumpy IGM. As
a first approximation one can consider the IGM as a random distribution of
discrete clouds. In this case it can be shown that

τeff(νobs, zobs, z) =

∫ z

zobs

dz′
∫ ∞

0
dNHI

f(NHI
, z′)

[
1− exp (−τ(ν ′)

]
, (9.2)

where τ(ν ′) is the optical depth of an individual cloud for radiation with fre-
quency ν ′ = νobs(1 + z)/(1 + zobs) while f(NHI

, z) = ∂2N/∂NHI
∂z indicates

the redshift and column-density distribution of the absorbers. Analytical
fits to the observed f(NHI

, z) of quasar absorption lines can then be used to
compute τeff . This, however, requires knowledge of the frequency-dependent
optical depth of each cloud. Radiative transfer calculations for single clouds
indicate that, for photon energies between 13.6 and 54.4 eV (wavelenghts
between 228 Å and 912 Å), τ ' NHI

aν(HI). This is because Helium is
almost completely ionized and its first ionization threshold at 504 Å gives
negligible contributions to the opacity. For λ < 228 Å, instead, also the
ionization of HeII becomes important and τ ' NHI

aν(HI) + NHeII
aν(HeII)

with

NHeII
' 1.8NHI

JνHI

JνHeII

(9.3)

which holds for optically thin clouds. The hardness ratio (or, better, softness
ratio) JνHI

/JνHeII
compares the intensity of the background at the ionization

edges for HI (13.6 eV) and HeII (54.4 eV). Typically this ratio assumes a
value close to 50 for quasar generated backgrounds and much larger values
for galaxy generated backgrounds (which are much softer).

Note that the redshift integration in equation (9.1) formally extends to
infinity but will not receive any contributions from the redshifts z where
τeff(νobs, zobs, z) � 1. In Figure 9.1, we show the redshift separation ∆z =
z − zobs corresponding to τeff = 1 as a function of zobs. This gives the mean
free path of a photon in redshift units. For radiation at 912 Å, ∆z decreases
from 1.8 at zobs = 0 to 0.08 at zobs = 5. Similarly, at 600 Å (where the IGM
absorption is lower due to the strong frequency dependence of aν(HI)), ∆z
equals 4 at zobs = 0 and 0.2 at zobs = 5 (neglecting helium absorption). In
other words, the UV background becomes more dominated by local sources
as the redshift increases. This happens because the IGM is more optically
thick at high redshift and absorbs all the radiation coming from distant
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Figure 9.1: Redshift separation ∆z = z − zobs corresponding to
τeff(νobs, zobs, z) = 1 as a function of zobs. Note that only hydrogen ab-
sorption is considered.

sources. As a consequence of this, spatial fluctuations in the metagalactic
hydrogen ionization rate at z < 4 are expected to be small. At these red-
shifts, the mean free path for ionizing photons is substantially larger than
the mean separation between ionizing sources (galaxies and quasars); there-
fore a spatially uniform ionizing background is expected to be a reasonable
approximation. However, towards higher redshifts, spatial fluctuations in
the ionizing background are gradually amplified. The amplification is at-
tributable to diminishing source numbers, a smaller mean free path and the
inhomogeneous distribution of the ionizing sources themselves.

9.1.1 Cosmic sources of UV photons

Many astronomical sources are capable of emitting UV light with photon
energies in the range between 10 and 100 eV.

Quasars

Bright quasars are copious sources of ionizing photons. Their UV spectra
show power-law continua, Fν ∝ να, with α ranging between ∼ −0.5 and
∼ −1.5 (see Figure 9.2).

The number density of bright quasars presents a marked redshift evolu-
tion (see Figure 9.3). These sources are extremely rare nowadays but were
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Figure 9.2: Top: Composite QSO spectra (solid lines) from HST and FUSE
data with power-law continuum fits (dashed lines). The best-fitting slope
is α = −1.76+0.12

−0.12 for HST and α = −0.56+0.38
−0.28 for FUSE. Note that the

FUSE sample is dominated by low-redshift, low-luminosity AGNs that have
a tendency towards hotter accretion disks and harder UV spectra. Bottom:
Ratio of FUSE to HST composite spectra.
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Figure 9.3: Observed evolution of the number density of bright, optically
selected quasars.

much more abundant in the past. Their abundance peaks at z ∼ 2− 3 (the
“cosmic quasar era”) and declines by a factor of 20 between redshift 3 and
6. This is interpreted within galaxy formation models as follows. Building
supermassive black holes via mass accretion and merging of smaller units
takes time. Therefore these objects must be extremely rare in the young
universe (i.e. at very high redshift). On the other hand, the quasar phe-
nomenon requires efficient gas accretion onto the black holes. As massive
galaxies form their stars out of their gas reservoir, they might, sooner or
later, run out of fuel. The peak of quasar activity therefore corresponds to
an epoch which is sufficiently late to allow for the formation of the super-
massive black holes but sufficiently early to prevent galaxies to run out of
gas for quasar accretion.

The cosmic UV emissivity due to quasars can be estimated by combining
observations of their optical luminosity function (Figure 9.4) with spectral
templates for quasar emission (in order to link the optical and the UV photon
output). The resulting function εQSO

ν (z) at hν = 13.6, 24.6, and 54.4 eV
obtained in the pioneering paper by Haardt & Madau (1996) is shown in
Figure 9.5. Note that most of the UV photons are injected during the cosmic
quasar era.
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Figure 9.4: Observed evolution of the luminosity function for optically se-
lected quasars from the 2dF redshift survey.

Figure 9.5: Quasar proper volume emissivity at the HI, HeI and HeII ion-
ization edges obtained by Haardt & Madau (1996) combining the observed
evolution of the quasar luminosity function and their observed spectral en-
ergy distribution.
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Figure 9.6: Cosmic star-formation history as determined by a number of
different observables.

Massive stars

The hydrogen ionization threshold corresponds to a temperature of 15800
K. Therefore stars like the Sun (Teff ∼ 5800 K) are too cold to produce
significant amounts of ionizing photons. On the other hand, O (Teff > 30, 000
K, 10 < M < 100M�) and the hottest B (12, 000 < Teff < 30, 000, 3 < M <
20M�) stars certainly contribute to the extragalactic UV background. Since
these massive stars are extremely short lived for cosmological standards (O
stars have lifetimes of only a few million years, B stars of a few tens of
million years) they will only be found in actively star-forming galaxies.

In order to estimate the contribution of galaxies to the UV background
it is thus necessary to determine the cosmic history of star formation. A
large number of research groups have obtained consistent answers by using
a variety of methods which suffer of different sytematics. These results are
summarized in Figure 9.6 where the mean cosmic star-formation rate, ρ̇∗
(the mass of newly formed stars per unit comoving volume per unit time),
is plotted against redshift. Note that nowadays the star-formation activity
is rather low with respect to the past.

It is then important to know what fraction of the newly formed stars is in
the O and B classes. This is quantified by the initial mass function (IMF) of
the stars, φ(M), which is often approximated with a single slope power-law
φ(M) ∝ M−s for Mmin < M < Mmax. The value s = 2.35 corresponds to
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the classical Salpeter IMF. The quantity

φ(M) dM∫Mmax

Mmin
φ(M) dM

(9.4)

gives the fraction of stars in the mass interval (M,M + dM) while

φ(M)M dM∫Mmax

Mmin
φ(M)M dM

(9.5)

gives the mass fraction locked in the same objects. Note that, in principle,
φ(M) can change with redshift or with the properties of the star forming
objects. This introduces extra degrees of freedom in the models thus making
them more uncertain.

The spectral energy distribution of the light emitted by young stars can
be computed using sophisticated stellar population models. A sample output
is shown in Figure 9.7.

Finally, since star-forming regions are always embedded in the inter-
stellar medium of a galaxy (gas and dust), it is important to know how
transparent this medium is for the UV photons. In other words, we need
to estimate how much radiation will be able to reach the IGM streaming
out of the galaxy. This is generally parameterized by the so-called escape
fraction of UV photons, fesc. For starbursting galaxies at very low redshift,
current estimates give fesc < 0.06 but the value at high redshift is still very
uncertain (with published values ranging from fesc < 0.04 to fesc > 0.5).
Recent numerical simulations of galaxy formation suggest that fesc might
indeed increase with redshift.

Reprocessed radiation

Beyond acting as a sink of UV radiation via photoionization, the IGM will
also contribute to the extragalactic UV background via radiative recombi-
nations and redshifted line radiation (line radiation is smeared into a contin-
uum by the redshift effect). For instance, the following processes contribute
to the diffuse background field:

1. Recombinations to the ground state of HI and HeI;

2. HeII Lyα emission at 40.8 eV;

3. HeII two-photon continuum emission;

4. HeII Balmer continuum emission at hν ≥ 13.6 eV.
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Figure 9.7: Model for the spectral energy distribution of the light emitted
by a starburst which converts 106M� of gas into stars. Different curves
correspond to different epochs from the burst as indicated by the labels. A
metallicity of Z = 0.001 and a Salpeter IMF with a minimum stellar mass
of 1 M� and a maximum of 100 M� are assumed. Nebular emission due to
the diffuse, ionized gas surrounding the starbursting region is included.
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Radiative decay of exotic particles

A more speculative potential source of diffuse extragalactic UV emission is
the radiative decay of exotic particles of cosmological origin. In the early
1990s it was proposed that massive decaying neutrinos could simultaneously
explain the dark-matter problem and the ionization structure of the IGM.
This hypothesis is now ruled out by observations but we cannot exclude the
existence of some other unknown decaying particle which contributes to the
extragalactic UV background.

9.1.2 Results

The cookbook recipe to estimate the mean intensity of the cosmic UV back-
ground is therefore:

1. Compute the emissivity function for your favourite cocktail of sources
of UV photons.

2. Solve the radiative transfer problem through the clumpy IGM using
the observed properties of the Lyα forest and of Lyman-limit systems
(this gives you τeff).

3. Compute the mean specific intensity of radiation using equation (9.1).

Since step 2) already requires knowledge of Jν (see, for instance, equation
9.3), the solution is usually found by iteration.

In Figure 9.8 we show the redshift evolution of the background spectrum
obtained assuming that quasars are the dominant sources of UV photons.
Note that the IGM introduces some spectral features both in absorption
and in emission on top of the power-law behaviour due to the quasars. The
intensity of radiation peaks at z ∼ 2−3. Similarly, the photoionization rates
for H and He reach a maximum during the quasar era (Figure 9.9). Note
that, assuming ionization equilibrium, the peak value Γ(HI) ' 10−12 s−1 at
z ∼ 2.5 corresponds to a neutral fraction of fneut = 0.418 cm3 · nH = 3.4 ×
10−6(1 + δ) (assuming T = 104 K). 1 This shows that the UV background
due to quasars only can indeed explain the high ionization of the IGM at
z < 5.

In Figure 9.10, we show a different estimate of the UV background where
the contribution of star-forming galaxies has been added on top of the quasar
one. Note that the huge effect due to the uncertainty in fesc.

1This is obtained by considering pure hydrogen and imposing ionization equilibrium:
fneut nH Γ(HI) = [(1− fneut)

2 n2
H αA(T )], which for fneut � 1 gives fneut = nH αA(T )/Γ.
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Figure 9.8: The cosmic ionizing background from 5 to 5000 Å estimated by
Haardt & Madau (1996) at redshifts z = 0, 0.5, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5.
For comparison, the corresponding UV backgrounds in a purely transparent
universe (no IGM absorption and emission) and in a purely absorbing IGM
(no IGM emission) are indicated with dotted and dashed lines, respectively.
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Figure 9.9: Top: Photoionization rates for HI (solid), HeI (dashed) and HeII

(dot dashed) derived by Haardt & Madau (1996). Please, ignore the bottom
panel.

9.2 Observations

Two main methods have been used to estimate the amplitude of the UV
background from astronomical observations: the flux decrement technique
and the line-of-sight proximity effect method.

9.2.1 Flux decrement

The basic idea behind this method is to adopt a model for the gas density
distribution and adjust the level of ionizing radiation such that the mean
transmitted flux in the Lyα forest matches observations. This technique is
very indirect and requires a number of external inputs.

From the analysis of absorption lines in quasar spectra, it is possible
to measure the mean transmitted flux as a function of redshift. Recent
data, for instance, give 〈F 〉obs = exp (−τeff) = 0.878 ± 0.019, 0.696 ± 0.025
and 0.447 ± 0.031 at z = 2, 3 and 4, respectively. These values have been
corrected for absorption from metal lines and Lyα systems with damping
wings. The starting point of the flux-decrement technique is that, as we will
show in the next class, the Lyα optical depth should scale according to the
parameter combination

µ = Ω2
b h

3 T−0.7 Ω−0.5
m Γ−1 . (9.6)
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Figure 9.10: The cosmic UV background at λ = 912 Å as a function of
redshift and for different values of fesc. The separate contributions of quasars
and galaxies are indicated by dotted and dashed lines, respectively. The
shaded region indicates the limits coming from the proximity effect. The
arrow shows an experimental upper limit for the background at z = 0. The
datapoint at z = 3 is derived from a composite spectrum of Lyman-break
galaxies.
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Imagine that you match the mean flux of artificial Lyα spectra constructed
from hydrodynamical simulations to the observed values by rescaling the
simulated optical depths in each pixel by a constant factor. This corresponds
to changing the parameter combination µ by the same factor. If independent
estimates are available for Ωb, Ωm, h, and T , the magnitude of Γ can be
determined. In practice, there are two possibilities:

1. a number of simulations are run by varying Ωb, Ωm, h, and T within
a plausibility range fixed by other observations and the different Γ
estimates are used to determine its measure and the corresponding
uncertainty.

2. a numer of different quantities (power spectra, b-parameter distribu-
tions, etc.) are fit simultaneously to determine the largest possible
number of parameters.

The main uncertainty is the temperature of the IGM which in the simu-
lations is determined by the assumed spectral shape of the UV background
and might not match the real one.

9.2.2 Proximity effect

The quasar proximity effect offers an alternate means of measuring the ion-
izing background using the Lyα forest. The amount of absorption in the
forest generally increases with redshift. However, near a quasar, the ab-
sorption tends to decrease. This is generally attributed to locally enhanced
photoionization by the quasar itself. Knowing the luminosity of the quasar
(which is directly observed), the intensity of the UV background can be in-
ferred by determining the distance out to which the quasar dominates the
ionizing flux, Req. For a given quasar luminosity, a larger proximity region
indicates greater dominance by the quasar, and hence a lower background.

In a uniform IGM, the optical depth would increase with distance as

τ =
τbg

1 +
(

R
Req

)2 , (9.7)

where τbg is the optical depth that would be measured if the quasar was not
adding extra ionizing radiation. However, clustering in the IGM produces
large variations in trasmitted flux that need to be accounted for.

The classical approach uses the observed change in the column density
distribution of Lyα lines near z ' zQSO to determine the local impact of the
quasar. This technique is best suited for high-resolution data at redshifts
where individual lines can be reliably identified (z < 4). At higher redshifts,
or lower spectral resolution, the crowded nature of the forest makes it diffi-
cult to separate out discrete absorbers. In this case, the distribution of pixel
optical depths is generally used.
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Uncertainties in the measurements are rather large as a number of pos-
sible systematic effects could affect the estimates. These include:

1. imprecise determination of the quasar redshift;

2. variability in the UV emission of the quasar on the ionization timescale
of the gas;

3. quasars reside in massive galaxies and gravitational clustering of clouds
near them may lead to an overestimate of the background intensity by
a factor up to three;

4. other sources clustered around the quasar could further enhance the
local background radiation;

5. gravitational lensing might boost the apparent quasar luminosity.

9.2.3 Other methods

It is also possible to infer the UV background from ionic ratios in metal-
enriched systems. The results, however, depend somewhat on model param-
eters, such as absorber geometry and metallicity, and may be biased towars
local ionizing sources.

9.2.4 Results

In Figure 9.11 and Table 9.12 we summarize the existing measurements of
the hydrogen ionization rate performed so far. Note that estimates based on
the proximity effect tend to be a factor ∼ 1.5 higher than those based on the
flux decrement at the same redshift. This might point towards systematic
errors in one of the two methods (attention has recently focussed on the
effects of gas clustering around quasars).

Comparison with models for the formation of the UV background shows
that:

1. The ionization rates estimated from the Lyα forest opacity are more
than a factor of two larger than estimates from the integrated flux of
optically bright quasars alone. This discrepancy becomes more severe
with increasing redshift.

2. The measured ionization rates are in reasonable agreement with the
estimates of the integrated ionizing flux from observed quasars plus a
significant contribution from galaxies.

We thus conclude that the integrated ultraviolet flux arising from quasars
and massive stars is likely responsible for maintaining the intergalactic dif-
fuse gas and the Lyα forest in a highly ionized state. However, the relative
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Figure 9.11: Existing measurements of the metagalactic hydrogen ioniza-
tion rate, Γ(HI). Top: The box indicates the constraints obtained from the
proximity effect. All the other points are obtained matching the observed
effective optical depth in simulations. The solid and dotted lines correspond
to the models of Haardt & Madau (2001) for, respectively, galaxies and
quasars and quasars only. Bottom: Summary of measurements obtained us-
ing the flux decrement (circles) and the proximity effect methods (squares).
Horizontal bars, where present indicate the redshift range over which the
measurement applies. The vertical errorbars show the reported uncertain-
ties.
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Figure 9.12: Summary of the measurements of Γ(HI) performed using the
flux decrement and the proximity effect methods.
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importance of these two populations is still somewhat uncertain. More-
over, it is unclear whether all the souces responsible for the ionization state
of the IGM are presently accounted for by magnitude-limited surveys (the
contribution of fainter, still undetected objects might be substantial).



Chapter 10

The Lyα forest: theory

Soon after the discovery of the Lyα forest (and even before it) a number of
models have been proposed to explain Lyα absorption in the spectra of back-
ground sources. The very first generation of models considered absorption
from

1. gas clouds ejected from the host quasar with enormous energy;

2. halos of galaxies and galaxy clusters.

Observational evidence soon pointed away from these ideas. In the 1980s,
attention was shifted to overdense intergalactic clouds of gas. The fact that
Lyα absorption is seen throughout a large redshift interval (which corre-
sponds to a large fraction of cosmic time) implies that either the clouds live
for billions of years or that they are rapidly re-formed after they are dis-
solved. The key question then was “what keeps the clouds together”? Two
competing scenario emerged:

Pressure-confined clouds, where a two-phase IGM was postulated with
a hot, tenuous intercloud medium in pressure equilibrium with the
cooler and denser Lyα clouds.

Dark-matter-confined clouds, where absorption is due to photoionized
gas clouds condensed in the potential wells of small dark-matter halos
(minihalos).

The absence of the Gunn-Peterson effect and difficulties with reproducing
the observed column density distribution made the first model unpopular.
On the other hand, the size of the minihalos in the latter model (∼ 10 kpc)
was too small with respect to the coherence length of Lyα systems derived
from lensed quasars (∼ 100 kpc). Moreover, the advent of hydrodynamical
simulations indicated that most baryonic matter may not have settled in
virialized dark-matter halos at redshift z ∼ 2− 3.

163
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Over the past ten years analytical work and in particular hydrodynamical
simulations of cosmic structure formation have gradually led to a new picture
of the Lyα forest and the IGM in general. In this Chapter we explore the
currently favoured model.

10.1 Gravitational instability

Consider an ideal, non-relativistic fluid. The evolution of its density, ρ(r, t),
pressure, p(r, t), and velocity, u(r, t), fields is described by the system of
partial differential equations:

∂ρ

∂t
+∇r · ρu = 0 (10.1)

∂u

∂t
+ (u · ∇r)u = −∇rΦ−

1

ρ
∇rp (10.2)

∇2
rΦ = 4πGρ . (10.3)

Equation (10.1) expresses the conservation of mass and is known as the
continuity equation. It states that the rate at which the mass within a
closed surface changes has to match the mass flow through the surface.
Equation (10.2) states the conservation of linear momentum and is known
as the Euler equation. It gives the equation of motion for a given fluid
element: the left-hand side is the acceleration and the right-hand side is
the force per unit mass. Finally, equation (10.3) tells how the gravitational
potential is generated by the existing mass density and is known as the
Poisson equation.

We want to follow the evolution of small fluctuations in a fluid that
pervades an expanding universe with scale factor a. It is convenient to use
comoving coordinates x = r/a and to introduce new variables as the density
contrast, δ defined as ρ = ρb (1 + δ) (with ρb the mean, or background,
density), the proper peculiar velocity, v = u − ȧx = aẋ, and the peculiar
gravitational potential, φ = Φ +aäx2/2. In terms of these new variables the
fluid equations become:

∂δ

∂t
+

1

a
∇ · (1 + δ) v = 0 (10.4)

∂v

∂t
+

1

a
(v · ∇)v +

ȧ

a
v = −1

a
∇φ− 1

a ρb
∇p (10.5)

∇2φ = 4πGρba
2δ . (10.6)

Note that the differential operator ∇ is now taken with respect to comov-
ing coordinates while it was taken with respect to the physical ones in the
original equations (10.1), (10.2) and (10.3).

Observations of the CMB show the presence of temperature fluctuations
with ∆T/T ∼ 10−5. This suggests that the structure we observe in the
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universe formed out of small primordial density fluctuations. Therefore,
at early times, we expect that δ,v and φ are all O(ε) with ε � 1. it is
thus reasonable to ignore all terms O(εn) with n > 1 in the evolutionary
equations. The linearized system of equations is then:

∂δ

∂t
+

1

a
∇ · v = 0 (10.7)

∂v

∂t
+
ȧ

a
v = −1

a
∇φ− 1

a ρb
∇p (10.8)

∇2φ = 4πGρba
2δ . (10.9)

Now take the divergence of the linearized Euler equation, use the linearized
continuity equation to replace ∇ · v and, finally, the Poisson equation to
replace ∇2φ. Eventually one obtains a second-order differential equation for
the density contrast:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρbδ +

1

a2ρb
∇2p . (10.10)

Note that this equation is local, i.e. it only depends on conditions at one
point in space.

10.1.1 Collisionless fluids

If the particles of the fluid do not interact with any other force but gravity
(collisionless fluid), the pressure term on the right-hand side of equation
(10.10) should be erased. This, for instance, applies to the dark matter
which is believed to be made of very weakly interacting particles. In this
case,

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
− 4πGρbδ = 0 . (10.11)

In full generality, the solution is given by the linear superposition of two
modes, one growing with time and the other decaying (hereafted indicated
by the subscripts + and -, respectively):

δ(x, t) = δ+(x)D+(t) + δ−(x)D−(t) . (10.12)

The functions D+ and D− are the independent solutions of the second order,
ordinary differential equation D̈+2(ȧ/a)Ḋ−4πGρbD = 0, and take different
functional forms depending of the assumed background cosmology. In a
universe dominated by a cosmological constant and by matter:

D+(a) ∝ Θ(a)

∫ a

0

dx

x3 Θ3(x)
, D−(a) ∝ Θ(a) , Θ(a) =

H(a)

H0
. (10.13)
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10.1.2 Jeans length

In order to describe the evolution of the baryon density we need to un-
derstand what happens when the pressure term in equation (10.10) is not
negligible. An equation of state for the gas, f(ρ, p) = 0, is required to close
the system of equations. This can be specified by introducing the sound
speed, cs = (∂p/∂ρ)1/2, so that we can write ∇2p = c2

s ∇2ρ = c2
s ρb∇2δ.

Let us now write the density contrast as a Fourier series

δ(x, t) =
∑
k

δ̃(k, t) exp (ik · x) (10.14)

thus obtaining for each Fourier mode of proper wavelength λ = 2πa(t)/k

∂2δ̃

∂t2
+ 2

ȧ

a

∂δ̃

∂t
=

(
4πGρb −

k2c2
s

a2

)
δ̃ . (10.15)

The source term on the right-hand side vanishes for kJ = 4πGa2ρb/c
2
s cor-

responding to the wavelength

λJ =
2πa(t)

kJ
= cs

(
π

Gρb

)1/2

(10.16)

which is often referred to as the Jeans length. Density perturbations with
wavelength λ < λJ propagate as acoustic waves and are slowly damped by
the Hubble expansion (note that, in this case, equation (10.15) is analogous
to that of a damped oscillator). On the other hand, perturbations with
λ > λJ are gravitationally unstable (i.e. solved by the superposition of a
growing and a decaying mode, with no oscillatory terms). This means that
their self-gravity exceeds opposing forces (the internal gas-pressure gradient)
and the perturbations collapse. Fourier modes with λ � λJ follow the
evolution discussed in the previous section. One thus expects that density
fluctuations in the gas and in the dark matter have the same structure for
wavelengths λ� λJ.

10.2 Numerical simulations

When the density contrast approaches unity, the linear approximation breaks
down and one has to resort to numerical simulations to study the subsequent
evolution. In general,

1. dark-matter is simulated with N-body methods, where the fluid is
discretized into a finite set of particles of a given mass;

2. two different approaches are commonly used to follow the hydrody-
namics of the gas
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(a) Smoothed Particle Hydrodynamics (SPH): is a Lagrangian tech-
nique where the gas is represented by a set of particles and the
thermodynamic quantities are computed by averaging over a fixed
number of neighbouring particles.

(b) Adaptive Mesh Refinement (AMR): is a Eulerian scheme where
the computational volume is covered with a hierarchy of com-
pletely nested grid patches and the resolution is increased where
required. The fluid equations are solved using finite difference
methods on the grids (high-order advection and shock-capturing
schemes are required to obtain an accurate solution).

Results, where comparable, agree rather well but some discrepancies are
found mainly because of the different shock-capturing abilities of the two
methods. Moreover, in general, Eulerian codes have higher spatial resolu-
tion in underdense regions (corresponding to the lowest column density Lyα
forest) whereas Lagrangian codes better resolve collapsed regions like mini-
halos or galactic halos (corresponding to damped Lyα systems and metal
systems).

10.2.1 Non-linear structure formation

Numerical simulations (but some insight can also be obtained with ana-
lytical methods like the Zel’dovich approximation) show that gravitational
instability of small primordial density fluctuations in a universe dominated
by cold dark matter and a cosmological constant ends up producing a com-
plex foamy (or sponge like) structure (see Figure 10.1). As a far as the
dark-matter is concerned:

• Matter flows out of the underdense regions which become more and
more empty with time. At the redshifts of interest for the study of the
Lyα forest, underdense regions (sometimes called voids) occupy most
of the volume.

• The “voids” (δ < −0.8) are surrounded by thin sheet-like “walls” of
matter with typical overdensities ranging between of −0.5 and 0.

• Matter moves along the sheets and tend to concentrate along uni-
dimensional structures, the filaments, located where two walls inter-
sect. Filaments have characteristic density contrasts a few< δ < 10.

• Matter flows along the filaments until it accretes onto nearly one di-
mensional structures (compact, roughly spherical clumps): the dark-
matter halos.

• Very massive dark-matter halos (corresponding to galaxy clusters) lie
at the intersection of filaments. Less massive halos (corresponding to
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galaxies and dwarf galaxies) trace the structure described above and
are evenly distributed in voids, sheets and filaments proportionally to
the local density.

Consider two neighbouring fluid elements (that with a little abuse of
terminology we will call particles). At early times (when the universe is ba-
sically homogeneous) their spatial separation increases following the Hubble
flow. In a smooth universe this would persist at all times. In the presence of
density fluctuations, however, gravity creates a relative acceleration between
the particles. Depending on the spatial location, the acceleration might add
to the Hubble expansion or act in the opposite direction. The prolonged ac-
tion of the acceleration may then turn the expansion into a collapse driving
the particles closer and closer together. This gravitational collapse would
then ultimately lead to the phenomenon of orbit crossing where the particles
cross each other with a finite velocity. The acceleration would then reverse
and lead to the formation of a gravitationally bound structure. Chaotic
interactions in the rapidly varying potential well then cause the dynamical
relaxation and virialization of the collapsed objects. Sheets are structures
that have collapsed along one spatial dimension, filaments along two, and
halos along three.

What happens to the dynamically sub-dominant baryonic gas? Simu-
lations show that baryons trace the dark-matter distribution well on scales
above the Jeans length (∼ 100h−1 kpc). However, due to the action of
pressure, they are much more smoothly distributed than the dark matter on
smaller scales.

Another difference is that baryonic gas is self-interacting and orbit cross-
ing is not possible (if you run against a wall, you will not pass through it as
if you and the wall were made of collisionless dark matter). Accretion shocks
are thus produced at the external layers of cosmic structures where the gas
is compressed and shock heated to high temperatures. While the largest
cosmic structures form, the IGM is heated by gravitational shocks that ef-
ficiently propagate from the collapsing regions to the surrounding medium.
This process converts gravitational potential energy into heat.

10.2.2 Simulating the IGM

In order to set up a simulation of the intergalactic medium one has to

1. Choose a cosmological model by specifying a set of cosmological pa-
rameters like Ωm,ΩΛ,Ωb, h, etc.

2. Choose a set of initial conditions (density fluctuations) whose statisti-
cal properties are compatible with observations of the CMB tempera-
ture fluctuations.
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Figure 10.1: Output of a N-body simulation for structure formation in the
universe at different redshifts: 18.3, 5.7, 1.4, 0 (from top to bottom). The
slices have been obtained by projecting all the dark-matter particles within
a slice with a thickness of 15h−1 Mpc onto the plane of the page.
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3. Select the size of the volume that one wants to simulate and the spa-
tial and mass resolution of the simulation (this also depends on the
computing resources that are available).

4. Specify a rule for star formation out of the cold gas (this happens on
length scales that are not resolved by the simulations so it has to be
implemented in an approximate way using a simple “sub-grid” model).

5. Specify a rule for the (mechanical, thermal and chemical) feedback
effects that star formation has on the surrounding gas (also happening
on sub-grid scales). Remember that metal enrichment modifies the
cooling properties of the gas.

6. Specify the evolution and the spectrum of the ionizing background
Jν(z).1

Fortunately, the uncertain points 4) and 5) have a marginal impact on the
physics of the Lyα forest while they are crucially important to describe
galaxy formation and metal absorption systems.

In Figure 10.2 we show the distribution of dark matter (left), gas (centre)
and stars (right) extracted from a state-of-the-art simulation. Note that all
the three components trace the same large-scale structure and that the IGM
is not at all uniformly distributed.

10.3 Results

10.3.1 Phases of the IGM

We start our quantitative analysis of the output from numerical simulations
by looking at the relation between the temperature and the density of the
gas. In Figures 10.3 and 10.4 we show the results by two different groups.
The gas mostly resides in three phases:

Photoionized diffuse gas. The gas that is photoionized by the cosmic
UV background lies at relatively low densities (δ < 100) and temper-
atures (T < 104.5−5 K). The temperature of the photoionized gas is
primarily determined by the balance between adiabatic cooling (due to
the gravitational evolution of density perturbations), photoionization
heating, and recombination cooling. A tight temperature-density rela-
tion (sometimes called “effective equation of state”) exists as a result

1Note that, in most cases, Jν(z) is not self-consistently computed from the star-
formation history in the simulation box (which is usually rather small in cosmological
terms and would not contain a single quasar on average). Rather, a model based on
the observed star-formation history and quasar abundance is generally used. Also, the
radiative transfer problem is often simplified and the UV background is assumed to be
uniform.
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Figure 10.2: Spatial distribution at z = 3 of dark matter (left), gas (centre)
and stars (right). Data are extracted from a cubic simulation box of (25h−1

Mpc)3 resolved into 7683 computational cells. The simulation includes star
formation, energy feedback from supernova explosions, ionizing radiation
from massive stars and metal recycling due to supernova and galactic winds.
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of these three processes:

T = T0

(
ρ

ρ̄

)γ−1

= T0 (1 + δ)γ−1 (10.17)

where T0 (the temperature for gas at mean density) and γ depend on
cosmology and the past ionization history of the gas. The index γ
is expected to vary from near unity at high redshift to ∼ 1.6 at low
z. In general γ = 1.3 ± 0.3 is a good approximation at all redshifts
of interest. The parameter T0 ranges in the interval 11, 000 < T0 <
18, 000 K. Fiducial values are T0 = 11, 200 ± 5, 000 K at z = 2, T0 =
17, 800 ± 5, 000 K at z = 3 (when quasars make the spectrum of the
UV background harder) and T0 = 12, 500± 5, 000 at z = 4.

Shock heated gas. Simulations predict that gas compressed and heated
by shocks can reach temperatures of 108 K in rich clusters of galaxies,
while filaments and mildly overdense regions are heated to tempera-
tures in the range 105 − 107 K. Note that at these temperatures the
IGM is collisionally ionized and becomes transparent to Lyα radia-
tion. The fraction of gas in the shock-heated phase increases at low
redshifts.

Condensed gas. Gas in dark-matter halos that had the time to cool and
condense is found at high densities and low temperatures (T < 104.5

K). This is the gas that, with further cooling, can form stars.

10.3.2 Origin of the Lyα forest

It is possible to shed some light on the origin of the Lyα forest by drawing
an imaginary line of sight across a simulation box and computing the Lyα
optical depth as a function of redshift (including peculiar motions, see Figure
10.5). Hydrodynamic simulations show that the smoothly varying density of
the IGM gives rise to a fluctuating optical depth in redshift space. Many of
the optical-depth maxima can be fitted quite accurately with Voigt profiles.
In particular, the low-column-density (NHI

< 1014.5 cm−2) Lyα forest at
redshift z > 2 is produced by photoionized gas in filamentary and sheet-like
structures. Higher column density lines (and metal lines) occur where the
line of sight intersects a dark-matter halo with condensed gas.

Photoionization equilibrium

At the relevant redshifts, the gas making up the Lyα forest is in pho-
toionization equilibrium. In this case, as we showed in the previous class,
nHI

= nenpα(T )/Γ which implies nHI
∝ (1 + z)6 (Ωbh

2)2 (1 + δ)2 α(T )/Γ.
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Figure 10.3: Temperature-density relation at z = 0 for cosmic gas from a
numerical simulation. Colors indicate the baryon mass fraction at given ρ
and T . Note the presence of a tight power-law relation at low-densities and
temperatures.

Given that, at the typical temperatures of the photoionized IGM, the hy-
drogen recombination rate is proportional to T−0.7, one finally obtains

nHI
∝ (1 + z)6 (Ωbh

2)2 (1 + δ)2

T 0.7 Γ(z)
. (10.18)

Hubble-flow broadening of the Lyα forest

Lyα forest lines in quasar spectra have typical widths of 20-50 km s−1.
Low-column-density absorbers in cosmological simulations are large, diffuse
structures that are still expanding with residual Hubble flow. In fact, typical
marginally saturated lines (NHI

∼ 1014 cm2) arise in gas whose density is a
few times the cosmic mean or less. Weak lines (NHI

< 1013 cm2) often occur
at local maxima that lie below the global mean density. As a consequence
of this, the Hubble flow across the spatially extended absorber is usually
the dominant contribution to the width of its associated absorption line.
Thermal broadening is unimportant over most of the spectrum, and peculiar
velocities tend to make absorption features narrower rather than broader
(see Figure 10.6). Note, however, that some low-column density lines at
high z arise in shock-heated gas and do are thermally broadened.
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Figure 10.4: Temperature-density relation for cosmic gas from a numerical
simulation (points). The solid lines indicate an approximate separation be-
tween diffuse photoionized gas (bottom left), condensed gas (bottom right)
and shock-heated gas (all the rest). Note that the fraction of shock-heated
gas increases at low redshifts.
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Figure 10.5: Absorption spectrum along a random line of sight through a
simulation box and the corresponding HI fraction, temperature and peculiar
velocity distributions (from top to bottom).
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Figure 10.6: The solid lines show spectra along 12 randomly chosen lines of
sight through a simulation at z = 3. Dotted and dashed lines show spectra
along the same lines of sight with no thermal broadening and no peculiar
velocities, respectively.
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Figure 10.7: The distribution of b-parameters from a simulation of the IGM
at z = 3 (solid line) is compared with observational data (histogram).

The resulting distribution of b-parameters obtained by fitting the sim-
ulated absorption lines with Voigt profiles is compared with observational
data in Figure 10.7. The agreement is very good.

10.3.3 Redshift and equivalent-width distribution of the ab-
sorbers

Hydrodynamical simulations give a fairly good match to the observed red-
shift distribution of the absorbers, dN/dz (Figure 10.8). In particular, in-
dependently of the exact cosmological model, they show a transition from
rapid evolution to low evolution at z ∼ 1.7. The crucial ingredient to this
success is the redshift evolution of the ionizing background. The character-
istic break in the rate of evolution of the number of lines below a redshift
∼ 1.7 as observed by the HST can be explained by the decrease in the in-
tensity of the ionizing background, itself a consequence of the rapid decline
in the abundance of quasars and young stars towards lower redshifts. The
decline in the photoionization rate counters the decline in the recombination
rate caused by the expansion of the universe, and the combination of the
two effects leads to a slow evolution. Gravitational growth of structure has
a subsidiary effect, reducing dN/dz as gas moves from lower density regions
into collapsed structures that have smaller cross sections for absorption.
This transformation of the underlying structure has an important effect on
the evolution of the equivalent width distribution, dN/dW , which steepens
towards low redshift (Figure 10.9).

10.3.4 The fluctuating Gunn-Peterson approximation

The physics that governs the unshocked IGM leads to a tight correlation be-
tween the neutral hydrogen density and the underlying gas and dark matter
overdensity. Some time ago we have derived the the Gunn-Peterson formula
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Figure 10.8: Top: Evolution of dN/dz in various simulated cosmological
models (thin lines). The thick solid lines show fits to observational data.
All cosmologies show a change in the evolution of dN/dz at z ∼ 2. Bottom:
The effect on dN/dz due to structure evolution only (dashed) and due to
evolution of the UV background only (dotted). This shows that the change
at z ∼ 2 in the complete simulation (solid) is mainly driven by changes in
Jν .
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Figure 10.9: Equivalent width distribution of the simulated Lyα forest at
z = 3, 2, 1, 0.

- equation (7.6):

τ =
πe2

mec
fα λα

nHI

H(z)
. (10.19)

Assuming that

1. all gas lies on the temperature-density relation eq. (10.17);

2. thermal broadening and collisional ionization can be ignored;

3. photoionization equilibrium holds;

we can directly combine equations (10.17), (10.18) and (10.19) to obtain

τ = τ0
(1 + z)6 (Ωbh

2)2

T 0.7
0 H(z) Γ(z)

(1 + δ)β , (10.20)

where β = 2 − 0.7(γ − 1) is determined by the slope of the effective equa-
tion of state, and asymptotically approaches the value 1.6. For a flat uni-
verse at redshifts z > 2, the Hubble parameter can be approximated by

H(z) ' H0 Ω
1/2
m (1 + z)3/2. Thus, given the correct density distribution and

effective equation of state, the Lyα optical depth should scale according to
the parameter combination µ = Ω2

bh
3T−0.7

0 Ω−0.5
m Γ−1. This is what we used

in the previous class to derive Γ from the observational data on the flux
decrement.

In summary, the Lyα forest of absorption lines can be seen as a con-
tinuous, non-linear map of the underlying density field. Plugging in all the
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physical constants, one gets τ = A(z) (1 + δ)β with

A(z) = 0.946

(
1 + z

4

)6 ( Ωbh
2

0.0125

)2 (
T0

104K

)−0.7

(10.21)

×
(

Γ

10−12 s−1

)−1 ( H(z)

100 km s−1 Mpc−1

)−1

(10.22)

which is known as the fluctuating Gunn-Peterson approximation. Simula-
tions show that the approximation is very reasonable at low densities but it
breaks down when δ > 10.


