The Effect of the Environment on Protoplanetary Discs -The example of the ONC

Susanne Pfalzner Christoph Olczak Thomas Kaczmarek

Uni Köln

Motivation

Observations show that most(if not all) young stars are initially surrounded by discs

Such young star-disc systems are mostly not isolated but members of young clusters

Close connection between star formation and development of plantary system

Many open questions in this phase of starplanet formation:

- Importance of disc loss mechanisms
- Angular momentum transport
- Formation of massive stars
- Formation of gas giants planets

However, prevailing view:

Encounters are too rare to matter

The ONC as model cluster

The Orion Nebula Cluster (ONC) is

One of the best observed

star forming regions

- \Rightarrow many of the physical parameters are well known
- One of the densest star forming regions in the Galaxy
- \Rightarrow high probability of encounters
- A typical star forming region
- \Rightarrow Results probably applicable to other star forming

Subaru Telescope, National Astronomical Observatory of Japan

Simulating a cluster with star-disc encounters

Method

 Parameter study of star-disc encounter
 Code: hierarchical tree code
 Encounter-effect in a disc for
 different encounter situations 2. Dynamical model of the ONC Stars only Code: NBODY6++
List of encounter informations of all stars (Encounter partners, orbits)

Parameter space: $-M_2/M_1 = 0.1...500.0$ $-r_{peri}/r_{disc} = 0.1...20.0$ -e = 1.0...900.0

Only coplanare, prograde encounters

Dimension: $R \approx 2.5$ pc Number of stars: $N \ge 4000$ Density profile: ~ r^{-2} high central stellar density: $n^* \ge 4.7 \ge 10^4$

Average encounter-effect on protoplanetery discs in ONC

Investigated Properties: Disc Mass and Angular Momentum Loss

- Dynamical model of the ONC

List of encounter parameters (partners, periastron)

- Each star has initially a disc(size varies as $r_{disc} = 100 \text{ AU } M_1^{0.5}$)

Loss calculated according to fit formula from parameter.

• Due to the approximations,

- 1. prograde coplanare encounters,
- 2. star-disc- instead of disc-disc encounters,

results represent upper limit of mass and angular momentum loss

Result in Christoph's Diploma thesis: Disc destruction frequency

after 1-2 Myr : $\sim 5\%$ in the entire ONC (R = 2.5 pc)

~ 10-15% in Trapezium region (R = 0.3 pc)

Olczak, Pfalzner, Spurzem ApJ 642, 1140 (2006)

→ In accordance with Lada et. al (2001):
 80-85 % of stars in Trapezium Cluster possess discs

Angular momentum loss

Long-standing Problem: Disc angular momentum far to big to be absorbed in Gravitational instability scenar In other words:516walogula accreta neutremulusay Can encountere cedecer angular expression for disc? f giant planets My answer: Yes, but by far not enough! 3-5% in entire cluster 15-20% in Trapezium

Pfalzner & Olczak, accepted by A&A

What does a 3-5% angular momentum loss in the disc mean?

Importance of massive stars

Massive stars are mostly (not always) found near cluster center (Mass segregation)

Densest part

In estimates of encounter relevance commonly two mistake are made:

- a) Uniform distribution
- **b)** All stars have the same mass

Missed: Massive stars function as gravitational foci

What does that mean for the massive stars?

They loose their disc

- much faster and
- to a higher degree

than low-mass stars

Observation of IC348 (Lada 2006) Disc frequency lower for massive stars Massive stars :11% \pm 8% Intermediate :47% \pm 12% Low-mass stars:28% \pm 5%

What about angular momentum loss of discs around the massive stars?

They loose angular momentum faster and to a higher degree than low-mass stars

The specific angular momentum (AM/per particle) is reduced → higher accretion rate

<u>Cluster-assisted accretion</u>

Pfalzner, accepted by ApJL

Cluster assisted accretion

Massive stars become even more massive

Possible mechanism for the formation of massive stars

Competitive vs cluster-assisted accretion

Similarity: Accretion determined by interplay between cluster stars

Difference: Low-mass stars induce accretion in high-mass stars

 \Rightarrow

Star-disc encounters in dense young stellar clusters have important consequences for the formation of massive stars and planetary systems

Future plans:

Encounter induced accretion

Disc truncation? Change of density distribution in disc?

Angular momentum loss in star-disc encounter

Interaction region for angular momentum loss larger than for mass loss

Fit formula for AML >> Input in cluster simulations

Further ONC images

pha