Deriving Star Formation Histories of Galaxies from their Most-Massive Star-Cluster Distributions

Thomas Maschberger Pavel Kroupa

Argelander-Institut für Astronomie Universität Bonn

RSDN Hoher List December 2006

Star formation histories of galaxies

Usual method for determination: CMD fitting

- Resolve individual stars
- Create synthetic CMD using model isochrones
- Fit model to observations

Possible only for distances up to 1 Mpc

But: Stars form in star clusters

Star clusters resolvable to larger distances: 20 to \approx 50 Mpc

Star formation histories of galaxies from their most-massive star-cluster distributions

 SFR \downarrow M_{tot} \downarrow M_{max} mass of the most-massive star cluster

$$\xi = \frac{dN}{dM}$$

Star formation histories of galaxies from their most-massive star-cluster distributions

► How is the star formation history of a galaxy related to the star-cluster population?

By formation epochs (Weidner, Kroupa & Larsen 2004).

- ► Why the most-massive star clusters?

 Because they are visible for a long time.

 Because its properties can easily be described.
- How is the most-massive star cluster of a star-cluster population related to the total mass of the population? By a distribution function, not by a deterministic law.

⇒ New method

Describing an unevolved $10^4 M_{\odot}$ cluster population

Embedded Cluster Mass Function

$$\xi = \frac{dN}{dM}$$

Ingredients:

- shape: power law $\xi \propto M^{-\beta}$
- ▶ physical mass limits: lower: $5M_{\odot}$ upper: $10^{6.5}M_{\odot}$
- total mass: $M_{\rm tot} = 10^4 M_{\odot}$
- upper mass limit: $10^4 M_{\odot}$

Distribution of the most-massive star clusters

Analytical formula for $p(M_{\text{max}})$

(cf. Oey & Clarke 2005)

M_{max}
expectation value
characterising the
distribution of the
most-massive clusters

The $M_{\text{max}}(SFR)$ relation

How long does it take to form a complete population of star clusters?

 $M_{\mathrm{tot}} = \mathsf{SFR} \times \mathsf{length}$ of formation epoch

⇒ Observable relation:

Brightest clusters in galaxies with different SFR.

Brightest cluster usually the most massive one of the recent formation epoch.

The $M_{\text{max}}(SFR)$ relation

$$\log_{10} SFR$$

$$M_{\mathrm{tot}} = SFR \times \delta t$$

$$p(M_{\rm max}) = f(M_{\rm tot})$$

$$\Rightarrow \overline{M_{\rm max}} = f(M_{\rm tot})$$

$$\Rightarrow \overline{M_{\max}} = f(SFR \times \delta t)$$

The $M_{\text{max}}(SFR)$ relation

Data from Larsen(2002) SFR determined independent of $M_{\rm max}$ Masses by Weider, Kroupa & Larsen (2004)

 $\overline{\textit{M}_{\max}}$ Expectation value

not fitting?

Asymmetry!

The $M_{\rm max}(SFR)$ relation

Data from Larsen(2002) SFR determined independent of $M_{\rm max}$ Masses by Weider, Kroupa & Larsen (2004)

 $\overline{\textit{M}_{\max}}$ Expectation value

Region, in which 2/3 of all $M_{\rm max}$ are expected

$$eta=2.4$$
 $\delta t=10~{
m Myr}$

Star formation histories - Method I

Length of a star forming epoch: $\delta t = 10 \text{ Myr}$

- ▶ Determine M_{max} in each formation epoch
- Calculate SFR

$$\mathsf{SFR} = \left(\frac{M_{\mathrm{max}}}{M_{\odot}}\right)^{1.37} \times 10^{-7.14} M_{\odot}/yr$$

But:

 $M_{\rm max}$ is distributed \Rightarrow Calculate average over 0.5 dex Solves age uncertainties: Typical age error 0.4 dex

Test: constant SFR

Most massive clusters

Derived SFH

⇒ Method works if over enough epochs is averaged

Test: bursting SFR

⇒ Short time variations cannot be resolved due to averaging

Possible traces in short-time SFH

Cluster evolution

"Real data":

- Stellar evolution: 30 % of total mass loss in ≈ a few 100 Myr Corrected in age- and mass-fitting.
- Dynamical evolution: important over the whole lifetime of a cluster. Depending on unknown orbit and tidal field.
 - ⇒ Analytical model by Lamers et al. (2005) only one parameter for the tidal field

Star formation histories - Method II

- ▶ Determine M_{max} in each formation epoch
- Correct for dynamical evolution
- Calculate SFR
- ► Average over 0.5 dex

But:

Not all 10 Myr bins contain a cluster

⇒ Lower limit for the SFH

LMC: SFH from 922 clusters

Stellar content: $M_{\rm gal} = 2 \times 10^9 M_{\odot}$ (Kim et al. 1998)

SFH with back-evolved fading limit masses used in gaps **Upper Limit**

 $^{UL}M_{\rm gal}=2.6\times10^9M_{\odot}$

SFH with gaps: Lower Limit

 $^{LL}M_{\rm gal}=5.8\times10^8M_{\odot}$

LMC: Fields with SFH from CMDs

28 Fields:

- 6 Olsen (1999)
- 3 Holtzman et. al (1999)
- 2 Dolphin (2000)
- 4 Harris & Zaritsky (2001)
- 2 Smecker-Hane et al. (2002)
- 6 Subramaniam (2004)
- 6 Javiel et al. (2005)

For Averaging: Normalise each field $\int SFR \ dt = 1$

LMC: SFH from clusters and CMDs

SFH from CMDs for 28 fields on an arbitrary scale

Common structures: log age

- ▶ 8.4 dip
- 9 peak
- ▶ 9.2 -9.8 "age gap"
- 10 peak

log age younger 8: averaging effects?

Summary

- ► M_{max} is distributed
- ightharpoonup Distribution of $M_{
 m max}$ characterised by average
- ▶ Formation epochs of ≈ 10 Myr
- New method to derive SFHs
- ▶ LMC: SFH from star clusters and CMD show similar features