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Stellar systems around super-massive black holes
provide an interesting field of dynamics.

The galactic centre presents numerous dynamical mechanisms
not fully understood or investigated yet, among them:

Inspiralling of massive objects

Creation of hyper-velocity stars

Formation of S-stars in the central region

Kozai effect as a source of gravitational radiation

To further analyse the processes in the vicinity of a
super-massive black hole, a suitable high precision integrator
needs to be chosen.
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Stellar systems around super-massive black holes
are a unique environment.

Dynamically, stellar systems around
SMBHs behave like a planetary system:

SMBH dominates motion

Stars move along weakly perturbed
Keplerian orbits

However, they also resemble star clusters:

Large number of similar mass stars

Wide ranges of eccentricities and
central distances
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Various integration schemes for planetary systems
are available.

Symplectic integrators (e.g. leapfrog) yield a very good energy
conservation for nearly circular orbits.
They have constant (global) timesteps.

Leapfrog-type integrators do not conserve e.g. direction of
pericenter.

Mikkola and Tanikawa (1999) found a time-symmetric adaptive
timestep mechanism.
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Weakly perturbed Keplerian orbits can be
calculated by solving Kepler’s equation.

Kepler’s equation solves the two-body motion exactly.

H = p2

2m −
µ
r MT = E − e sinE

However, for N -body systems, kinetic energy is no longer the

sum of squares of momenta p2

2m relative to moving center.

⇒ Introduce Jacobi coordinates for orbit calculation.

⇒ Transform variables back and forth for perturbations.

Saha and Tremaine (1994) found a mechanism for an MVS
integrator with individual, but non-adaptive timesteps.

Symplectic integrators fail for eccentric orbits and do not allow
for individual adaptive timesteps.
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Ulf Löckmann

Introduction

Integrator
Candidates

Symplectic
Integrators

Standard
Integrators

Composite
Integrators

Idea

Composite
Hermite

Results

Outlook

Non-symplectic integration schemes for large-N
systems.

Standard integrators, such as

Predictor-corrector-schemes (e.g. Hermite)

Runge-Kutta methods and their variants

Other high-accuray schemes (e.g. Bulirsch-Stoer)

are mainly used for integration of large systems like star
clusters.
They are not symplectic and produce a secular energy error,
but they allow for adaptive individual timesteps.

N -body integrators are unable to differentiate dominating
massive objects from small perturbers. Timesteps chosen are
therefore

too small for perturbations, or

too large for orbital motion.
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Let’s join the two...

Idea: Combination of

High precision of Keplerian orbital motion and

High speed and flexibility of N -body integrators.

Problem: Need to fix the center to use cartesian coordinates
for Kepler’s equation.

Assumption: Perturbations of large number of statistically
evenly distributed low-mass stars will cancel each other out, so
consider super-massive black hole as fixed.

Fixed center assumption invalid for major sources of
gravitational waves, e.g. inspiralling intermediate-mass black
holes?
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Composite Kepler-Hermite integrator for central
and perturbing forces.

Algorithm:

Direct solution of Kepler’s equation for central force

Standard Hermite integration of perturbing forces

Special treatment for close encounters:

Define neighbour sphere for potentially strong perturbers

Check neighbours for fast approaches and close encounters

Special-purpose GRAPE hardware
used for force calculation and neigh-
bour determination.
Kepler’s equation and approach
checks done on host computer.
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Split up the forces into two parts.

~r′ = ~r + ~̇r∆t +
1
2!

~̈r∆t2 +
1
3!

~r(3)∆t3 + . . .

= ~r + ~̇r∆t +
1
2!

~̈rK∆t2 +
1
3!

~r
(3)
K ∆t3 + . . .

+
1
2!

~̈rP ∆t2 +
1
3!

~r
(3)
P ∆t3 + . . .

cos E =
a− r

ae
M = E − e sinE

M1 = M0 + ω∆t

~r = ~a (cos E − e) +~b sinE
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Results:
Energy conservation
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Ulf Löckmann

Introduction

Integrator
Candidates

Symplectic
Integrators

Standard
Integrators

Composite
Integrators

Idea

Composite
Hermite

Results

Outlook

Results:
Kozai mechanism
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Example:
Inspiral of an IMBH
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More work ahead. . .

Software

Physical collisions/mergers and tidal disruption

Gravitational wave emission

Applications

Stay tuned!
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