

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators Idea

Composite Hermite

Results

Outlook

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

December 02, 2006

Agenda

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators

Idea Composite Hermite

Results

Outlook

Introduction

Integrator Candidates

4 Results

Stellar systems around super-massive black holes provide an interesting field of dynamics.

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators

Composite Hermite

Results

Outlook

The galactic centre presents numerous dynamical mechanisms not fully understood or investigated yet, among them:

- Inspiralling of massive objects
- Creation of hyper-velocity stars
- Formation of S-stars in the central region
- Kozai effect as a source of gravitational radiation

To further analyse the processes in the vicinity of a super-massive black hole, a suitable high precision integrator needs to be chosen.

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators

Composite Hermite

Results

Outlook

Dynamically, stellar systems around SMBHs behave like a planetary system:

Stellar systems around super-massive black holes

• SMBH dominates motion

are a unique environment.

• Stars move along weakly perturbed Keplerian orbits

However, they also resemble star clusters:

- Large number of similar mass stars
- Wide ranges of eccentricities and central distances

Various integration schemes for planetary systems are available.

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators

Standard Integrators

Composite Integrators

Idea Composite Hermite

Results

Outlook

Symplectic integrators (e.g. leapfrog) yield a very good energy conservation for nearly circular orbits.

They have constant (global) timesteps.

Leapfrog-type integrators do not conserve e.g. direction of pericenter.

Mikkola and Tanikawa (1999) found a time-symmetric adaptive timestep mechanism.

$\mathbf{X} | \Omega |$

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard

Composite

Idea

Composite Hermite

Results

Outlook

Weakly perturbed Keplerian orbits can be calculated by solving Kepler's equation.

Kepler's equation solves the two-body motion exactly.

$$H = \frac{p^2}{2m} - \frac{\mu}{r} \qquad \qquad MT = E - e\sin E$$

However, for N-body systems, kinetic energy is no longer the sum of squares of momenta $\frac{p^2}{2m}$ relative to moving center.

- \Rightarrow Introduce Jacobi coordinates for orbit calculation.
- \Rightarrow Transform variables back and forth for perturbations.

Saha and Tremaine (1994) found a mechanism for an MVS integrator with individual, but non-adaptive timesteps.

Symplectic integrators fail for eccentric orbits and do not allow for individual adaptive timesteps.

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators

Standard Integrators

Composite Integrators Idea Composite

Results

Outlook

Non-symplectic integration schemes for large-N systems.

Standard integrators, such as

- Predictor-corrector-schemes (e.g. Hermite)
- Runge-Kutta methods and their variants
- Other high-accuray schemes (e.g. Bulirsch-Stoer)

are mainly used for integration of large systems like star clusters.

They are not symplectic and produce a secular energy error, but they allow for adaptive individual timesteps.

 $N\mbox{-}{\rm body}$ integrators are unable to differentiate dominating massive objects from small perturbers. Timesteps chosen are therefore

- too small for perturbations, or
- too large for orbital motion.

Let's join the two...

High-Precision Integrator for Black Hole Dynamics

Idea: Combination of

- High precision of Keplerian orbital motion and
- $\bullet\,$ High speed and flexibility of N-body integrators.

Problem: Need to fix the center to use cartesian coordinates for Kepler's equation.

Assumption: Perturbations of large number of statistically evenly distributed low-mass stars will cancel each other out, so consider super-massive black hole as fixed.

Fixed center assumption invalid for major sources of gravitational waves, e.g. inspiralling intermediate-mass black holes?

Integrators Idea

Composite Hermite

Results

Composite Kepler-Hermite integrator for central and perturbing forces.

High-Precision Integrator for Black Hole Dynamics

 $\Sigma \Omega$

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators

Idea Composite

Hermite

Results

Outlook

Algorithm:

- Direct solution of Kepler's equation for central force
- $\bullet\,$ Standard Hermite integration of perturbing forces

Special treatment for close encounters:

- Define neighbour sphere for potentially strong perturbers
- Check neighbours for fast approaches and close encounters

Special-purpose GRAPE hardware used for force calculation and neighbour determination.

Kepler's equation and approach checks done on host computer.

Split up the forces into two parts.

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators

Composite Hermite

Results

Outlook

$$\vec{r}' = \vec{r} + \dot{\vec{r}} \Delta t + \frac{1}{2!} \ddot{\vec{r}} \Delta t^2 + \frac{1}{3!} \vec{r}^{(3)} \Delta t^3 + \dots$$

$$= \vec{r} + \dot{\vec{r}} \Delta t + \frac{1}{2!} \ddot{\vec{r}}_K \Delta t^2 + \frac{1}{3!} \vec{r}_K^{(3)} \Delta t^3 + \dots$$

$$+ \frac{1}{2!} \ddot{\vec{r}}_P \Delta t^2 + \frac{1}{3!} \vec{r}_P^{(3)} \Delta t^3 + \dots$$

auxiliary circle

Results: Energy conservation

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates Symplectic Integrators Standard Integrators

Composite Integrators Idea Composite

Results

Results: Kozai mechanism

Ulf Löckmann

Introductior

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators Idea

Hermite Results

Example: Inspiral of an IMBH

Ulf Löckmann

Introduction

Integrator Candidates

Integrators Standard Integrators

Composite Integrators Idea Composite

Results

More work ahead...

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators

Composite Hermite

Results

Outlook

Software

- Physical collisions/mergers and tidal disruption
- Gravitational wave emission

Applications

• Stay tuned!

References

High-Precision Integrator for Black Hole Dynamics

Ulf Löckmann

Introduction

Integrator Candidates

Symplectic Integrators Standard Integrators

Composite Integrators Idea

Composite Hermite

Results

- E. B. Ford, B. Kozinsky, & F. A. Rasio: ApJ 535, 585 (2000)
- Y. Kozai: AJ **67**, 591 (1962)
 - 🔋 S. Mikkola & K. Tanikawa: CeMDA **74**, 287 (1999)
 - H. C. Plummer: *An Introductory Treatise on Dynamical Astronomy*, (Cambridge University Press, Cambridge 1918)
 - P. Saha & S. Tremaine: AJ **108**, 199 (1994)