Monte Carlo Modelling of Globular Clusters

Douglas Heggie University of Edinburgh *d.c.heggie@ed.ac.uk*

Collaboration with Mirek Giersz (Warsaw)

The globular cluster M4

2.2kpc

63 000M_o

Distance from sun Mass

Core radius0.53 pcHalf-mass radius2.3 pcTidal radius21 pcRelaxation time (Rh)660 Myr

Why model globular clusters?

Inferring the mass from surface brightness profile, radial velocities, proper motions, mass functions. Can weigh "dark components": white dwarfs,

Inferring the global mass function from local mass functions: is this the same for all clusters?

- Inferring the primordial mass function from local, present-day mass functions: correct for preferential escape of low-mass stars Inferring pimordial parameters of the binaries from present-day abundance and period distribution: primordial abundance, period distribution, etc
- Measuring cluster distances by comparison of radial velocities and proper motions: correct for rotation, different observational fields, different observed components,

Determine the effect of dynamics on spectral energy distribution

Modelling globular clusters

1. Static models:

Holi

- Plummer's model (Plummer 1911)
- King's model (King 1966, Peterson & King 1975)
- Anisotropic models (King; Michie 1963)
- Multi-mass models (Gunn & Griffin 1979; Meylan & Mayor et al; Pryor et al)
- Non-parametric models (Gebhardt & Fischer 1995)
- Schwarzschild's method (van de Ven et al 2006)
- Jeans' equations (ref:...)

This list is by no means exhaustive

These methods can be used to solve some problems but not all

Modelling globular clusters

2. Dynamic Evolutionary Models

Holi

- Gas/fluid models (Angeletti & Giannone 1980 [M3])
- Fokker-Planck models (Cohn and co-workers 1997 [M15], 1992 [N6624]; Drukier 1993, 1995 [N6397]; Phinney 1993 [M15])
- Monte Carlo model (Giersz & H 2003 [ω Cen])
- N-body model (? 2015 [?])

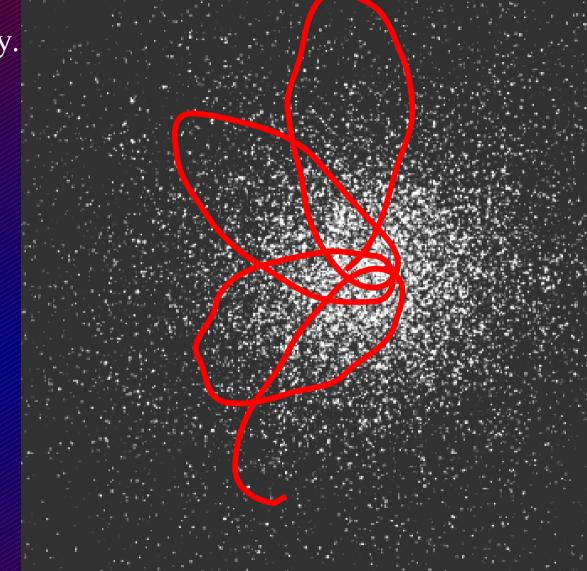
Note: N-body modelling of open clusters has just become feasible (see Hurley et al 2005 for M67; present-day mass $\sim 2000M_{\odot}$; initial mass 19 000 M_{\odot} ; 50% binaries; took 1 month.)

Recent work with the Warsaw Monte Carlo code

Background (papers by M. Giersz)

1998, MNRAS, 298, 1239 Monte Carlo simulations of star clusters - I. First Results
2001, MNRAS, 324, 218 Monte Carlo simulations of star clusters - II. Tidally limited, multimass systems with stellar evolution
2006, MNRAS, 371, 484: Monte Carlo simulations of star clusters - III. A million-body star cluster

The code incorporates many refinements invented by J.S. Stodołkiewicz (1982-6), which was in turn based on the method of Hénon (1971-5)


Monte Carlo code: the basic idea

Assume spherical symmetry.

HoLi

Orbit of star characterised by energy, E, and angular momentum, J.

The code repeatedly alters E, J to mimic the effects of gravitational encounters, using theory of relaxation.

The Monte Carlo code: additional dynamical processes

1) Galactic tidal field: treated as a spherically symmetric cut-off

- 2) Binaries: Treated by reaction cross sections
- Binary-single interactions: Spitzer 1987
- Binary-binary interactions: based on Mikkola 1983, 1984

Notes:

- There are significant differences between a tidal field and a tidal cutoff
- No triples, and so we cannot handle hierarchical triples
- Do not include physical collisions taking place during 3- and 4-body interactions
- Cross sections are thought to result in excessive binary activity (Fregeau)

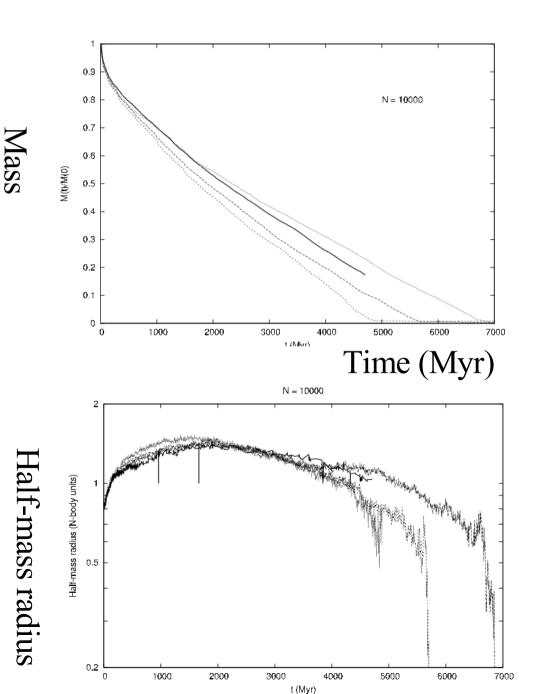
HoLi Monte Carlo code: developments in 2006

Addition of stellar evolution of binary and single stars

- Single stars: Hurley, JR, Pols, O, Tout, CA, "Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity", 2000, MNRAS, 315, 543
- Binary stars: Hurley, JR, Tout, CA, Pols, O, "Evolution of binary stars and the effect of tides on binary populations", 2002, MNRAS, 329, 897

Implemented via the *McScatter* interface: Heggie, DC, Portegies Zwart, S, Hurley, JR, 2006, "McScatter: A simple

three-body scattering package with stellar evolution", NewA, 12, 20


(Also interfaces to stellar evolution package SeBa in starlab, but this is only for solar metallicity.)

Monte Carlo code: calibration

Time unit depends on relaxation time $t_r = \frac{0.065 v^3}{G^2 m^2 n \ln(\gamma N)}$

 γ not well known for unequal masses.

Calibration against N-body model suggests $\gamma \approx 0.005-0.01$ cf. Hénon 1975

Monte Carlo: comparison with N-body model of M67

Source: Hurley, JR, Pols, OR, Aarseth, SJ, Tout, CA, 2005, "A complete N-body model of the old open cluster M67", MNRAS, 363, 293

Initial model:

Number of single stars	12000
Number of binaries	12000
IMF	KTG
Initial tidal radius	32.2 pc
Initial total mass	$19~340~\mathrm{M}_{\odot}$

Monte Carlo: comparison with M67

Data at 4Gyr	
	N-body
M/M _o	2037
Binary frac	60%
Half-mass rad	3.8 pc
Run time	1 month

Monte Carlo 1974 48% 4.3 pc 68 min

Remark:

HoLi

• Low binary fraction because of excessive binary activity through use of cross sections?

The globular cluster M4

Distance from sun Mass

Core radius Half-mass radius Tidal radius Relaxation time (R_h)

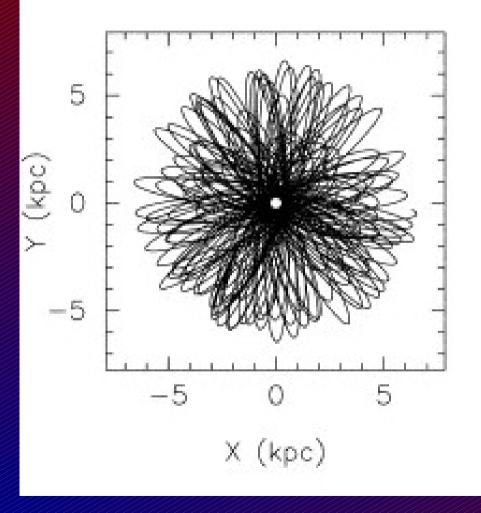
2.2kpc 63 000M_o 0.53 pc 2.3 pc 21 pc 660 Myr

Preliminary Monte Carlo model of M4

Initial mass: Initial # singles: Initial # binaries: Tidal radius: IMF etc as M67 Run time $\sim 1 \text{ day}$

 ~ 1 week

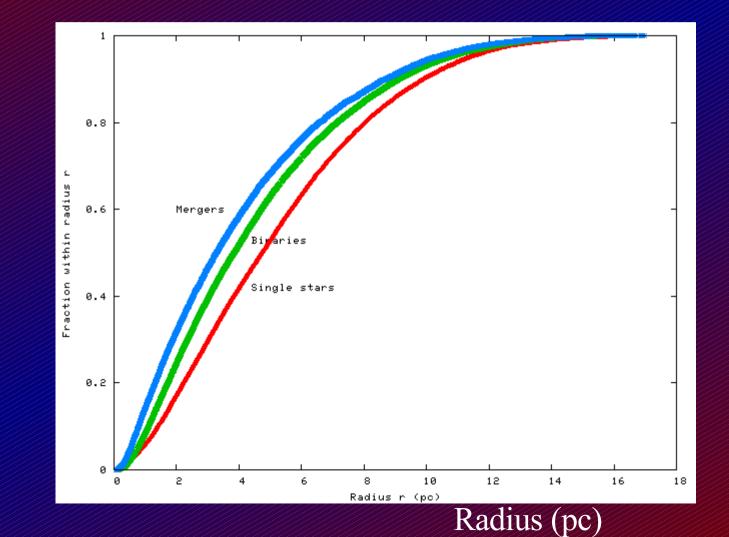
Values at 12 Gyr


Holi

	This work	Observation*
Total mass	$70.810 M_{\odot}$ 49 000 M	68 000M _o
Tidal radius	51 pc 17 pc	21 pc
Half-mass radius	12.4 pc 4.0 pc	2.3 pc
Core radius	4 pc 0.32 pc	0.53 pc

*compilation by Kristin Warnick

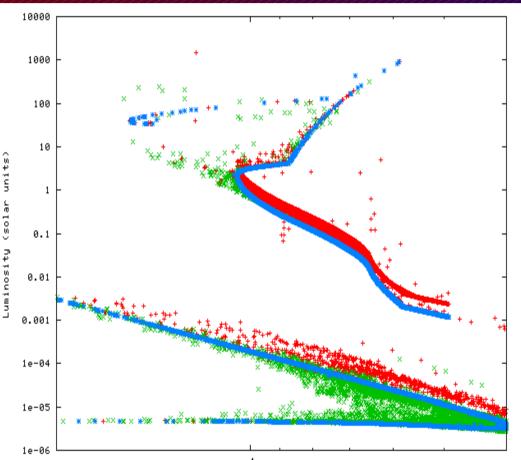
A galactic orbit for M4


NGC 6121

From Dinescu, DI, Girard, TM, van Altena, WF. 1999, "Space Velocities of Globular Clusters. III. Cluster Orbits and Halo Substructure", AJ, 117, 1792

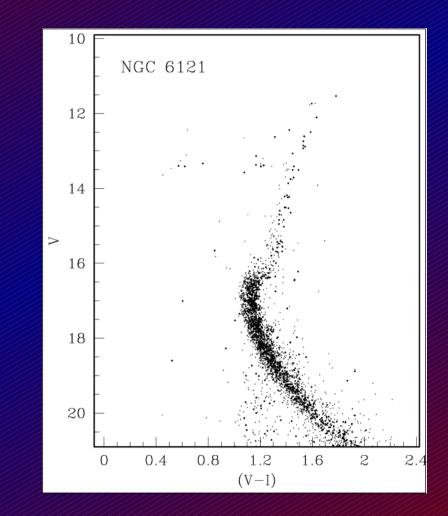
HoLi Results from the preliminary model

Mass segregation of binaries (green) compared to singles (red) and mergers (blue)



Mass fraction (<r)

Results from the preliminary model. II


"Colour-magnitude" diagram

HoLi

Effective temperature (solar units)

red: binaries; blue: single stars; green: mergers

From Rosenberg, A, Piotto, G, Saviane, I, Aparicio, A. 2000, "Photometric catalog of nearby globular clusters. I." A&AS, 144, 5

Conclusions

1. Monte Carlo models can provide similar results to N-body models, with similar physics (binaries, stellar evolution, etc.), except for

- Use of a tidal cutoff
- Use of static tide (curable)
- Rotation
- Use of cross sections for triple/quad interactions (curable)
- Neglect of triples (?curable)

2. Monte Carlo models are feasible in reasonable time for globular clusters, which are too large for N-body models. Yield predictions for mass segregation, distributions of binary parameters, The only comparable method is the hybrid code of Giersz & Spurzem (*"A stochastic Monte Carlo approach to modelling real star cluster evolution – III", 2003, MNRAS, 343, 781,* and references therein)

Future work

1. General repairs

2. A collapsed core cluster: NGC 6624

3. Replace cross sections by directly integrated binary-single and binary-binary encounters (spring 2007)

And finally, a word from my collaborator.....

"Dear Douglas, Thank you very much for sending me the pdf file with your talk I am a little surprised about the results for M67 and particularly for M4. They look very promising...... Mirek"