
YOSHIHIDE KOZAI'S TRIP TO THE GALACTIC CENTRE

Jaroslav Haas¹, Ladislav Šubr^{2,1}

 1 Astronomical Institute of the Charles University, Prague 2 Argelander Institute for Astronomy, Bonn

A beautiful place to visit . . .

Central parsec

- Sgr A*
 - ullet supermassive black hole with mass $pprox 3.5 imes 10^6 M_{\odot}$
- S-stars (Ghez et al. 2003, 2005, Genzel et al. 2003)
 - young stars less than 1'' off Sgr $A^* \Rightarrow$ origin?
- Discs (Levin & Beloborodov 2003, Genzel et al. 2003, Paumard et al. 2006)
 - two well defined, almost perpendicular structures
 - about 50 young stars observed only 1''-13'' off Sgr A*
 - WR-stars, LBV, approximately 6 Myr old
 - origin: in situ or infall?
- Spherical cluster (Genzel et al. 2003)
 - old stars with density $\rho\left(r\right) \sim r^{-1.4}$

IRS 13E

- Stellar concentration in the counter-clockwise disc 3.5" off Sgr A*
 - at least 12 bright stars
 - ullet total mass $\sim 10^3\,M_\odot$ (Paumard et al. 2006)
- Mailard et al. (2004): total mass at least $10^3 M_{\odot}$, to survive tidal forces of Sgr A* \Rightarrow intermediate mass black hole?
- Schödel et al. (2005): total mass at least $10^4\,M_\odot$, to survive rapid movements of the inner stars ($\sim 100~{\rm km\,s^{-1}}$)
- Nayakshin et al. (2006): how massive discs would have a destructive influence on each other?
- Haas & Šubr (2006): how massive IRS 13E (\approx counter-clockwise disc) would have a destructive influence on the clockwise disc?

Model of the system

Dominant Sgr A*: Newtonian central body

$$\phi_{\bullet}\left(r\right) = -\mathcal{G}\frac{M_{\bullet}}{r}$$

- Perturbations:
 - IRS 13E: "averaging" technique → homogenous ring

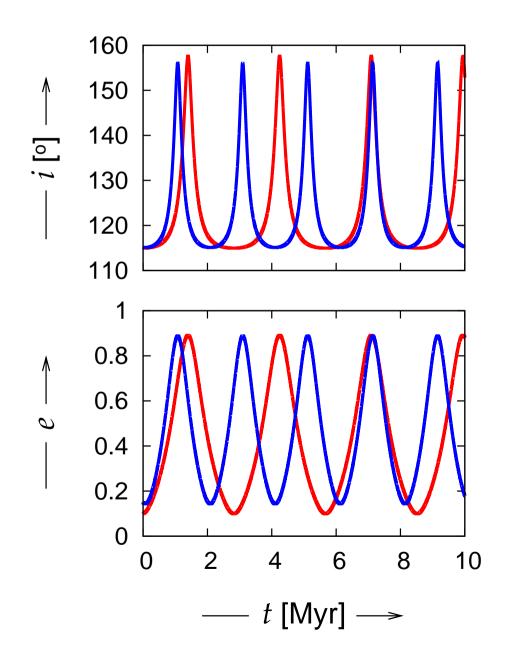
$$\phi_{\rm r}\left(R,z\right) = -2\mathcal{G}\lambda\sqrt{\frac{R_{\rm r}}{R}}kK\left(k\right)$$

spherical cluster → Poisson equation:

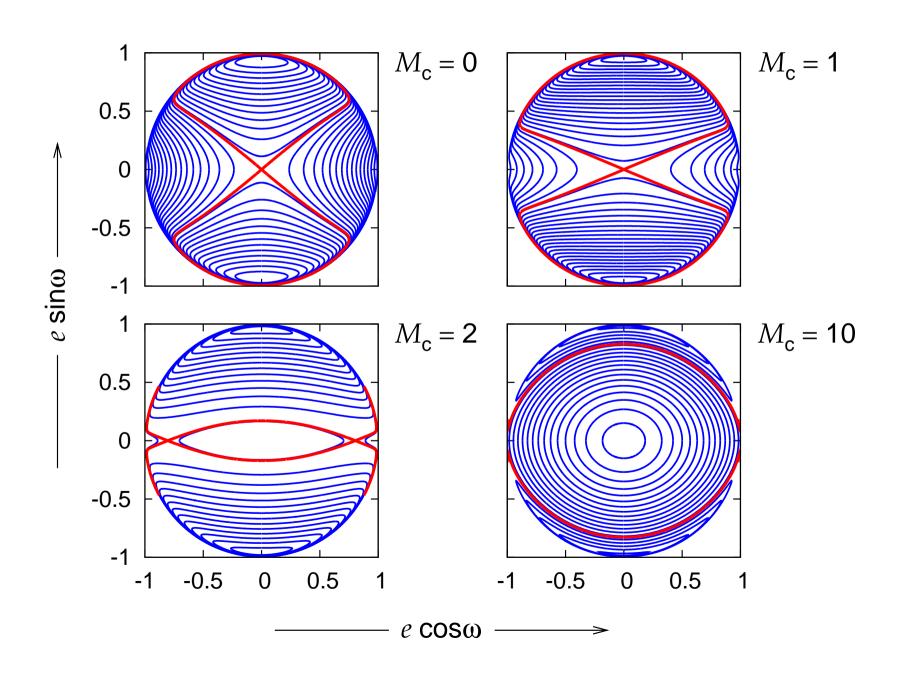
$$\rho(r) = \rho_0 \left(\frac{r}{r_0}\right)^{-\alpha} \Rightarrow \phi_c(r) = \mathcal{G}\frac{4\pi\rho_0 r_0^{\alpha}}{(2-\alpha)(3-\alpha)} r^{2-\alpha}$$

• Stars in the clockwise disc: test particles

System parameters and integrals of motion


- Which values of the system parameters would lead to destructive oscillations of inclination of stellar orbits in the clockwise disc?
- Many parameters . . .
 - initial orbital elements: a, e, i, ω , Ω
 - ullet mass of the ring $M_{
 m r}$ and spherical cluster $M_{
 m c}$
- ullet Axial symetry: arbitrary initial Ω
- ullet "Averaging" technique: a, c_1 and $ar{\phi}_{
 m perturbation}$ are integrals of motion

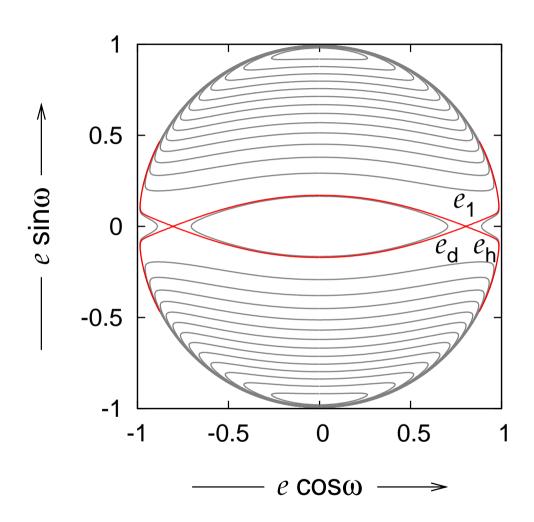
$$c_1 = \sqrt{1 - e^2} \cos i$$


- $\bar{\phi}_{
 m perturbation}$: evolutionary diagrams
- ullet Remaining parameters to go through: a, c_1 , $M_{
 m r}$, $M_{
 m c}$

Some Kozai oscillations

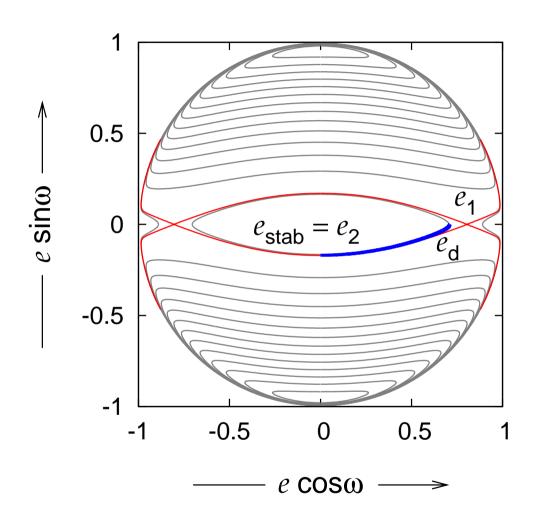
```
M_{
m r} = 10^4 \, M_{\odot}
M_{\rm c} = 10^3 \, M_{\odot}
a = 0.047 \text{ pc}
i = 115^{\circ}
e = 0.15
\omega = 105^{\circ}
a = 0.042 \text{ pc}
i = 115^{\circ}
e = 0.10
\omega = 85^{\circ}
```


Some evolutionary diagrams

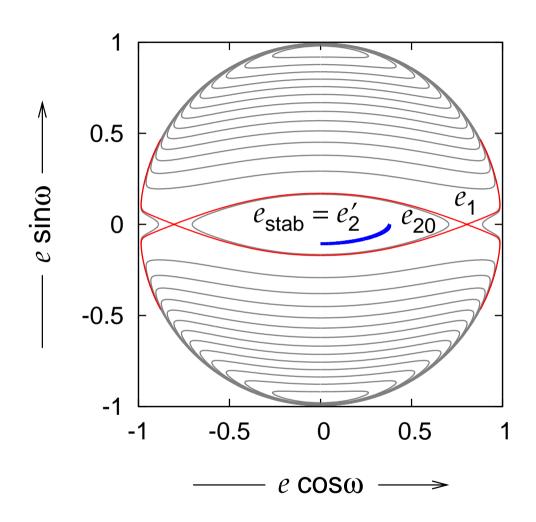

Clockwise disc stability criteria

- Amplitude of the oscillations
 - too small ($\lesssim 20^{\circ}$) \Rightarrow stability
 - possible only in the inner rotational region \rightarrow initial eccentricity e_{stab} , which guarantees such oscillations
- Period of the oscillations
 - too long (\gtrsim 6 Myr) \Rightarrow stability
 - ullet the fastest oscillations in the librational region ightarrow period $P_{
 m lib}$
- Key problem: find both $e_{\rm stab}$ and $P_{\rm lib}$ for all possible values of a, c_1 , $M_{\rm r}$ and $M_{\rm c}$

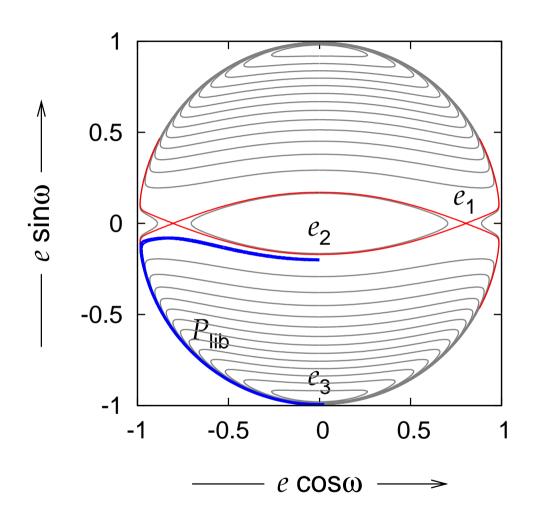
Algorithm – looking for e_1


- $e_1 \equiv$ eccentricity of cross points on separatrix
- Interval halving:

$$e_{\rm d} < e_1 < e_{\rm h}$$


Algorithm – looking for e_{stab}

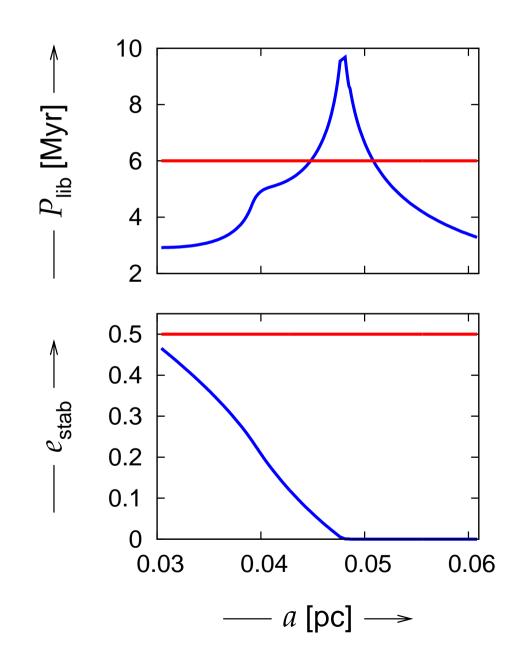
- Circular orbit referential
- Destruction of the disc: $\min i < i_{\text{destr}} \equiv i_{\text{circ}} 20^{\circ}$
- If $e_1 < e_{20} \Rightarrow e_{\mathrm{stab}} = e_2$, $e_{20}^2 \equiv 1 \left(c_1/\cos i_{\mathrm{destr}}\right)^2$, $e_2 \equiv \text{minimal eccentricity on separatrix } (\approx \text{evolutionary track starting with } e_{\mathrm{d}})$
 - whole inner rotational region stable


Algorithm – looking for e_{stab}

- If $e_1 > e_{20} \Rightarrow e_{\mathrm{stab}} = e_2'$, $e_2' \equiv \text{minimal eccentricity}$ on evolutionary track starting with e_{20}
 - only part of the inner rotational region stable

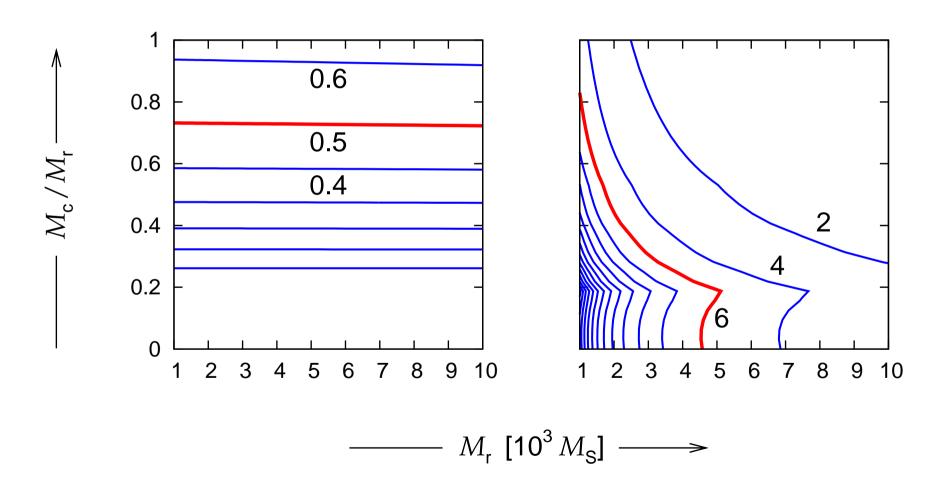
Algorithm – looking for $P_{ m lib}$

- Maximal oscillations on separatrix (\approx evolutionary track starting with $e_2 + \delta$)
- $e_3 \equiv \text{maximal eccentricity}$ on separatrix


Global stability

• Global criteria:

$$P_{
m lib}\left(a
ight) > 6 \
m Myr$$
 $e_{
m stab}\left(a
ight) > 0.5$


- At least one fulfilled $\forall a$ \Rightarrow whole system stable
- An example of unstable configuration:

$$M_{
m r} = 10^4 \, M_{\odot}$$
 $M_{
m c} = 2 \times 10^3 \, M_{\odot}$
 $c_1 = 0.2$

Stability as a function of masses

• Isocontours of $\min_{\forall a} e_{\mathrm{stab}}$ and $\min_{\forall a} P_{\mathrm{lib}}$ for $c_1 = 0.02$

Results – two stability regions

- $M_{
 m c}/M_{
 m r}\lesssim$ 0.2 and $M_{
 m r}\lesssim$ 4.5imes10 $^3\,M_{\odot}$
 - too slow oscillations
 - really possible only for small masses of the spherical cluster
 - compatible with Nayakshin et al. (2006): $M_{\rm r} \lesssim 5.5 \times 10^3\,M_{\odot}$ \Rightarrow Yoshihide Kozai in the Galactic Centre!
- $M_{\rm c}/M_{\rm r} \gtrsim 0.75$
 - a new region
 - too small oscillations
 - with the observed stellar density in the spherical cluster is the system stable for $M_{\rm r} \lesssim 6 \times 10^4\,M_{\odot}!!$
 - ⇒ very stabilizing influence

Conclusions

- Used test particle method is very good
 - compatible results with N-body models (Nayakshin et al. 2006)
 - possible inclusion of more system parameters
- ullet Presence of a star cluster in IRS 13E with total mass of order of magnitude $10^3\,M_\odot$ from the point of view of its influence on observed configuration can not be excluded
- No observational evidence (proper motion of Sgr A*, accretion) for black hole with mass $\gtrsim 10^4\,M_\odot$ in the centre of IRS 13E exists
- Inside out?
 - the same method
 - evaluating influence of the clockwise disc on an orbiting star cluster
 - ⇒ counter-clockwise disc, IRS 13E and "diagonal feature"?