Stellar collisions in young star clusters

Evghenii Gaburov

Simon Portegies Zwart, Alessia Gualandris Astronomical Institute & Section Computational Science University of Amsterdam

Young star clusters

few Myr old Mass 10⁴⁻⁵ M_{sun} Density 10⁵⁻⁶ M_{sun}/pc³ Arches cluster

Quintuplet cluster

Presence of massive stars Massive binaries

Stellar collisions

Pistol star

Massive blue stragglers Runaway collisions Formation of an IMBH

A route towards a collision

Young dense star cluster Mass spectrum

Mass segregation Core enhanced with massive stars

The first collision

Initial conditions Configuration Masses and ages of colliding stars Relative velocity Impact parameter Structure and evolution

Studying the first collision

Tools

N-body simulations Hydrodynamical simulations Stellar evolution

N-body simulations

N = 24576 stars King model $W_0 = 9$ No primordial binaries Mass function, 0.1 - 100 M_{sun} (Kroupa`01) Range of half-mass radii (0.05 - 0.75 pc) Stellar evolution

Time of the collision

3× \times W9R05 Expected: **W9R10** \triangle $t_{coll} \sim 100 (R_{cl}/pc)$ 001 **W9R25** [n-body]*** W9R50 W9R75** Simulations: 10 t decay Reg. 1: $t_{coll} \sim t_{decay}$ Reg. 2: $t_{coll} \sim const$ Reg. 3: binary ejection ... 100 10 $t_{coll} [n-body]$

Ejection of massive binaries

When $M_{cl} > 10^4 M_{sun}$ massive binaries are ejected

Collision is delayed

Mass function in the core

The core is enhanced with massive stars

 $t_{\rm df} \propto \frac{1}{m}$

Core mass function flattens

 $\mathcal{N}_{\mathbf{c}}(m) \propto \\ \begin{cases} \mathcal{N}_{0}(m), & m < 2\langle m_{0} \rangle, \\ m \mathcal{N}_{0}(m), & \text{otherwise.} \end{cases}$

Colliding stars : primary

Colliding stars : bullet

Scenario:

Mass segregation Enhanced core mass function Binary formation Bullet hits the primary

Collisions with binary

$V_{rel} > V_{esc}$ energetic or hyperbolic collisions

$V_{rel} < V_{esc}$ elliptic collisions

Collisions : relative velocity

Conclusions

A cluster may experience at least one collision Occur between a binary and a single star Between massive stars Are energetic

Future work

Hydrodynamical simulations Mass loss Structure of a collision product

Evolution of the product Lifetime of the collision product Observational properties

Feedback to N-body simulations

Collisions : impact parameter

Collisions are both energetic and grazing

Binary formation

Binaries are formed by 3-body encounters

Location of the collision

Time of the collision

