Individual Orbits in Large N Body Simulations

Does chaotic behaviour increase/decrease with time?

$\mathrm{N}=1000$
 particles

Total
Integration
Time:
QuickTime ${ }^{\text {TM }}$ and a
GIF decompressor are needed to see this picture.

512 N-body
time units
$t_{\text {rel }} \approx 37$
Equal mass Plummer sphere: $\rho(\mathbf{r}, 0)=3 / 4 \pi \mathrm{MR}^{-3}\left[1+(\mathrm{r} / \mathrm{R})^{2}\right]^{-5 / 2}$
Goal: We propose to track each stellar orbit individually during the simulation and to give an estimate of its chaoticity for each instant t.

Question: Initial conditions being provided, at what time of the integration do we encounter a maximum/minimum of irregular orbits?

Overview

- Scope of the Analysis
- Method: How to analyse a given Nbody system?
- The Method at Work: From small N systems to large N -body simulations
- Conclusion and Outlook

Scope of the Analysis

- Definitions and Assumptions:
- Sensitivity to Initial Conditions; Any system with N>2 is chaotic (Miller 1964)
- We discuss physical chaos (\neq numerical). Responsible mechanism: 'cumulative effect of the interaction of near neighbours' (Goodman et al 1993). Regular motion vs irregular motion due to close encounters.
- We aim to understand:
- The global orbital content of a given N -body system and its evolution with respect to time, N and the IMF.
- BH formation: How do orbits of massive stars evolve in dense stellar clusters? In how far will a BH influence the orbital behaviour in its immediate surroundings?
- Core Collapse?
- High-velocity X-ray sources

Method: How to analyse an N -body system?

- Two independent methods of time series analysis.
- Method 1: Continuous Wavelet Transform Information Entropy (CWaTIE)
- CWaTIE \propto "State of disorder of the system"
- "The amount of information required per time unit to specify the state of the system"
- CWaT formalism:

$$
T_{\Psi}(a, \tau)=a^{-0.5} \int_{-\infty}^{+\infty} f\left(t_{i}\right) \bar{\Psi}_{m}\left(\frac{t-\tau}{a}\right) d t
$$

where $\Psi_{m}(t)=\frac{d^{n}}{d t^{n}} e^{\frac{-t^{2}}{2}} \quad$ (DOGwavele)
--> CWaTIE: Shannon 1948, Quiroga et al 1999

Method (cont'd)

- Method 2: Second Order Fractal Correlation Dimension (CorrDi).
- Correlation Integral technique (Grassberger and Procaccia 1983)

$$
C(\varepsilon)=1 / P \sum_{i, j=1, j>i}^{p} \Theta\left(\varepsilon-\left|\vec{X}_{i}-\vec{X}_{j}\right|\right) \propto \varepsilon^{\mathrm{D}_{2}}
$$

- Kaplan-Yorke conjecture (Kaplan and Yorke 1979):
$D_{2} \leq D_{K Y}=j+\frac{\sum_{i=1}^{j} \lambda_{i}}{\left|\lambda_{j+1}\right|}$
with $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{\mathrm{k}}$ the ordered spectrum of Lyapounov exponents and j the largest integer such that $\Sigma \lambda_{\mathrm{i}}>0$

The Method at Work: From small N systems to large N -body simulations

- $\mathrm{N}=2$. Unperturbed binary motion.
- $\mathrm{N}=3$. The Pythagorean problem. Planar configuration consisting of 3 particles at rest placed at the vertices of a Pythagorean triangle.
- $\mathrm{N}=7$. The outer asteroid belt object 522 Helga. Stable chaos. (Milani et al 1997)
- Towards large N models...?

Unperturbed Binary

Three-Body Pythagorean Problem

The asteroid 522 Helga (7 bodies)

Conclusion

- We developed a tool for estimating the chaoticity of the orbital content of a given N -body simulation with respect to integration time.
- Small N problems are accurately analyzed. Ultmatively the method shall be applied to large stellar cluster simulations.
- Work still in progress!

Outlook: What we want do to in

Fig. 1 the end...

- $\mathrm{N}=1000$ Equal Mass Plummer Sphere
- Figure 1: Lagrangian radii vs time
- Figure 2: CWaTIE
- Is it too early to conclude?
 Redo the exercise only for bound particles? Or with resolved time steps for central particles?

Fig. 2

Thank You!

