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Abstract

Massive stars, i.e. those stars with masses more than about 10 times that of the Sun, are
important agents for the chemical and dynamical evolution of galaxies. Because of the steep
mass-luminosity relation, massive stars are extremely luminous objects. Therefore, increasingly
massive stars approach their so-called Eddington luminosity, i.e., the maximum luminosity they
can radiate at. It is usually believed that when the Eddington limit is reached, strong outflows
are initiated.

We present state-of-the-art stellar evolutionary models of massive stars, and the detailed
analyses of their interior structures. After investigating model grids with five different initial
chemical compositions, we find that stars reach the Eddington limit in their envelope already at
masses of ∼ 30 Solar masses and above. Furthermore, instead of showing any violent behaviour
upon reaching the Eddington limit, the models develop inflated envelopes, which are extended
low-density regions beneath the surface. This phenomenon is mediated by the opacity and
convective energy transport in the models.

Luminous Blue Variables (LBVs) like S Doradus which show strong variability on a timescale
of a decades have been previously suggested to be connected to the Eddington limit, although
little was known about their evolutionary stage or interior structure. We find that the hot edge
of the S Doradus variability strip coincides with a line beyond which our models show strong
envelope inflation, indicating a possible connection between the two. Furthermore, the inflated
envelope mass in our coolest models reach several Solar masses. They provide the first physical
model which could explain the large mass ejected by LBVs during the so-called Giant Eruptions,
like the one observed for η Carinae in the 19th century.

To further explore the observational consequences of envelope inflation, we follow the
evolution of massive hydrogen-free models through the post main-sequence phase and predict
that when these inflated stars explode as supernovae, it will lead to extended rise times of
the shock breakout signal. Our model closely matches the properties of SN 2008D, the only
observation of a shock breakout from a supernova so far.

We conclude that envelope inflation affects the evolution of massive stars from the zero-age
main-sequence up to the point of explosion, and may invoke observational instabilities in the
envelope that might manifest themselves as pulsations and atmospheric macroturbulence.
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CHAPTER 1

Introduction

“The Universe is not only queerer than we suppose,
but queerer than we can suppose.”

- J. B. S. Haldane, in Possible Worlds and Other Papers (1927).

Man’s fascination with stars began many centuries ago. From ancient times, people across
multiple cultures, from the Aztecs in America to the Hindus in modern day India, have wor-
shipped the Sun, the nearest star and the source of life on earth. Apart from having deep-rooted
cultural significance, astronomy is also one of the oldest scientific disciplines. Sailors, for
example the Polynesians, used the motion of the stars to navigate the mighty seas. Rare as-
tronomical phenomena were also documented, for example an unusual brightening event in
the night sky was recorded by Chinese astronomers as early as 1054, which we today know as
the supernova SN 1054. The remnants of this explosion formed the spectacular Crab nebula,
which is located in the constellation of Taurus and can be observed with the help of a binocular
on a clear day. However, it was not until the advent of the telescope in the 17th century that
astronomy became a modern scientific discipline. Although a rich catalogue of stars was already
available in the 19th century, the questions of how and why stars evolve, remained a mystery.

Unfortunately, the journey of a single star from its birth until its death can not be observed in
isolation, as they hardly change appreciably over a human lifetime of ∼70−90 years. Therefore,
astronomers observe several stars at various stages of their lives. These observations are then
compared with numerical models of stars with an aim to understand the physical phenomena
associated with their evolution. In the early 20th century, Ejnar Hertzsprung and Henry Norris
Russell invented a powerful way to represent the stellar life cycle, that is known today as
the Hertzsprung-Russell diagram (H-R diagram), where stars of different evolutionary stages
occupy distinct regions. The H-R diagram shows the relationship between the brightness of
observed stars which is a measure of the stellar luminosity, and their spectral classifications
which is a measure of the surface temperatures of stars. A representative H-R diagram of the
Solar neighbourhood showing stars in different stages of their evolution is illustrated in Fig. 1.1.
The ordinary hydrogen-burning stars like the Sun are found in a band running from top-left
to bottom-right, called the main-sequence. The majority of the stars are located along the
main-sequence. Giant stars, that are bigger in size compared to the main-sequence ones, form
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Chapter 1 Introduction

Figure 1.1: A Hertzsprung-Russell diagram showing 22 000 stars in the Solar neighbourhood from the
Hipparcos Catalogue along with 1000 low-luminosity stars from the Gliese Catalogue of Nearby Stars.
The luminosity is shown in units of the Solar luminosity. The stars are coloured according to their
surface temperatures, shown at the top X-axis. Figure credit: https://commons.wikimedia.org/
wiki/File:HRDiagram.png

their own clump on the upper-right side of the diagram. Above them lie the bright giants and
supergiants which are much rarer. Near the lower-left corner is the band of white dwarfs – these
are the dead cores of old stars which are very faint, and over billions of years slowly cool down
towards the bottom-right of the diagram.

The theory of modern stellar evolution and nucleosynthesis is relatively new. Until the late
19th century it was believed that the energy released from gravitational contraction makes the
Sun shine, an idea proposed independently by Lord Kelvin and Hermann von Helmholtz. It
was only in the 1920’s that the pioneering work of A. S. Eddington (and later Hans Bethe)
showed that the brightness of the Sun is actually powered by thermonuclear reactions in its

2
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core. Gradually astronomers realised that the elements heavier than helium, be it the calcium
in our bones, or the iron in our blood, or the fluorine in our toothpaste, were all produced by
some star at some point in the cosmic evolution. Furthermore, most of these elements were
produced by massive stars, which are stars heavier than roughly ten times the mass of the Sun.
Recent progress, mainly from observational campaigns, have shown that there are gaping holes
in our understanding of how stars evolve, especially those that are considerably more massive
than the Sun. The internal structure and evolution of stars more massive than about 50 Solar
masses is particularly not well-understood because the physics in those regimes is uncertain
and furthermore, there are few observational constraints. A comprehensive investigation of
the structure and evolution of very massive, luminous stars with the help of state-of-the-art
numerical models is the focus of this thesis.

Evolution of single stars

Stars are self-gravitating balls of hot plasma that are burning hydrogen in their cores for most
(∼90%) of their lifetime, also called the main-sequence phase. The time required by a star to
burn its nuclear fuel at a given luminosity is called the nuclear timescale. The nuclear timescale
for burning hydrogen is a good estimate of the lifetime of a star, and it ranges from ∼106 years
to > 1010 years depending upon the mass of the star – higher the mass, shorter is its lifetime.
The life cycle of a star is an eternal battle between gravity, directed inwards, and internal
pressure gradient, directed outwards. These opposing forces balance each other, a condition
known as hydrostatic equilibrium. The timescale over which a star readjusts itself when its
hydrostatic equilibrium is disturbed is called the dynamical timescale. This readjustment of
the star manifests itself as observable transient phenomena, for example during the collapse
of a star leading to a supernova, or during pulsations. The third relevant timescale for stellar
evolution is the thermal timescale or the Kelvin-Helmholtz timescale, which is the time it takes
for a star to radiate away its gravitational binding energy at a given luminosity. The Kelvin-
Helmholtz timescale is usually a few orders of magnitude shorter than the nuclear timescale
but much longer compared to the dynamical timescale. For example, the nuclear timescale of
the Sun is ∼1010 years whereas its thermal and dynamical timescales are ∼107 years and ∼30
minutes respectively. Most stars, over most of their lifetime, remain in hydrostatic and thermal
equilibrium while changes in their structure and chemical composition occur on their nuclear
timescale.

The primary quantity determining the evolution of a star is its mass. If the initial mass is
known, one might predict the structure of a star in its different evolutionary stages, and even its
final fate (Heger et al. 2003; Langer 2012). Stars with initial masses lower than about 0.8 M�,
even if they formed very early in the Universe, are still burning hydrogen in their cores because
their nuclear timescale is longer than the age of the Universe. After a star runs out of hydrogen
fuel in its core, further evolution in the so-called post main-sequence phase proceeds differently
depending on the mass (Kippenhahn et al. 1990). Stars with initial masses between ∼0.8− 9 M�

ignite helium (and also carbon near the higher mass end, but in a degenerate manner) in their
cores in the post main-sequence phase, and ultimately develop degenerate cores to leave behind
white dwarfs as remnants.
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Chapter 1 Introduction

In this thesis, we will concentrate on the structure and evolution of massive stars, i.e., those
which ignite carbon in a non-degenerate manner after core helium exhaustion. For stars of
Solar chemical composition, the minimum initial mass of massive stars correspond to ∼9 M�

(Poelarends et al. 2008). In the course of their evolution, massive stars appear as blue/red
supergiants, Luminous Blue Variables (Sec. 1.2.2) and Wolf-Rayet stars (Sec. 1.2.3), depending
on their mass and mass-loss rates (Sec. 1.1.1). Stars with initial masses in a narrow range around
9 M� collapse before core neon ignition, ultimately leading to an electron-capture supernova
(Nomoto 1984; Poelarends et al. 2008). Stars in the mass range ∼10 − 100 M� ignite heavier
elements, i.e., neon, oxygen and silicon, in a hydrostatic manner until an iron core is formed.
Since iron has the highest binding energy per nucleon among all the elements, further burning
does not release energy, instead it requires an energy input. Therefore nuclear burning in the
core stops at this stage. Just before the iron core collapses dynamically, the chemical structure
of the star resembles that of an onion. At the centre is the iron core, surrounded by concentric
shells composed of silicon, neon, oxygen, carbon, helium and hydrogen, respectively. The iron
core collapse is accompanied with a spectacular, luminous explosion called a supernova if the
initial stellar mass is roughly between 10 − 40 M� (Heger et al. 2003; Ugliano et al. 2012). At
the end of the core-collapse a compact object, either a neutron star or a black hole is left behind
as a remnant.

Very massive stars roughly between 100 − 250 M� undergo dynamical instability in their
oxygen cores caused by the production of electron-positron pairs from highly energetic photons.
In other words, a substantial fraction of the photon energy is spent in creating pairs instead of
raising the core temperature. Because of this, the adiabatic index (γ) of the gas (P ∝ ργ; where P
is the pressure and ρ is the density) drops below the dynamical stability limit of 4/3 and the core
starts to collapse, resulting in explosive burning of oxygen. For stars in the range 140 − 250 M�,
the nuclear energy generated in this process is high enough such that it unbinds the whole
star without leaving a remnant, and the thermonuclear explosion is termed a pair-instability
supernova (PISN; Rakavy et al. 1967; El Eid & Langer 1986; Heger & Woosley 2002). However,
if the nuclear energy generated is less than the stellar binding energy (stars in the mass range
∼ 100 − 140 M�) for relatively lighter oxygen cores, only a fraction of the envelope might
be ejected, which is called pulsational pair-instability (Woosley et al. 2007). Stars with even
higher initial masses (& 250 M�) are believed to collapse directly to a black hole after the
pair-instability phase, according to state-of-the-art single star models (Heger et al. 2003).

How massive can a star be is an open question. Initially it was believed that very massive
stars might only form in either metal-free or in very low-metallicity environments (Abel et al.
2002). Although a present-day upper mass limit of ∼150 M� has been suggested (Figer 2005)
for stars in the local universe based on observations in the Arches cluster, recent studies have
challenged this result (Schnurr et al. 2008, 2009; Bestenlehner et al. 2014; Schneider et al. 2014).
In the well-studied R136 star cluster (see Fig. 1.2) at the centre of the Tarantula Nebula in the
Large Magellanic Cloud, the existence of a very massive star (∼260 M�) has been claimed by
Crowther et al. (2010). Furthermore, the discovery of SN 2007bi (Gal-Yam et al. 2009) as a
strong PISN candidate also provides evidence for the existence of very massive stars in the
local universe (Langer et al. 2007). These observations, coupled with recent transient searches
discovering new signatures of massive stars have triggered a renewed interest in their evolution.
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1.1 Massive stars

Figure 1.2: A composite image in ultraviolet, visible, and red light taken by Hubble Space Telescope’s
Wide Field Camera 3, of the R136 star cluster near the center of the Tarantula Nebula in the Large
Magellanic Cloud. This cluster hosts some of the most massive stars discovered in the Local Group.

1.1 Massive stars

Massive stars are relatively rare; this is partly because they are short-lived (106 − 107 years), and
partly because the initial mass function (IMF), i.e., the distribution of initial masses for a stellar
population in a given volume, predicts that the number of stars that are born within a given
mass range decrease rapidly with increasing mass. For example, for every ∼800 stars born with
masses between 1 M� and 2 M�, only one star is born with a mass between 10 − 11 M� within
the same volume of space, according to the IMF proposed by Kroupa (2001).

Although rare, massive stars are important for various areas of astrophysics. Since massive
stars stay hot and luminous for most of their lifetime, they are dominant ionising sources
for the interstellar medium (ISM). In fact, the first massive stars are believed to have played
a pivotal role in the reionization of the Universe (Bromm & Larson 2004). They are also
sometimes referred to as the cosmic engines as they are rich sites of nucleosynthesis, enriching
the ISM with nuclearly processed material, either via strong stellar winds or by exploding as
supernovae. Every massive star that blows up in a supernova injects ∼1051 erg of kinetic energy
and 1− 100 M� of ejecta into the surrounding medium, and this stellar feedback is important for
driving both the chemical and dynamical evolution of galaxies. They are also responsible for
some of the most energetic events in the night-sky which are not completely understood, like
superluminous supernovae and long-duration gamma-ray bursts (GRBs). Furthermore, mergers
of the compact remnants of massive stars produce gravitational waves, and therefore studying
their evolution is essential for gravitational wave astronomy. Indeed, the first detection of a
gravitational wave signal, GW150914, which was made recently by the Laser Interferometer
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Chapter 1 Introduction

Gravitational-Wave Observatory (LIGO), was produced by the merger of two stellar-mass black
holes (Abbott et al. 2016).

In spite of their importance, modelling the evolution of massive stars is quite challenging and
suffers from various uncertainties. There are several physical processes that one must take into
account in the theoretical models to facilitate meaningful comparisons with observations. Some
of these are mass-loss, rotation, internal mixing processes, magnetic fields and the effect of a
binary companion. As it turns out, the treatment of mass-loss and energy transport critically alter
the evolution of massive stars right from the beginning, i.e., even in the main-sequence phase
(Langer 2012). Therefore, massive main-sequence stars offer ideal laboratories to test stellar
models. Efforts in this direction has already been made, for example, the recently concluded
VLT-FLAMES Tarantula Survey (VFTS, Evans et al. 2011) has obtained multi-epoch spectra
of about 1000 massive stars in the 30 Doradus region of the Large Magellanic Cloud and has
derived stellar parameters for many of them. We briefly discuss below the role of mass-loss,
metallicity, opacity and energy transport in the context of massive star evolution.

1.1.1 Mass loss

The evolution of a massive single star is greatly shaped by the mass loss it experiences throughout
its lifetime (Chiosi & Maeder 1986; Smith 2014), either by strong stellar winds or by eruptive
outbursts. Mass-loss has a deterministic influence on the life of a massive star as it affects
the luminosity, lifetime, temperature and angular momentum content of the star. It might also
influence the final fates of massive stars as supernovae, GRBs or pair-instability supernovae,
and the formation of either a neutron star or a black hole.

Higher the mass of a star, stronger is the effect of mass-loss. While the mass-loss rate of
the Sun is only ∼10−14 M� yr−1, for a 50 M� Solar metallicity star, it is ∼10−6 M�. Therefore,
for example, a 100 M� zero-age main-sequence star (ZAMS) with Solar metallicity could end
its life as a ∼ 10 M� star, losing 90% of its initial mass during its lifetime (Woosley et al.
2002). Massive stars primarily lose mass via winds that are driven by radiation pressure acting
on metal lines. Momentum is transferred from the radiation field to the metal ion by line
absorption, which then transfers momentum to its neighbouring ions, thereby driving an outflow
in the form of a wind. Therefore, how strong the stellar wind is depends on the metallicity
(cf. Sec. 1.1.2) of the star – primarily its iron content. Stellar winds become more powerful
as the luminosity of a star increases, and a theoretical prescription for computing mass-loss
rates (by line-driving) of hot, massive stars as a function of the stellar parameters has been
developed by Vink et al. (2000, 2001). This prescription is commonly used in stellar evolution
codes (Brott et al. 2011; Ekström et al. 2012) and has been confirmed by observations (Mokiem
et al. 2007). For hydrogen-deficient Wolf-Rayet stars (Sec. 1.2.3), stellar evolution models rely
on empirical mass loss-rates prescribed by various authors, for e.g., Hamann et al. (1995) and
Nugis & Lamers (2000).

Some massive stars also shed mass in short mass-loss episodes, like some Luminous Blue
Variables (Sec. 1.2.2) for which mass-loss rates of up to ∼ 1 M� yr−1 has been inferred. The
physical origin of these events is one of the biggest unsolved problems in stellar evolution
as line-driven wind theory can not account for such high mass-loss rates. Furthermore, from
observations of a certain type of supernova known as Type IIn supernova (Schlegel 1990), it has
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1.1 Massive stars

been inferred that their progenitors suffer from brief outbursts a few years to decades before
core-collapse (Smith 2015). While the exact mechanism that causes such mass-loss is still
unknown, some possibilities have been suggested, including wave-driven mass-loss (Quataert &
Shiode 2012) and pulsational pair instability (Woosley et al. 2007). Furthermore, pulsations can
enhance the mass-loss rate of a star, for example in the classical Cepheid variables.

Mass-loss in massive stars not only manifests itself in the form of stellar winds and outbursts,
but also in the form of mass transfer via Roche-lobe overflow in close binary systems. The
amount of mass ‘lost’, or transferred in this process might be significantly higher than that via
stellar winds.

1.1.2 Metallicity

In astronomy, all elements heavier than helium are referred to as metals, and the fraction of
metals present in a star determines its metallicity (Z). If the collapsing gas cloud contains less
metals, it is easier to form stars with higher masses (Zinnecker & Yorke 2007) as fragmentation
is reduced. Furthermore, the metallicity of a star can have a dominant influence on the evolution
and the final fate of a star (Heger et al. 2003). Firstly, as already hinted in Sec. 1.1.1, stellar
wind mass loss scales as Zα (α ≈ 0.7), implying that low-Z stars have weaker winds, and hence,
lower angular momentum loss, compared to their high-Z counterparts. As a result, a star of a
given initial mass will have a higher mass and angular momentum at the time of explosion, if it
was born in a lower metallicity environment.

Secondly, the CNO-cycle via which hydrogen burns to helium in the stellar core, is less
efficient if the abundance of CNO, or the metallicity, is lower. Therefore the core needs to
contract and reach higher temperatures to attain thermal equilibrium. This leads to a lower
metallicity star being hotter, compact, and more luminous at the ZAMS, compared to a higher
metallicity star of the same mass.

1.1.3 Opacity

The opacity of stellar matter is crucial in determining the mode of energy transport (Sec. 1.1.4)
and consequently the structure of a star. For massive hot stars the opacity in the inner layers
is dominated by Compton scattering, i.e., the inelastic scattering of high energy photons by a
free electrons. However, in the 1990’s the OPAL opacity project (Iglesias et al. 1992; Iglesias
& Rogers 1996) at the Lawrence Livermore National Laboratory discovered an opacity bump,
popularly known as the iron opacity bump at a temperature around 180 000 K. This arose from
improved atomic physics computations that discovered bound-bound transitions of iron-group
elements. The value at the peak of this opacity bump is typically around 1 cm2 g−1, i.e., approx-
imately three times the electron scattering opacity value. This discovery drastically changed
the structure of the outer layers of massive star models (Stothers & Chin 1993, cf. Sec. 1.2.1).
Stability studies of massive hot stars, for example, were greatly affected by this discovery
(Kiriakidis et al. 1992, 1993) and led to the prediction of new instability domains (Pamyatnykh
1999). As we will elaborate in Chaps. 2 and 3, some of the key results of this thesis rely on the
existence of the iron opacity peak.
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Figure 1.3: Interpolated opacities from the OPAL tables (Iglesias & Rogers 1996) for T > 8000 K and
low temperature opacities from Alexander & Ferguson (1994) for T > 8000 K. The solid lines correspond
to a density of 10−8 cm2 g−1 whereas the dashed lines correspond to a density of 10−10 cm2 g−1. The red
and the green lines refer to the chemical composition of the Milky Way and the Small Magellanic Cloud
respectively. The three opacity peaks caused by iron, helium and hydrogen ionisation are indicated.

The radiative opacities of stellar matter for two different values of densities typically en-
countered in the outer layers of massive stars are shown in Fig. 1.3. The three different opacity
peaks around the partial ionisation zones of iron, helium and hydrogen are visible at their
characteristic temperatures. The overall trend is that opacity decreases with a decrease in density
and metallicity, but increases with a decrease in temperature.

1.1.4 Energy transport

The energy generated inside a star via nuclear fusion must be transported through the stellar
interior up to the surface to stay in thermal equilibrium. Inside stars, energy is transported
primarily via two modes: radiation and convection. Radiative transport is usually treated
simply as a diffusive process as the mean free path of photons is many orders of magnitude
shorter than the size of the star. The major uncertainty lies with modelling convective energy
transport. Convection is a mode of heat transfer that involves the bulk motion of the fluid, for
example, in a pot of boiling water on a stove. It is inherently a 3-D phenomenon, and should
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1.1 Massive stars

ideally be modelled with 3-D hydrodynamical simulations. But, unfortunately the current
computing capabilities of even the most powerful supercomputers are not enough to simulate
these processes over a star’s lifetime because of the wide range of length scales and time scales
involved. The nuclear time scale, over which a star evolves, is much longer (∼6 − 16 orders of
magnitude) compared to the dynamical time scale over which the hydrodynamic instabilities are
believed to be at work.

Convection and Mixing Length Theory

Convective instability sets in when the temperature gradient in a stellar layer becomes so high
such that radiation can not transport the flux any more. In stars, convection is triggered either in
regions with a large energy flux, like in the core of massive stars, or, in regions where the opacity
is high, typically in the cooler layers of the star. Therefore, in the outer layers, the iron bump
opacity as well as the opacity bumps in the partial ionisation zones of helium and hydrogen,
makes those layers convectively unstable (cf. Chap. 2), giving rise to sub-surface convection
zones (Cantiello et al. 2009). The presence of the sub-surface convection zones in massive stars
have been predicted to induce observable phenomena at the surface, such as microturbulence
(Cantiello et al. 2009) and macroturbulence (Grassitelli et al. 2015b), and might also trigger
wind clumping (Sundqvist & Owocki 2013).

A simplified model of convective energy transport is considered in most 1-D stellar evolution
codes which is known as the Mixing Length Theory (MLT), first proposed by Prandtl in 1926
and later developed by Böhm-Vitense (1958). In this picture, buoyant blobs of gas are assumed
to move up a certain distance called the mixing length, before losing their identity and depositing
their energy to the surrounding medium. The radiative losses encountered by the blobs along
this path is a measure of the efficiency of convection. In the deep interior of a star convection
is very efficient, meaning that it transports bulk of the energy, and the resulting temperature
stratification is very close to the adiabatic one. However, in the outer layers the densities are
several orders of magnitude lower, and the thermal time scale might be comparable to the
dynamical time scale. In such situations that are typical of the outer envelopes of massive stars,
convection becomes inefficient because of high radiative losses encountered by the blobs along
their path. The mixing length is often assumed to be proportional to the pressure scale height and
the proportionality constant αMLT is the only free parameter in the model. The value of αMLT is
usually set by calibrating it to the observed properties of the Sun. However, αMLT is particularly
unconstrained for massive stars, and even the validity of MLT has been questioned in certain
regimes (Arnett et al. 2015; Jiang et al. 2015). In spite of its many simplifying assumptions,
MLT has been remarkably successful in modelling stellar interiors and explaining different
kinds of stellar populations.

Having introduced massive stars and the relevant physical processes, in the next section we
will take a closer look at the physics of very luminous stars when they are near the so-called
Eddington limit.

9



Chapter 1 Introduction

1.2 The Eddington limit

The Eddington limit is usually referred to as the condition when the radiative acceleration (grad)
directed outwards from the star equals the gravitational acceleration (g) acting inwards. The
Eddington factor (Γ) is simply defined as the ratio of these two accelerations, i.e.,

Γ :=
grad

g
=

κL
4πcGM

, (1.1)

where κ is the opacity coefficient, M and L are the stellar mass and luminosity respectively, and
the constants have their usual meaning. The Eddington limit is then the condition Γ = 1, and the
luminosity for which this equality is satisfied is called the Eddington luminosity LEdd . When
electron scattering is considered to be the only opacity source, i.e. κ = κe, it is known as the
classical Eddington limit (Γe = 1). Arthur Stanley Eddington noted in his book (Eddington
1926) that stars must have a luminosity lower than their Eddington luminosity, otherwise the
radiation emitted will blow up the star. Indeed, when a star blows up in a supernova, the
radiation observed is many orders of magnitude greater than its Eddington luminosity. One
might therefore ask the question whether (and how) the Eddington limit is reached for normal
main-sequence massive stars.

If the equation of state of stellar matter is dominated by ideal gas, then one can show that
the luminosity scales as L ∼M3. If this holds true for all M, then Γe = 1 is reached at a mass
of roughly 200 M�, and this defines an upper mass limit for stars. But, for massive stars, the
role of radiation pressure in the equation of state becomes increasingly important. Therefore,
in general, the mass-luminosity relation is given as L ∼Mα where α > 1. This scaling relation
becomes flatter for massive stars because α→ 1 as M → ∞ (Kippenhahn et al. 1990). For the
Sun, it is Γe ≈ 10−5, i.e., far away from the classical Eddington limit. In a 10 M� ZAMS star of
Solar composition, Γe increases by three orders of magnitude to 0.01. But for a 100 M� star,
Γ ' 0.3, which is still fairly away from the Eddington limit. Detailed numerical models show
that the classical Eddington limit is indeed reached by stars, but only at extremely high masses,
M & 105 M� (Kato 1985, 1986).

In the log L − log M plane, the Eddington luminosity LEdd for fixed values of κ correspond
to straight lines with the same slope, but with different intercepts. This has been illustrated in
Fig. 1.4. The ZAMS models for LMC do not encounter the electron-scattering Eddington limit
in the mass range considered here (1 − 500 M�). The slope of the ZAMS however tends to unity
at the highest masses, as discussed above.

One might also compute the Eddington factor locally in the interior of the stellar model
(Langer 1997). In that case when the Rosseland mean opacities are used, the Eddington
luminosity is expressed as,

LEdd =
4πcGM(r)

κ(r)
, (1.2)

where r and M(r) are the radial and the mass co-ordinates respectively and κ(r) is the local
Rosseland mean opacity. When the Eddington luminosity is computed considering a typical iron
bump opacity coefficient of 1 cm2 g−1 (cf. Sec. 1.1.3 ), the ZAMS models reach the Eddington
limit at ∼100 M�. Since the TAMS models are more luminous than their ZAMS counterparts,
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1.2 The Eddington limit

Figure 1.4: Mass-luminosity plot showing the zero-age main-sequence (ZAMS, blue line) and the
terminal-age main-sequence models (TAMS, brown line) computed with LMC metallicity (Brott et al.
2011; Köhler et al. 2015). The red line corresponds to those models that are enriched in helium at
the surface. The models were rotating with an initial equatorial rotational velocity of ∼100 km s−1 at
their surface. The three straight lines denote the Eddington luminosities considering three different
opacity sources: electron scattering opacity κe = 0.34 cm2 g−1 considering Solar hydrogen abundance
and complete ionisation (solid line), iron-bump opacity κFe = 1 cm2 g−1 (dashed line), and hydrogen
recombination opacity κH = 100 cm2 g−1 (dotted line). The blue dots mark the intersections of the ZAMS
with the Fe- and H-bump Eddington luminosity. Figure taken from Langer et al. (2015).
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they are expected to reach the Eddington limit at even lower masses, M & 30 M�. Furthermore,
if one considers the extreme case, i.e. the opacities in the hydrogen recombination zone
(κH = 100 cm2 g−1), the Eddington limit may be reached down to 5 M� in the envelopes of cool
giants. Note that the opacity values assumed here are only approximate, and in the stellar interior
only the luminosity carried by radiation must be considered while computing the Eddington
factor. In detailed stellar models (cf. Chap. 2), the assumed model for convective energy transport
might mediate this process.

The critical mass for reaching the Eddington limit can be further reduced by rotation (Langer
1997), as the centrifugal force directed outwards can have a destabilising effect. If density
inhomogeneities or clumps are present in the stellar envelope, it might also influence the location
of the Eddington limit in Fig. 1.4 (Owocki et al. 2004; Gräfener et al. 2012; Muijres et al. 2011).
Since the Eddington luminosity is dependant on opacity (Eqn. 1.1), it is naturally a function
of metallicity (cf. 1.1.2 and Sec. 1.1.3) and it is therefore expected that higher metallicity
stars will reach the Eddington limit at lower masses. This trend was predicted by Ulmer &
Fitzpatrick (1998) from their stellar atmosphere models. In Chap. 3 we will investigate in detail
the metallicity dependence of the Eddington limit in stellar interiors.

Before the discovery of the iron opacity peak in the OPAL project, it was believed that very
luminous stars might reach the Eddington limit close to their surface. Therefore this problem
was approached from stellar atmosphere calculations. Lamers & Fitzpatrick (1988) introduced
the concept of a “modified Eddington limit”, where apart from the electron-scattering opacity
the effects of metal line opacities were also considered in the model atmospheres. In contrast to
the classical Eddington limit, the modified Eddington limit for a given stellar mass is no longer
a horizontal line in the H-R diagram, because the opacity becomes temperature dependent.
Later, Ulmer & Fitzpatrick (1998) investigated the location of the modified Eddington limit in
the H-R diagram using updated atmosphere models (Fig. 1.5) and they found that the loci of
constant Eddington factors in the H-R diagram show the so-called “Eddington trough” (Lamers
& Noordhoek 1993), i.e., a decrease in the effective temperature range 60 000 − 15 000 K. This
shape has a striking resemblance to the empirical Humphreys-Davidson (H-D) limit (Humphreys
& Davidson 1979, 1994), a line in the upper H-R diagram beyond which no stars are observed.
Furthermore, in Fig. 1.5 the observed upper luminosity limit of stars in the Large Magellanic
Cloud roughly coincides with atmosphere models that have a maximum Eddington factor of
∼0.9. However, note that in these model atmosphere calculations neither the iron opacity bump
nor the physics of convective energy transport was included. It is therefore desirable to approach
the problem from up-to-date stellar interior models to have a better understanding. In the next
section, we will discuss the consequences of sub-surface layers approaching the Eddington limit
in the stellar interior.

1.2.1 Envelope inflation

The radiation-pressure dominated regions in massive stars lead to extended, low-density en-
velopes, also called inflated envelopes (Stothers & Chin 1993; Ishii et al. 1999; Petrovic et al.
2006; Sanyal et al. 2015). This radial extension can increase the radii of stars by up to a factor
of 100 (Sanyal et al. 2015), and is a key to understanding the evolution of very massive stars and
their sub-surface instabilities. Envelope inflation, as we will investigate in Chap. 2, occurs when
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1.2 The Eddington limit

Figure 1.5: The LMC stars located in the upper H-R diagram (Fitzpatrick & Garmany 1990) with
additional O stars from Walborn & Blades (1997). The loci of stellar atmosphere models for representative
values of the maximum Eddington factor (referred to as Ymax) are shown in thick solid and dashed lines.
The location of the ZAMS (thin solid line) is drawn using a grid of stellar models interpolated between
the Schaerer et al. (1993) and the Charbonnel et al. (1993) grids, and is labelled with the stellar masses
(in units of M�). The luminosity at Ymax = 1 was estimated for effective temperatures between
13 000 − 18 000 K, for which stable models could be computed up to Ymax ' 0.98. Figure from Ulmer &
Fitzpatrick (1998).

the local radiative luminosity in the stellar envelope approaches the Eddington luminosity. It is
therefore influenced by the opacity and convective efficiency in the stellar interior (cf. Sec. 1.1.3).
Stothers & Chin (1993) first pointed out that the newly discovered iron opacity bump was
responsible for the development of such envelope structures, and suggested that it might lead to
dynamical instability in the envelopes. The density profiles of a relatively low-mass star and a
very massive star on the ZAMS is shown in Fig. 1.6. While in the 3 M� model the density drops
steeply in the outer layers, the 100 M� model exhibits a pronounced core-halo structure with
an inflated, dilute envelope that occupies ∼ 30% of the stellar radius, but only has a mass of
∼6 × 10−5 M�. Close to the surface the 100 M� model also develops a density inversion (Langer
1997; Sanyal et al. 2015, cf. Chap. 2). In Chap. 3.3 we will show from stellar structure equations
why envelope inflation occurs near the Eddington limit.

The envelope inflation effect has been previously found for hot stars: massive zero-age
main-sequence stars (Ishii et al. 1999) and chemically homogenous, hydrogen-free Wolf-Rayet
stars (Petrovic et al. 2006; Gräfener et al. 2012). The region in the H-R diagram populated by
yellow and red supergiants have not been explored in the context of envelope inflation. Although
Asplund (1998) studied atmospheres of cool stars and found super-Eddington layers and density
inversions, he did not find envelope inflation in his model atmospheres, probably because the
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Figure 1.6: Density profile of a 3 M� and a 100 M� ZAMS model computed with a Solar chemical
composition. The radial co-ordinate r is normalised to the stellar radius R?.

iron opacity peak was not included.
The question of stability naturally arises for these loosely-bound inflated envelopes that are

on the verge of being unstable. Linear stability analyses predict these envelopes suffer from
strange-mode instability with growth times comparable to the dynamical timescale (Gautschy
& Glatzel 1990; Glatzel & Kiriakidis 1993a,b; Glatzel 1994; Saio et al. 1998). Recent efforts
have been made by Jiang et al. (2015) to investigate their stability with three-dimensional (3-D)
hydrodynamic simulations. The key result from this study is that the inflated structure persists
in sophisticated 3-D models, and therefore this effect is not just an artefact of one-dimensional
models.

Having introduced the concept of Eddington limit and envelope inflation, we will discuss
briefly in the next couple of sections two special types of stars: Luminous Blue Variables and
Wolf-Rayet stars, that are directly related to these concepts.

1.2.2 Luminous Blue Variables

Luminous Blue Variables (LBVs; Conti 1984), as the name suggests, are hot, luminous stars
which show irregular variability although the definition is not very clear in the literature (See
Humphreys & Davidson 1994, for a review). A very massive O-type star (≈ 100 M�) is thought
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to evolve through a transitionary LBV phase (104 − 105 years) before losing its hydrogen-rich
envelope and becoming a Wolf-Rayet star (Langer et al. 1994, cf. Sec. 1.2.3). Although their
evolutionary state is a matter of debate, LBVs are generally believed to be post main-sequence
stars based on the chemical composition of the ejected material around them, and have even
been suggested to be supernova progenitors (Kotak & Vink 2006; Pastorello et al. 2007; Groh
et al. 2013).

Because of their high luminosity and unstable nature, one might expect that LBVs are
related to the Eddington limit, and indeed this connection was shown from stellar atmosphere
calculations (Lamers 1997; Ulmer & Fitzpatrick 1998). It is generally believed that a massive
star with a hydrogen-rich envelope evolves towards cooler surface temperatures at a roughly
constant luminosity, but undergoes heavy mass-loss such that its L/M ratio increases. This
brings its atmosphere closer to the modified Eddington limit (see Fig. 1.5), and the star appears
as an LBV. At this stage, the atmosphere becomes loosely bound such that stronger mass-loss
sets in and the evolution proceeds bluewards thereafter. More massive stars will have a higher
L/M and hence will reach the modified Eddington limit in their atmospheres at higher surface
temperatures. This is believed to be the reason for the absence of Galactic red supergiants above
L '6 × 105 L�, which defines the the H-D limit.

Furthermore, the fact that normal OB supergiants are located in the same region of the H-R
diagram as LBVs but do not show the same kind of variability is also attributed to the fact that
LBVs are closer to the modified Eddington limit (Lamers 1997). However, the effect of envelope
inflation could not have been found from the stellar atmosphere computations because inflation
is triggered in the deeper hydrostatic layers which are outside the computational domain of
stellar atmosphere codes.

Luminous Blue Variables can be broadly divided into two categories – the S Doradus type
variables that are relatively common, and the rare ones that undergo giant eruptions, like
ηCarinae. We briefly describe them below.

S Doradus variables

These LBVs, with S Dor being the prototypical example, undergo horizontal excursions in the
H-R diagram, at a roughly constant bolometric luminosity. In the hot state, they are located
within a narrow strip in the H-R diagram, also called the “S Dor instability strip” (Fig. 1.7).
Their visual brightness varies by roughly 1− 2 mag over a characteristic timescale of a few years
to decades. Most of the LBVs discovered are of the S Dor type, and some of the well-known
ones are shown in Fig. 1.7. Interestingly, all the S Dor-like LBVs have roughly the same surface
temperature at their visual maximum, and appear as supergiants. Apart from the S Dor cycles,
some LBVs like HR Car also show what are called microvariations (Lamers et al. 1998), i.e.,
small photometric variations with amplitudes of 10 − 100 mmag on typical timescales of a few
weeks to months.

Initially it was speculated that the temperature changes during a S Dor cycle were actually
caused by an increase in the mass-loss rate of the star, that makes the wind optically thick and
forms a “pseudo-photosphere” (Davidson 1987). Later, it was shown from stellar atmosphere
models (Leitherer et al. 1989; de Koter et al. 1996) that the mass-loss rates were not strong
enough to form the pseudo-photospheres, and indeed the variability corresponds to physical
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Figure 1.7: Hertzsprung-Russell diagram showing some of the known LBVs and LBV candidates. The
grey bands show the hot and the cool ends of the instability strip. The dotted lines represent the range
in temperatures over which the stars are known to vary. The LBV candidates are those for which no
photometric variability has been confirmed, but show spectroscopic similarity to the bonafide LBVs.
Figure taken from Smith et al. (2004).

changes in the radius of the star. Recently, Smith & Tombleson (2015) have suggested that the
S Dor variables might also be products of binary evolution. Although no convincing theoretical
model for the instability exists, envelope inflation in the outer layers of a massive star have been
speculated to be related to the S Dor variability (Gräfener et al. 2012).

Giant Eruptions

A second class of LBVs undergo eruptive episodes, where several solar masses may be lost in a
short span of a few years to decades. The prototypical example in this class is the spectacular η
Carinae (Fig. 1.8), which lost 10 − 20 M� of material in the ‘Great eruption’ in the 19th century,
spanning ∼ 20 years. Such high mass-loss rates can not be achieved by line-driven winds
(Owocki et al. 2004). They are located very close to the H-D limit (Humphreys & Davidson
1979) on the H-R diagram. However, in the act of an outburst they radiate at many times their
Eddington luminosity and reside beyond the H-D limit. These LBVs are the most unstable
stars known, except perhaps the supernova progenitors. In fact, the energy released in the Giant
Eruption was ∼ 1050 erg, which rivals the energy output of a supernova. Hence, these LBVs
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are also sometimes called supernova imposters. Although such eruptive events are much rarer
compared to the S Dor analogues, Massey et al. (2007) has pointed out that this might be an
observational bias. It is not clear whether LBVs go through multiple eruptive episodes, and
if so, how frequently they recur. However, recent transient searches have been discovering
many extragalactic supernova imposters and many of them are believed to be LBV-like Giant
Eruptions (Smith 2015; Khan et al. 2015).

As far as theoretical models are concerned, not much is known about the structure and the
evolutionary stage of LBVs that undergo Giant Eruption-like episodes. It is beyond doubt that
they are close to the Eddington limit, but what triggers the violent instability and causes the
phenomenon is unclear, and relatively unexplored. A few possibilities have been suggested in
the literature, including ionisation-induced dynamical instability (Stothers & Chin 1993), super-
Eddington winds (Owocki et al. 2004), and mergers of two massive stars (Justham et al. 2014;
Portegies Zwart & van den Heuvel 2016), but none of them are conclusive. A firm understanding
of the LBV phenomenon will be a major step towards understanding the evolution of massive
stars. The relationship between massive main-sequence stars and LBVs has been discussed in
Chapter 2.

1.2.3 Wolf-Rayet stars

Wolf-Rayet (WR) stars, first discovered at the Paris Observatory by astronomers Charles Wolf
and Georges Rayet in the Cygnus constellation, are defined spectroscopically as stars which
show broad emission lines in their spectra, unlike O stars that predominantly show narrow
absorption lines. Based on which emission lines are present in the spectra, they are further
subdivided into WN type, showing strong helium and nitrogen lines, WC type, showing carbon
lines, and WO type, showing oxygen lines. The stellar wind is fast, with terminal velocities up to
≈ 6000 km s−1 (Drew et al. 2004), and dense. It is in this dense, opaque wind where the emission
lines are formed. The wind mass loss rates of WR stars can be as high as ∼10−4 M� yr−1. Figure
1.9 shows a Hubble Space Telescope (HST) image of a typical WR star (WR 124) in our galaxy,
along with the surrounding nebula created by the dense out-flowing matter from the central star.
Since they are highly luminous (103 − 106 L�) and very hot (30 000− 200 000 K), WR stars have
high photoionisation fluxes, and can account for > 20% of the total ionising photons emitted by
young starburst galaxies like NGC 3603 (Drissen et al. 1995; Crowther 2007).

In the framework of single stars, the widely accepted pathway to form WR stars is the so-
called Conti scenario (Conti 1975), first proposed by Peter Conti in 1975, where a massive star
loses its hydrogen-rich envelope via strong stellar winds, thus exposing the ashes of its nuclear
burning. These stars have large convective cores, because of which the nuclear burning products
are mixed throughout this region, and appear at the surface once the hydrogen-rich layers are
lost. In the Milky Way, classical WR stars, i.e., the hydrogen-free ones, are believed to be the
descendants of massive O stars above ∼20 − 25 M�.

In sufficiently low metallicity environments where stellar winds are not as strong, the Conti
scenario is not efficient. But WR features have been detected in low-metallicity stars as well,
for e.g., in the dwarf galaxy I Zw 18(Kehrig et al. 2015), and are difficult to explain with typical
single star models. Models of low metallicity, rapidly rotating massive stars are also predicted
to form WR stars (Maeder 1987; Szécsi et al. 2015; Yoon & Langer 2005). These stars are
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Figure 1.8: Hubble Space Telescope image of the massive binary Eta Carinae, located at a distance of
2300 kpc in the Carina constellation. Photo credit: Jon Morse (University of Colorado), and NASA.

rotating so fast that their interior is homogeneously mixed, and they evolve blue-wards in the
H-R diagram, appearing as WR stars even in the core-hydrogen burning phase. Yet another
pathway to forming WR stars is in close binaries, wherein the primary loses its hydrogen-rich
envelope to the accreting secondary via Roche lobe overflow. In such cases, WR stars of much
lower masses and metallicities can be formed, which would otherwise not be possible in the
single star scenario (Woosley et al. 2010).

The classical Eddington factor has also been identified as they key parameter controlling the
mass-loss rate and the evolution of very massive hydrogen-rich Wolf-Rayet stars (Vink et al.
2011; Gräfener et al. 2011). For Γe & 0.7 the dependence of Ṁ on Γe is very steep, Ṁ ∝ Γ5

e .
Gräfener et al. (2011) suggested that it is not the hydrogen deficiency but the proximity to the
classical Eddington limit that marks the start of the WR phase. A high value of Γe leads to the
development of a strong stellar wind that consequently removes the hydrogen-rich envelope.

Theoretical models of WR stars also reach the Eddington limit in their interior aided by the
iron bump opacity, and develop inflated envelopes that are characteristic of stars with a high
luminosity-to-mass ratio (Petrovic et al. 2006; Gräfener et al. 2012; Grassitelli et al. 2016a). The
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Figure 1.9: Hubble Space Telescope image of Wolf-Rayet star WR 124 surrounded by the nebula M1-67.
The nebula is formed from the matter ejected by the star. Photo credits: Hubble Legacy Archive, NASA,
ESA.
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onset of envelope inflation makes the Galactic helium-ZAMS models bend redwards towards
cooler effective temperatures above log L/L� ∼5.5 (Köhler et al. 2015). Some of these inflated
envelope models are also predicted to be pulsationally unstable (Glatzel et al. 1993; Grassitelli
et al. 2016a), although no such candidate has been clearly identified yet.

WR stars are thought to explode as hydrogen-deficient Type Ib/c supernovae, sometimes
associated with a gamma ray burst. In fact, in the collapsar model for long-duration gamma ray
bursts (Woosley 1993), a rapidly rotating, compact WR star is needed as the progenitor. The
physics of the evolution of WR stars up to their point of explosion (cf. Tramper et al. 2015),
remains an active area of research, and forms the theme for Chapter 4 of this thesis.

1.3 Overview of the thesis

As we have elucidated in this introductory chapter, massive stars play an important role in
the Universe and their evolution is very diverse and complex. In this thesis, we aim to – a)
understand the behaviour of massive stars as they approach the Eddington limit, b) investigate
their observational consequences, c) confront our state-of-the-art models with recent obser-
vations, and d) identify the limitations of our models. For this purpose we have extensively
investigated evolutionary models of both non-rotating and rotating massive stars computed with
a one-dimensional hydrodynamic stellar evolution code called the Binary Evolution Code (BEC).
The details of the code can be found in Heger et al. (2000); Petrovic et al. (2005); Woosley et al.
(2010); Brott et al. (2011); Yoon et al. (2012a); Sanyal et al. (2015).

The Eddington limit and envelope inflation in main-sequence stars

In Chap. 2, we explore the consequences of stellar models reaching the Eddington limit in their
outer layers. For this study we present a grid of LMC metallicity models with initial masses
up to 500 M�. Some of the evolutionary tracks from this model grid are shown in the H-R
diagram in Fig. 1.10. We find that models with M > 40 M� reach the Eddington limit in their
outer layers, and furthermore, many of our models exceed the Eddington limit by factors of
up to seven. Instead of developing a super-Eddington outflow, they develop inflated envelopes
such that the effective temperatures of these models gets lowered by a factor of a few. When the
Eddington limit is exceeded in hydrostatic layers, the gas-pressure gradient is directed inwards,
which leads to an ubiquitous density inversion.

We compare our models with the massive OB stars observed in the VLT-FLAMES Tarantula
Survey, and find a general agreement. We find that some of our inflated models have particular
relevance to the LBVs, as the hot edge of the S Dor variability strip in the H-R diagram (Smith
et al. 2004) coincides with the boundary beyond which our models show strong inflation, and
hence are prone to envelope instabilities. On the other hand, the coolest models in our grid, i.e.
those with initial masses between 60 − 80 M� (Fig. 1.10) contain several Solar masses in their
inflated envelope and are located beyond the H-D limit. These massive envelopes are loosely
bound to the star and are natural candidates for LBVs that undergo Giant Eruptions.

Although we investigated only massive stars, we predict that the Eddington limit is relevant
to other types of stars and astrophysical phenomena, for example, in luminous post-AGB stars,
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Figure 1.10: Evolutionary tracks of massive stars during their core hydrogen burning evolution in the
Hertzsprung-Russell diagram (Köhler et al. 2015). For each selected initial mass (as labelled), tracks
are shown for three different initial surface rotational velocities, vZAMS = 0, 400, 500 km s−1, in black,
blue, and red, respectively. The time difference between two successive dots on each track is 105 yrs.
The ZAMS is drawn as a green dashed line. The end of the tracks corresponds to the terminal age main
sequence. The approximate location of the Humphreys-Davidson limit is indicated by the black dashed
line (Humphreys & Davidson 1994).

X-ray bursts, R Corona Borealis stars and accreting compact objects. In rapidly rotating massive
stars, the latitude dependence of envelope inflation might give rise to the ill-understood B[e]
supergiants, which show a slow and dense equatorial wind and a fast polar wind at the same
time (Zickgraf et al. 1985).

Metallicity dependence of envelope inflation

As mentioned in Sec. 1.1.2, the metallicity, especially the iron content, determines the strength
of the iron bump opacity in the OPAL data (Iglesias & Rogers 1996). Therefore, low-metallicity
massive stars stay more compact and are subject to weaker inflation (Brott et al. 2011; Szécsi
et al. 2015; Sanyal et al. 2016).

Equipped with the results from Chap. 2, we explore the metallicity dependence of the Ed-
dington limit and envelope inflation in Chap. 3. We investigate dense grids of stellar models
computed with five metallicities, from Galactic to metal-free, and map the regions in the H-R
diagram where we predict the existence of inflated envelopes for each metallicity. The ZAMS,
and especially the TAMS bend towards cooler temperatures in the upper H-R diagram as a
consequence of envelope inflation, and the critical mass above which we see this effect is a
function of metallicity. We find that at lower metallicity inflation starts at higher luminosit-
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ies. Furthermore, the loci of the maximum Eddington factor lines in the H-R diagram have
the Eddington trough feature that was also found by Ulmer & Fitzpatrick (1998) from stellar
atmosphere models. We also find that while the inflated envelopes in general contain very little
mass (< 10−2 M�), in the extreme cases it can contain up to ∼100 M� of material which might
again be related to the LBV phenomena.

Shock breakout signals from inflated supernova progenitors

In 2008, using NASA’s Swift X-ray telescope (Soderberg et al. 2008) serendipitously discovered
for the first time, a supernova in the act of explosion. While they were doing follow-up
observations of the supernova SN 2007uy in the galaxy NGC 2770, they spotted an extremely
bright X-ray outburst (see Fig. 1.11), which we now know as SN 2008D. They detected X-ray
photons from the shock front of the collapsing star, when the shock is sufficiently close to the
surface such that photons can leak out and reach the detectors. However, the duration of the
X-ray signal was about 300 s with a rise time of about ∼60 s. SN 2008D was of Type Ib with no
hydrogen or silicon features in its spectrum, and thus its progenitor is believed to be a compact
WR star for which the rise time of the shock breakout is expected to be ∼ 0.5 s, 100 times
shorter than what was observed. There have been models proposed for explaining the long shock
breakout signal of SN 2008D, but they usually invoke exotic scenarios like the optically thick
wind model by Svirski & Nakar (2014a) that assumes a high mass-loss rate of 10−4 M� yr−1 a
few years prior to the explosion.

Until now we have explored envelope inflation in main-sequence stars. In Chap. 4, we
explore the observational consequence of a hydrogen-free supernova progenitor possessing
an inflated envelope. We show for the first time that the rise times of shock breakout signals
from supernovae can be extended significantly if the progenitor has an inflated envelope. Our
Wolf-Rayet star models with R ∼ R� can lead to shock breakout signals that are longer than
∼ 100 sec. Our model explains not only the enigmatic long shock breakout signal observed
in Type Ib SN 2008D, but also the estimated mass and the mass-loss rate of the progenitor.
Further observations of events like SN 2008D might serve as a test for the existence of inflated
envelopes in general.
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1.3 Overview of the thesis

Figure 1.11: Location of SN 2007uy and SN 2008D in visual and UV light (right) and in X-rays (left)
before (top panel) and after (bottom panel) the explosion of SN 2008D. Image credit: NASA Swift team.
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CHAPTER 2

Massive main-sequence stars evolving
at the Eddington limit

D. Sanyal, L. Grassitelli, N. Langer and J. M. Bestenlehner
Astronomy & Astrophysics, 2015, 580, A20

2.1 Introduction

Massive stars are powerful engines and strongly affect the evolution of star-forming galaxies
throughout cosmic time (Bresolin et al. 2008). In particular the most massive stars produce
copious amounts of ionising photons (Doran et al. 2013), emit powerful stellar winds (e.g.
Kudritzki & Puls 2000; Smith 2014) and, in their final explosions, are suspected to produce the
most energetic and spectacular stellar explosions, as pair-instability supernovae (Kozyreva et al.
2014), superluminous supernovae (Gal-Yam et al. 2009), and long-duration gamma-ray bursts
(Larsson et al. 2007; Raskin et al. 2008).

Massive main-sequence stars, which we understand here as those that undergo core hydrogen
burning, have a much higher luminosity than the Sun, as they are known to obey a simple
mass-luminosity relation, L ∼ Mα, with α > 1. However, whereas this relation is very steep
near the solar mass (α ' 5), it is shown in Kippenhahn et al. (1990) that α → 1 for M → ∞.
Indeed, Köhler et al. (2015) find α ' 1.1 for M = 500 M�.

Since the Eddington factor is proportional to L/M, it is debated in the literature whether
main-sequence stars of higher and higher initial mass eventually reach the Eddington limit
(Langer 1997; Crowther et al. 2010; Maeder et al. 2012). The answer is clearly: yes, they do.
Even when only electron scattering is considered as a source of radiative opacity, the Eddington
limit corresponds to a luminosity-to-mass ratio of R := log

(
L

L�
/ M

M�

)
' 4.6 (Langer & Kudritzki

2014) for hot stars with a solar helium abundance. This is extremely close to the R-values
obtained for models of supermassive stars, where this ratio is nearly mass independent (Fuller
et al. 1986; Kato 1986). In fact, Kato (1986) showed that zero-age main-sequence models
computed only with electron scattering opacity reach the Eddington limit at a mass of about
∼ 105 M�.

25



Chapter 2 Massive main-sequence stars evolving at the Eddington limit

Whether supermassive stars exist is an open question. Also the mass limit of ordinary stars
is presently uncertain (Schneider et al. 2014), however, there is ample evidence for stars with
initial masses well above 100 M� in the local Universe. A number of close binary stars have
been found with component initial masses above 100 M� (Schnurr et al. 2008, 2009; Taylor
et al. 2011; Sana et al. 2013). Crowther et al. (2010) proposed initial masses of up to 300 M�

for several stars in the LMC, based on their luminosities. Bestenlehner et al. (2014) identified
more than a dozen stars more massive than 100 M� from the sample of ∼ 1000 OB stars near
30 Doradus, which are analysed in the frame of VLT-Flames Tarantula Survey (Evans et al.
2011). The hydrogen-rich stars among them have measured R-values of up to 4.3. In hot stars
with finite metallicity, the ion opacities can easily exceed the electron scattering opacity (Iglesias
& Rogers 1996). It is thus to be expected that the true Eddington limit, which accounts for all
opacity sources, is located at R-values of 4.3 or below. This implies that these stars should in
fact also have reached, or exceeded their Eddington limit.

In this paper, we explore the question of massive main-sequence stars reaching, or exceeding
the Eddington limit from the theoretical side. We show by means of detailed stellar models, as
described in Section 2.2, that even all stars more massive than ∼ 40 M� are found to reach the
Eddington limit. In Section 2.3, we demonstrate the need to properly define a local Eddington
factor in the stellar interior, which we then use in Section 2.4 to show that when it exceeds
the critical value of one, the stellar envelope becomes inflated. We show further in Section 2.5
and 2.6 that super-Eddington conditions can lead to density inversions and induce convection.
We compare our results to previous studies in Section 2.7, and relate them to observations in
Section 2.8, before summarising our conclusions in Section 2.9.

2.2 Stellar models

The grids of the stellar models we used have been published in Brott et al. (2011) and Köhler et al.
(2015). We consider only the core hydrogen burning models computed with LMC metallicity.
Each stellar evolution sequence computed by Brott et al. (2011) and Köhler et al. (2015) consists
of typically 2000 individual stellar models. However, the full amount of data defining a stellar
model is only stored for a few dozen time points per sequence, in non-regular intervals. We
analyse those stored models. This scheme has the disadvantage that the density of models in the
investigated parameter space is not always as high as it should be ideally. Still, as shown below,
it allows for a thorough sampling of the considered parameter space, and it is fully consistent
with the results already published.

The stellar models were computed with a state-of-the-art, one-dimensional hydrodynamic
implicit Lagrangian code (BEC), which incorporates latest input physics (for details, see Braun
1997; Yoon et al. 2006; Brott et al. 2011; Köhler et al. 2015, and references therein). Convection
was treated as in the standard non-adiabatic mixing length approach (Böhm-Vitense 1958;
Kippenhahn et al. 1990) and a mixing length parameter of α = l/Hp = 1.5 (Langer 1991) was
adopted, with l and Hp being the mixing length and the pressure scale height, respectively. This
value of the mixing length parameter leads to a good representation of the Sun (Suijs et al.
2008), whereas its calibration to multi-dimensional hydrodynamic models shows that it tends to
decrease towards lower gravities (Trampedach et al. 2014; Magic et al. 2015). The convective
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Figure 2.1: The different Eddington factors inside a 285 M�, non-rotating, main-sequence model with
log L/L� = 6.8 and Teff = 46600 K (cf. Fig. 2.9 and Sec. 2.10.1). The shaded areas mark the different
convection zones and the hatched area marks the region with a density inversion. The radius of the
un-inflated core is denoted as rcore (defined in Sect. 2.4). The black dashed horizontal line is drawn at
Γ = 1 for convenience.

velocities were limited to the local value of the adiabatic sound speed. The contribution of
turbulent pressure (de Jager 1984) was neglected, since it is not expected to be important in
determining the stellar hydrostatic structure (Stothers 2003). Indeed, our recent study which
includes turbulent pressure (Grassitelli et al. in preparation) shows that e.g. for an 80 M�

evolutionary sequence, the stellar radius is increased over that of models without turbulent
pressure by at most a few per cent at any time during its main-sequence evolution. Rotational
mixing of chemical elements, following Heger et al. (2000), and transport of angular momentum
by magnetic fields due to the Spruit-Taylor dynamo were also included (Spruit 2002). The
efficiency parameters fc and fµ for rotational mixing were set to 0.0228 and 0.1, respectively
(Brott et al. 2011). Radiative opacities were interpolated from the OPAL tables (Iglesias &
Rogers 1996). The opacity enhancement due to Fe-group elements at T ∼ 200 kK plays a
vital role in determining the envelope structure in our stellar models. Even though flux-mean
opacities are appropriate to study the momentum balance near the stellar photosphere, in the
following we only consider the Rosseland mean opacities, which are thought to behave very
similarly to the flux-mean opacities especially at an optical depth larger than one.

The outer boundary condition of the stellar models corresponds to a plane-parallel grey
atmosphere model on top of the photosphere. In other words, the effective temperature was used
as a boundary condition at a Rosseland optical depth of 2/3. The adopted stellar wind mass-loss
recipe leads to small, but finite outflow velocities in the outermost layers, which induces a slight
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Figure 2.2: Positions of the analysed stellar models with Γmax > 0.9 in the Hertzsprung-Russell diagram
(coloured dots). Models with Γmax > 1.1 are coloured dark blue. The solid lines show the evolutionary
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lines. The interior structures of the models marked with yellow diamonds are shown in Sec. 2.10.4.
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2.3 The Eddington Limit

deviation from hydrostatic equilibrium.
The mass-loss prescription from Vink et al. (2000, 2001) was employed to account for the

winds of O- and B-type stars. Moreover, parameterized mass-loss rates from Nieuwenhuijzen &
de Jager (1990) were used on the cooler side of the bi-stability jump, i.e. at effective temperatures
less than 22000 K, if the Nieuwenhuijzen & de Jager (1990) mass-loss rate exceeded that of
Vink et al. (2000, 2001). Wolf-Rayet (WR) type mass-loss was accounted for using the empirical
prescription from Hamann et al. (1995) divided by a factor of 10 (Yoon et al. 2006), when the
surface helium mass fraction became greater than 70%.

Evolutionary sequences of massive stars, with and without rotation, were computed up to an
initial mass of 500 M�, starting with LMC composition. The initial mass fractions of hydrogen,
helium and metals were taken to be 0.7391, 0.2562, and 0.0047 respectively, in accordance with
the observations of young massive stars in the LMC (Brott et al. 2011).

2.3 The Eddington Limit

The Eddington limit refers to the condition in which the outwards radiative acceleration in a
star balances the inwards gravity, in hydrostatic equilibrium. It is a concept that is thought to
apply at the stellar surface, in the sense that if the Eddington limit is exceeded, a mass outflow
should arise (Eddington 1926; Owocki et al. 2004). If we denote the gravity as g = GM/r2 and
the radiative acceleration mediated through the electron scattering opacity as grad = κeL/4πr2,
then the classical Eddington factor Γe is defined as

Γe :=
L

LEdd
=
grad

g
=

κeL
4πcGM

, (2.1)

where L,M, and κe are the luminosity, mass, and electron-scattering opacity, respectively, with
the physical constants having their usual meaning. The classical Eddington parameter Γe

therefore does not depend on the radius r as the inverse r2 scaling in both grad and g cancel out.
Whereas Γe is often convenient to consider, it provides a sufficient instability criterion to stars,
but not a necessary one because usually the true opacity exceeds the the electron scattering
opacity significantly and also contributes to the radiative force.

As it turns out below, even when the Rosseland mean opacities are used, the models we
analyse practically never reach the Eddington limit at their surface. Therefore, we instead
consider the Eddington factor in the stellar interior as

Γ′(r) :=
L(r)

LEdd(r)
=

κ(r)L(r)
4πcGM(r)

, (2.2)

where M(r) is the Lagrangian mass coordinate, κ(r) is the Rosseland mean opacity, and L(r) is
the local luminosity (Langer 1997). However, Γ′(r) > 1 also does not provide a stability limit in
the stellar interior because the stellar layers turn convectively unstable following Schwarzschild’s
criterion when Γ′(r) → 1 (Joss et al. 1973; Langer 1997). As the luminosity transported by
convection does not contribute to the radiative force, we subtract the convective luminosity in
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the above expression and redefine the Eddington factor as

Γ(r) :=
Lrad(r)
LEdd(r)

=
κ(r)(L(r) − Lconv(r))

4πcGM(r)
. (2.3)

For example, near the stellar core where convective energy transport is highly efficient, Γ(r)
stays well below unity in spite of Γ′(r) � 1 and no instability, i.e. departure from hydrostatic
equilibrium, occurs (see Fig. 2.1). In the rest of the paper we refer to Γ(r) as the Eddington
factor unless explicitly specified otherwise.

Even with this definition, a super-Eddington layer inside a star does not necessarily lead to
a departure from hydrostatic equilibrium or a sustained mass outflow. In the outer envelopes
of massive stars, non-adiabatic conditions prevail and convective energy transport is highly
inefficient, which pushes Γ(r) close to (or above) one. We find that the stellar models counteract
this kind of a super-Eddington luminosity by developing a positive gas pressure gradient,
thus restoring hydrostatic equilibrium (Langer 1997; Asplund 1998). In these situations, the
canonical definition of Ledd being the maximum sustainable radiative luminosity locally in the
stellar interior (in hydrostatic equilibrium) breaks down and loses its significance. As we see
below, the radiative luminosity beneath the photosphere can be up to a few times the Eddington
luminosity.

In Fig. 2.1, the behaviour of Γ and Γ′ is shown along with the electron-scattering Eddington
factor Γe in a 285 M� non-rotating stellar model, which provides an educative example (see
Sec. 2.10.4 for further examples). As explained above, Γ′ and Γe are significantly greater than
one in the convective core of the star. The indicated sub-surface convection zones are caused
by the opacity peaks at T ∼ 1.5 × 106 K (deep iron bump) and at T ∼ 2 × 105 K (iron bump).
Near the bottom of the inflated envelope (r/rcore & 1; see Sect. 2.4 for the definition of rcore),
Γ approaches one and the Fe opacity bump drives convection. An extended region with Γ ≈ 1
follows. A thin shell very close to the photosphere contains the layers with a positive density
gradient and with Γ > 1.

The stellar models have been computed with a hydrodynamic stellar evolution code, however,
because of the large time steps required for stellar evolution calculations, non-hydrostatic
solutions are suppressed by our numerical scheme. The resulting hydrostatic structures are still
valid solutions of the hydrodynamic equations (see Heger et al. 2000; Kozyreva et al. 2014,
for the equations to be solved). Models computed with time steps small enough to resolve the
hydrodynamic timescale reveal that some, and potentially many of our models are pulsationally
unstable, as will be shown in a forthcoming paper. However, in the cases analysed so far, the
pulsations saturate and do not lead to a destruction or ejection of the inflated envelopes. In this
respect, we consider our analysis of the hydrostatic equilibrium structures as useful.

2.3.1 Effect of rotation on the Eddington limit

The effect of the centrifugal force on the structure of rotating stellar models has been studied
by a number of groups in the past, including Heger et al. (2000) and Maeder & Meynet (2000).
This is done by describing the models in a 1-D approximation where all variables are taken as
averages over isobaric surfaces (Kippenhahn & Thomas 1970). The stellar structure equations
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are modified to include the effect of the centrifugal force (Endal & Sofia 1976). The equation of
hydrostatic equilibrium becomes

dP
dm

4πr2 + fP
GM(r)

r2 = 0, (2.4)

and the radiative temperature gradient in the energy transport equation (in the absence of
convection) takes the form

∇rad =
3

16πacG
κPL
MT 4

fT

fP
, (2.5)

where the quantities fP and fT have the same definition as in Heger et al. (2000). Consequently,
the Eddington luminosity gets modified as:

LEdd =
4πcGM

κ

fP

fT
(2.6)

However, the Eddington factor,

Γ =
Lrad

LEdd
=
∇

∇rad

L
LEdd

=
4a
3

T 4∇

P
(2.7)
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initial mass for the non-rotating ZAMS models. The black dotted line at Γmax = 1 is drawn for reference.

does not have any explicit dependence on fP and fT because the factor fP/ fT cancels out.
Therefore formally, the Eddington factor remains unaffected by rotation. Of course, if the internal
evolution of a rotating model is changed, for example, by rotational mixing, its Eddington factor
is still different from that of the corresponding non-rotating model.

Of course, real stars are three-dimensional and the centrifugal force must affect the hydrostatic
stability limit. However, this is expected to be a function of the latitude at the stellar surface,
and in a 2-D view, the effect is largest at the equator (Langer 1997). To first order, the critical
luminosity Lc to unbind matter at the stellar equatorial surface becomes

Lc = LEdd

1 − (
vrot

vKep

)2 , (2.8)

where vrot and vKep are the stellar equatorial rotation velocity and the corresponding Keplerian
value, respectively. However, to compute the effect reliably, the stellar deformation due to
rotation as well as the effect of gravity darkening need to be accounted for (Maeder & Meynet
2000; Maeder 2009). To do this realistically for stars near the Eddington limit requires 2-D
calculations at least.

The implication is that the effect of rotation on the critical stellar luminosity cannot be properly
described through the models analysed here. Those models see the same critical luminosity as
if rotation was absent. Since mixing of helium in these models is very weak for rotation rates
below those required for chemically homogeneous evolution, most of the rotating models evolve
very similar to the non-rotating models (Brott et al. 2011; Köhler et al. 2015), and thus merely
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and Γmax < 1.
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serve to augment our database.

2.3.2 The maximum Eddington factor

In our stellar models, we have determined the maximum Eddington factor Γmax over the whole
star, i.e Γmax := max [Γ(r)]. The maximum Eddington factor Γmax generally occurs in the outer
envelopes of our models, where convective energy transport is much less efficient than in the
deep interior. The variation of Γmax across the upper HR diagram is shown in Fig. 2.2 for all
analysed core hydrogen burning models that have Γmax > 0.9.

Three distinct regions with Γmax > 1 can be identified in Fig. 2.2, which can be connected to
the opacity peaks of iron, helium, and hydrogen. When one of these opacity peaks is situated
sufficiently close to the stellar photosphere, the densities in these layers are so small that
convective energy transport becomes inefficient. As a consequence, super-Eddington layers
develop that are stabilised by a positive (i.e. inwards directed) gradient in density and gas
pressure (see Sect. 2.5 below). The envelope inflation, which occurs when Γmax approaches one,
is discussed in Sect. 2.4.

Figure 2.3 shows Γmax as a function of the effective temperature for all our models with
Γmax > 0.9. The models that have the hydrogen opacity bump close to their photosphere
can obtain values of Γmax as high as ∼ 7. This manifests itself as a prominent peak around
Teff ≈ 5.5 kK. The inset panel shows the much weaker peaks in Γmax due to partial ionisation
zones of Fe and HeII, at T/kK ∼ 200 and 50, respectively. The peak caused by the Fe opacity
bump may extend to hotter effective temperatures and apply to hot, hydrogen-free Wolf-Rayet
stars, which are not part of our model grid.

For stars above about 125 M�, Γmax reaches one, even on the zero-age main-sequence. This
is demonstrated in Fig. 2.4 which shows both Γmax and effective temperature as a function of
mass for the non-rotating stellar models. As these models evolve away from the ZAMS to
cooler temperatures, super-Eddington layers develop in their interior. The blue curve shows a
maximum effective temperature of 57 000 K at about 200 M�, beyond which it starts decreasing
with further increase in mass. This behaviour is related to the phenomenon of inflation, which is
discussed in detail in Sect. 2.4. However, the ‘effective temperature’ at the base of the extended,
inflated envelope, Teff,core (see Sect. 2.4), still increases with mass in the whole considered mass
range.

2.3.3 The spectroscopic HR diagram

Figure 2.5 shows the location of our analysed models in the spectroscopic HR diagram (sHRD)
(Langer & Kudritzki 2014; Köhler et al. 2015) where instead of the luminosity, L := T 4

eff
/g is

plotted as a function of the effective temperature. The quantity L can be measured for stars
without knowing their distance. Moreover, we have log(L /L�) = R (cf. Sect. 1), such that L
is directly proportional to the Eddington factor Γe as

Γe =
κeL

4πcGM
=
κeσT 4

eff

cg
=
κeσ

c
L , (2.9)
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where g is the surface gravity and the constants have their usual meaning. Therefore one can
directly read off Γe (right Y-axis in Fig. 2.5) from the sHRD. Massive stellar models often evolve
with a slowly increasing luminosity over their main-sequence lifetimes. Therefore, where in a
conventional HR diagram models with very different Γmax might cluster together (see Fig. 2.2),
they separate out nicely in the sHRD since L ∝ L/M. The effect of the opacity peaks on the
maximum Eddington factor (Γmax) at temperatures corresponding to the three partial ionisation
zones (Fe, HeII and H) is seen more clearly in the sHRD in Fig. 2.5 compared to the ordinary
HR diagram (Fig. 2.2).

We find that for our ZAMS models the electron scattering opacity is κe ≈ 0.34, while the true
photospheric opacity κph is around 0.5. Therefore it is expected that the true Eddington limit
(Γ = 1) is achieved at about Γe = 0.7 for stellar models that retain the initial hydrogen abundance
at the photosphere. Therefore in Fig. 2.5 we have drawn two horizontal lines corresponding to
Γe = 0.7, one assuming the initial hydrogen mass fraction X = 0.74 (green line) and the other
assuming X = 0 (red line). While models with helium-enriched photospheres exceed the green
line comfortably, even the most helium-enriched models (rotating or otherwise) stay below the
red line.

From Köhler et al. (2015), we know that models with log L /L� > 4.4 are all hydrogen-
deficient, either due to mass-loss or rotationally induced mixing, as both processes lead to
an increasing L/M-ratio (cf. their fig. 18). Figure 2.5 thus demonstrates that the models that
contain super-Eddington layers due to the partial ionisation of helium all have hydrogen deficient
envelopes, i.e. they are correspondingly helium-enriched.

Figure 2.5 reveals that the electron scattering Eddington factor Γe is not a good proxy for
the maximum true Eddington factor (Γmax) obtained inside the star. For example, along the
horizontal line log L /L� = 4.3, corresponding to Γe ' 0.5, Γmax varies from well below one to
values near seven at the cool end. However, we note that below 30 000 K helium and hydrogen
recombine, the gas is not fully ionised any more. The line opacities of helium and hydrogen
become important, which causes the increase in Γmax (see Figs. 2.3 and 2.14).

2.3.4 Surface Eddington factors and the location of Γmax

The optical depth where Γmaxf is reached gives an idea of how deep in the stellar interior the
layer with the highest Eddington factor is located. We investigate this in Fig. 2.6, which shows
that Γmax is located at largely different optical depths in different types of models. While the
maximum Eddington factors occur generally at optical depths below ∼ 10 000, we see that in
the three effective temperature regimes identified by the super-Eddington peaks in Figs. 2.2
and 2.3, Γmax can even be located at an optical depth of ∼ 10 or below.

For example, when the tracks above log L/L� = 6.2 approach effective temperatures of
∼ 30 kK, Γmax is located at the Fe-peak, which is deep inside the envelope (τ ' 1400). The
models at this stage become helium-rich (Ys & 70%) and the Wolf-Rayet mass-loss prescription
is applied. Once these tracks turn bluewards in the HR diagram, the position of Γmax jumps to
the helium opacity peak, which is located much closer to the stellar surface. Consequently, we
find three orders of magnitude of difference between these two types of models with similar
effective temperature and luminosity.

When considering the surface Eddington factors in the spectroscopic Hertzsprung-Russell
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Figure 2.8: Maximum Eddington factor (Γmax > 0.9) and surface Eddington factor (Γ(R?) > 0.9) as a
function of the effective temperature Teff of our analysed models. The black dotted line at Γ = 1 is drawn
for convenience.

diagram (Fig. 2.7), we see that only the models with Γ(R?) > 0.98 have log L /L� values of
more than 4.6. As discussed above, these models, which started on the main-sequence with
initial masses above 300 M� are extremely helium-rich and may correspond to the most extreme
late-type WN stars (Sander et al. 2014). As shown in Fig. 2.8, they exceed the Eddington limit
by just a few per mille, which is possible because of the high assumed mass-loss rates that
imply a slight deviation from hydrostatic equilibrium near the stellar surface (cf. Sect. 2.3
above). However, these models are those in which our assumption of an optically thin wind
might break down (see Fig. 7 in Köhler et al. 2015). Since the inclusion of an optically thick
outflow may lead to changes of the temperature and density structure near the surface, the
surface Eddington-factors for these particular models are not reliable.

In summary, we find, on the one hand, that many of our models contain layers at optical
depths between a few and a few thousand in which the Eddington factor exceeds the critical
value of one. On the other hand, for none of our models we can conclude that the Eddington
limit is reached very near to, or at the surface, where for the vast majority we can even exclude
that this happens. This finding leads to a shift in the expectation of the response of stars that
reach the Eddington limit during their evolution. We might not expect direct outflows driven
by super-Eddington luminosities, but instead internal structural changes, in particular envelope
inflation.
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Fig. 2.1 and Sec. 2.10.1) showing an inflated envelope and a density inversion. The X-axis has been
scaled with the core radius rcore of 25.3 R�, as defined in Sect. 2.4.

2.4 Envelope inflation

Inflation of massive, luminous stars refers to the formation of extended, extremely dilute stellar
envelopes. An example of an inflated model is shown in Fig. 2.9. The red shaded region is the
non-inflated core and the blue shaded region is what we refer to as the inflated envelope. In
the example, the model is inflated by 60% of its core radius (defined below). In the presented
model, the inflated envelope only contain a small fraction of a solar mass, i.e. ≈ 10−5 M�.

Envelope inflation is inherently different from classical red supergiant formation. The latter
occurs after core hydrogen exhaustion, as a consequence of vigorous hydrogen shell burning.
This process expands all layers above the shell source, which usually comprise several solar
masses in massive stars, and it also operates in low-mass stars, such that no proximity to the
Eddington limit is required. The mechanism of envelope inflation that we discuss already
works during core hydrogen burning, i.e. even on the zero-age main-sequence for sufficiently
luminous stars (cf. Fig. 2.4). Previous investigations have suggested that inflation is related to
the proximity of the stellar luminosity to the Eddington luminosity (Ishii et al. 1999; Petrovic
et al. 2006; Gräfener et al. 2012) in the envelopes of massive stars with a high luminosity-to-
mass ratio (& 104 L�/M�). The amount of mass contained in an inflated envelope is usually
very small. As we shall see below, inflation, in extreme cases, can also produce core hydrogen
burning red supergiants.

We define inflation in our models through ∆r/rcore := (R? − rcore)/rcore, with rcore being the
radius at which inflation starts and R?, the photospheric radius. Since the densities in inflated

38



2.4 Envelope inflation

lo
g
 (

L
/L

⊙
)

Teff [kK]

∆r/rcore +

S
 D

or instability

strip

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 0 10 20 30 40 50 60
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Figure 2.10: Hertzprung-Russell diagram showing all the core-hydrogen burning inflated models, i.e with
∆r/rcore > 0. Models with ∆r/rcore > 5 are coloured yellow. Below the solid black line we do not find
any inflated models and above the dotted black line we do not find any non-inflated models in our grid.
The hot part of the S Dor instability strip is also marked (Smith et al. 2004).

envelopes are small, the dominance of radiation pressure in these envelopes is much larger than
it is in the main stellar body. We define a model to be inflated if β(r), which is the ratio of gas
pressure to total pressure, reaches a value below 0.15 in the interior of a model. The radius at
which β goes below 0.15 for the first time from the centre outwards is denoted as rcore, i.e. the
start of the inflated region. The remaining extent of the star until the photosphere (R? − rcore) is
considered the inflated envelope.

We emphasize that our choice of the threshold value for β is arbitrary and not derivable
from first principles. However, we have verified that this prescription identifies inflated stars
in different parts of the HR diagram very well (cf. Sec. 2.10.4). As β → 0 for M → ∞, our
criterion may fail for extreme masses, however, the mass averaged value of β for the most
massive zero-age main-sequence model that we analysed (500 M�) is 0.3. A threshold value
of 0.15 thus appears adequate for the present study. As an example, let us consider a typical
inflated model, shown in Sec. 2.10.1. The value of β in Fig. 2.28 decreases sharply at the base of
the inflated envelope, to around 0.01. Even if the β threshold is varied by 30%, i.e. 0.15 ± 0.045,
the non-inflated core radius rcore changes by only 4%. This goes to show that for clearly inflated
models, the value of rcore is insensitive to the threshold value of β.

We furthermore performed a numerical experiment which is suited to show that the core
radii identified as described above are indeed robust. We chose an inflated 300 M� model, and
then increased the mixing length parameter α such that convection becomes more and more
efficient. As shown in Fig. 2.30, as a result the extent of the inflated envelope decreased without
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Figure 2.11: Inflation as a function of the effective temperature for all analysed models that fulfill our
inflation criterion.

affecting the model structure inside the core radius, which thus remained independent of α. For
α = 40 convection became nearly adiabatic, inflation almost disappeared, and the fact that the
photospheric radius in this case became very close to the core radius validates our method of
identifying rcore.

Figure 2.10 shows the amount of inflation as defined above, for all our models that fulfil
the inflation criterion, in the HR diagram. It reveals that overall, inflation is larger for cooler
temperatures. This is not surprising since inflation does not appear to change the stellar
luminosity and must therefore induce smaller surface temperatures. We also see that inflation
is larger for more luminous stars, which is expected because the Eddington limit is supposed
to play a role (see below). We also find inflation increases along the evolutionary tracks of the
most massive stars that turn back from the blue supergiant stage, which in this case is due to the
shrinking of their core radii. A distinction between the inflated and the non-inflated models is
made by drawing the black lines in Fig. 2.10. They are drawn such that no model is inflated
below the solid line and all the models are inflated above the dotted line. In between these two
lines we find a mixture of both inflated and non-inflated models. We find that essentially all
models above log(L/L�) ' 5.6 are inflated. Consequently, stars above ∼ 40 M� inflate during
their main-sequence evolution.

Figure 2.11 shows the inflation factor as function of the stellar effective temperature for our
inflated models. Whereas inflation increases the radius of our hot stars by up to a factor of 5,
the cool supergiant models can be inflated by a factor of up to 40. We refer to Sec. 2.10.1 for the
detailed structures of several inflated models.

In Fig. 2.12, we take a look at inflation as a function of the core effective temperature Teff,core
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Figure 2.12: Inflation as a function of the effective temperature at the core-envelope boundary for all
analysed models with ∆r/rcore > 0. Colour coding indicates the Teff at the photosphere.

defined as
Teff,core =

L
4πσr2

core
, (2.10)

where L refers to the surface luminosity and the constants have their usual meaning. We can
see that even our coolest models have high core effective temperatures in the sense that if
their inflated envelopes were absent their stellar effective temperatures would have been higher
than 20 000 K. Those stars with stellar effective temperatures below ∼50 000 K contain the
He II ionisation zone within their envelopes, and stars with stellar effective temperatures below
∼10 000 K also contain the H/He I ionisation zone. However, as revealed by the density and
temperature structure of these models (cf. Sec. 2.10.4), the temperature at the bottom of the
inflated envelope is always about 170 000 K, and thus corresponds to the temperature of the
iron opacity peak. We conclude that the iron opacity is at least in part driving the inflation of
all the stars. For those with cool enough envelopes, helium and hydrogen are likely relevant in
addition.

2.4.1 Why do stellar envelopes inflate?

As suggested earlier, the physical cause of inflation in a given star may be its proximity to the
Eddington limit. Figure 2.13 shows the correlation between inflation and Γmax for our models.
As expected, we find that our stellar models are not inflated when Γmax is significantly below 1,
and they are all inflated for Γmax > 1. Indeed, the top panel of Fig. 2.13 gives the clear message
that the Eddington limit, in the way it is defined in Sect. 2.3, is likely connected with envelope
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Figure 2.13: Top: inflation (∆r/rcore) as a function of Γmax for the analysed models. The effective
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inflation.

Comparing Fig. 2.13 (top panel) to Fig. 2.11 shows that inflation increases up to Teff ≈ 5 500 K.
Thereafter, Teff and Γmax decrease and the stars keep getting bigger without significant changes
in rcore, and, hence, inflation still increases. However, the drop in inflation for the coolest
models shows an opposite trend. This is because the non-inflated core radius rcore now moves
outwards (increases) such that inflation (∆r/rcore) decreases even though R? keeps increasing
(cf. definition of rcore in Sec. 2.4).

In the zoom-in view shown in the lower panel of Fig. 2.13, we see some models being inflated
for Γmax in the range ∼ 0.9 . . . 1. Partly, this may be because of the arbitrariness in our definition
of inflation. The exact value of ∆r/rcore depends somewhat on the choice of the threshold value
of β to characterize inflation (cf. Sec. 2.10.4), i.e. the models with ∆r/rcore . 2 and Γmax < 1
may be at the borderline of inflation. The models with ∆r/rcore . 2 but Γmax > 1 are all very
hot (Teff ∼> 40 000 K) and in those models, the inflation is intrinsically small, but generally
unambiguous.

Still, we see a significant number of models below the Eddington limit (Γmax < 1), which
show a quite prominent inflation, i.e. which have a radius increase due to inflation of more than
a factor of five. We investigated this kind of a model by artificially increasing its mass-loss rate
above the critical value Ṁcrit (Petrovic et al. 2006), such that the inflated envelope was removed
(cf. Sect. 2.4.2). We then found that, on turning down the mass-loss rate to its original value,
the model regained its initial inflated structure with Γmax < 1. However, Γmax = 1 was reached
and exceeded in the course of our experiment. We conclude that a stellar envelope may remain
inflated even if the condition Γmax = 1 is not met any more in the course of evolution, but that
Γmax & 1 may be required to obtain inflation in the first place.

In contrast to earlier ideas of a hydrodynamic outflow being triggered when the stellar
surface reaches the Eddington limit (Eddington 1926; Owocki et al. 2004), in our models this
never happens. When the properly defined Eddington limit is reached inside the envelope, its
outermost layers expand hydrostatically and produce inflation. Two possibilities arise in this
process. When the star approaches the Eddington limit, the ensuing envelope expansion leads
to changes in the temperature and the density structure. Consequently, the envelope opacity
can either increase or decrease. Fig. 2.14 shows that the effect of expansion generally leads
to a reduced opacity such that the expansion is indeed alleviating the problem. The star then
expands until the Eddington limit is just not exceeded any more, which is the reason why we
find so many inflated models with Γmax ' 1.

Figure 2.14 shows the OPAL opacities for hydrogen-rich composition for various constant
values of R as function of temperature, where R = ρ/(T/106)3. Kippenhahn et al. (1990) showed
that for constant β = Pgas/P and constant chemical composition, R as a function of spatial
co-ordinate inside the star is a constant. Thus, for un-inflated models, the opacity curves in
Fig. 2.14 may closely represent the true run of opacity with temperature inside the star. In the
inflated models, β is dropping abruptly at the base of the inflated envelope, which means that
the opacity is jumping from a curve with a higher R-value to one with a lower R-value at this
location. That is, the opacity is smaller everywhere in the inflated envelope compared to the
situation where inflation would not have happened.
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6 , where T6 is the temperature in units of 106 Kelvin. The values of log R, which are held
constant, are indicated along the curves. The data is taken from the OPAL tables with a composition of
X=0.7000, Y=0.2960, Z=0.004 (Iglesias & Rogers 1996). The black horizontal line shows the electron
scattering opacity κe for a hydrogen mass fraction of X = 0.7. At a temperature of 200 000 K, log R = −5
implies a density of ρ = 8 × 10−8 g cm−3 and log R = −8 implies a density of ρ = 8 × 10−11 g cm−3 .

For the chemical composition given in Fig. 2.14 and assuming β ≡ const., we find

R ' 1.8 10−5 β

1 − β
, (2.11)

such that if β drops from 0.5 in the bulk of the star to 0.1 in the inflated envelope, R drops by
one order of magnitude. The corresponding reduction in opacity can be significant, i.e. up to
about a factor of two.

When upon expansion the envelope becomes cool enough for another opacity bump to come
into play, the problem of not exceeding the Eddington limit might not be solvable this way.
Instead, when a new opacity peak is encountered in the outer part of the envelope, super-
Eddington conditions occur, i.e. layers with Γmax > 1 (cf. Figs. 2.2 and 2.5), along with a strong
positive gas pressure (and density) gradient (cf. Sects. 2.3 and 2.5). This is most extreme when
the envelopes become cool enough (Teff ∼< 8000 K) such that the hydrogen ionisation zone is
present in the outer part of the envelope, where Eddington factors of up to seven are achieved.
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2.4.2 Influence of mass-loss on inflation

One might wonder about the sustainability of the inflated layers against mass-loss, which is an
important factor in the evolution of metal-rich massive stars. Petrovic et al. (2006) estimated
that the inflated envelope cannot be replenished when the mass-loss rate exceeds a critical value
of

Ṁcrit = 4πr2
core ρmin

√
GM
rcore

, (2.12)

where M and rcore stand for the stellar mass and the un-inflated radius, respectively, and ρmin is the
minimum density in the inflated region. Petrovic et al. (2006) found Ṁcrit ∼ 10−5 M� yr−1 for a
massive hydrogen-free Wolf-Rayet star of 24 M�. However, for a typical inflated massive star on
the main-sequence (see Fig. 2.25), this critical mass-loss rate is of the order 10−3 . . . 10−1 M� yr−1.
These high mass-loss rates are only expected in LBV-type giant eruptions. The mass-loss rates
applied to our models are several orders of magnitude smaller (cf. Köhler et al. 2015).

The mass-loss history of four evolutionary sequences without rotation are shown in Fig. 2.15.
Even the 500 M� model never exceeds a mass-loss rate ∼ 5 × 10−4 M� yr−1. The critical mass-
loss rate for all models shown in Fig. 2.15 is much higher than the actual mass-loss rates
applied. Whereas Ṁcrit typically exceeds Ṁ by a factor of 1000 for the inflated models in the
50 M� sequence, it exceeds that of the 500 M� sequence by a factor of 3 . . . 100. It is thus not
expected that mass-loss prevents the formation of the inflated envelopes in massive stars near the
Eddington limit. In fact, it may be difficult to identify a source of momentum that might drive
such strong mass-loss (Shaviv 2001; Owocki et al. 2004). Gräfener et al. (2011) in the Milky
Way and Bestenlehner et al. (2014) in the LMC found a steep dependence of the mass-loss
rates on the electron-scattering Eddington factor Γe for very massive stars, but they do not find
mass-loss rates that substantially exceed 10−4 M� yr−1.

As many of the models analysed here may be pulsationally unstable, the mass-loss rates may
be enhanced in this case. Grott et al. (2005) show that hot stars near the Eddington limit may
undergo mass-loss due to pulsations, although extreme mass-loss rates are not predicted. For
very massive cool stars, on the other hand, Moriya & Langer (2015) find that pulsations may
enhance the mass-loss rate to values of the order of 10−2 M� yr−1. These extreme values could
prevent the corresponding stars to spend a long time on the cool side of the Humphreys-Davidson
limit. A detailed consideration of this issue is beyond the scope of the present paper.

2.5 Density inversions

An inflated envelope can be associated with a ‘density inversion’ near the stellar surface, i.e. a
region where the density increases outwards. An example is shown in Fig. 2.9. In hydrostatic
equilibrium, Γ(r) > 1 implies dPgas

dr > 0, and thus dρ
dr > 0. As a consequence, all the models

that have layers in their envelopes exceeding the Eddington limit show density inversions. The
criterion for density inversion can be expressed as (Joss et al. 1973; Paxton et al. 2013)

Lrad

LEdd
>

1 +

(
∂Pgas

∂Prad

)
ρ

−1

, (2.13)
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Figure 2.15: Mass-loss history of four non-rotating evolutionary sequences from our grid. The initial
masses are given along each evolutionary track. The colours indicate the different mass-loss prescriptions
that were used in different phases, as described in Sect. 2.

where Pgas, Prad and ρ stand for the gas pressure, radiation pressure, and density, respectively. A
density inversion gives an inwards force and acts as a stabilizing agent for the inflated envelopes.
In the above inequality, Pgas is assumed to be a function of ρ and T only, i.e. the mean molecular
weight µ is assumed to be constant. Density inversions might also be present in low-mass stars
like the Sun where they are caused by the steep increase of µ around the hydrogen recombination
zone (cf. Érgma 1971).

Figure 2.16 identifies our core hydrogen burning models, which contain a density inversion.
The quantity ∆ρ/ρ represents the strength of the density inversion normalized to the minimum
density attained in the inflated zone. We can identify three peaks in ∆ρ/ρ at Teff/kK ∼ 55,
25, and 5.5 (see also Fig. 2.17), which coincides exactly with the three Teff-regimes in which
models exceed the Eddington limit (cf. Fig. 2.3). The maximum of the density inversions in the
three zones is related to the relative prominence of the three opacity bumps of Fe, HeII, and H
respectively, as shown in Fig. 2.17.

However, an inflated model is not necessarily accompanied by a density inversion. This is
depicted clearly in Fig. 2.18 where we investigate the correlation between inflation and density
inversion (this can also be seen by comparing Fig. 2.10 to Fig. 2.16). Figure 2.18 shows many
models that are even substantially inflated but do not develop a density inversion. The three
peaks in the distribution of density inversions of Fig. 2.17 also show up distinctly in this plot at
the three characteristic effective temperatures (shown in colour). Models that show a density
inversion do always show some inflation. This is less obvious from Fig. 2.18 because the hottest
models show the smallest amount of inflation (Fig. 2.11).
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Figure 2.16: Upper HR diagram showing all main-sequence models with density inversions. Models
with ∆ρ/ρ > 2 have been coloured yellow. The models without density inversion are indicated with
open green triangles. Some representative evolutionary tracks of non-rotating models, for different initial
masses (indicated along the tracks in units of solar mass), are also shown with solid coloured lines.

The stability of density inversions in stellar envelopes has been a matter of debate for
the last few decades but there has been no consensus on this issue yet (see Maeder 1992).
There have been early speculations by Mihalas (1969) while studying red supergiants that a
density inversion might lead to Rayleigh-Taylor instabilities (RTI), resulting in “elephant trunk”
structures washing out the positive density gradient. However, as rightly pointed out by Schaerer
(1996), RTI does not develop since the effective gravity geff = g(1 − Γ) acting on the fluid
elements is directed outwards in the super-Eddington layers, which contain the density inversion.
Kutter (1970), on the other hand, claimed that a hydrodynamic treatment of the stellar structure
equations prevents any density inversion and instead leads to a steady mass outflow. However,
this claim is refuted by the present work, since our code solves the 1-D hydrodynamic stellar
structure equations, in agreement with previous hydrodynamical models by Glatzel & Kiriakidis
(1993a) and Meynet (1992). Stothers & Chin (1973) suggested that density inversions will lead
to strong turbulent motions instead of drastic mass-loss episodes. However, these layers are
unstable to convection, so turbulence is present in any case.

Additionally, Glatzel & Kiriakidis (1993a) argued in favour of a sustainability of density
inversions in the sense that they can be viewed as a natural consequence of strongly non-adiabatic
convection, and pointed out that the only plausible way to suppress density inversions is to use a
different theory of convection. The only instability expected from simple arguments therefore is
convection, which is in line with Wentzel (1970) and Langer (1997).
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Figure 2.17: The extent of density inversions (∆ρ/ρ) as a function of Teff for our models. The three peaks
correspond to the three opacity bumps of Fe, HeII, and H in the OPAL tables, as indicated.

Still, Ekström et al. (2012) and Yusof et al. (2013) recently considered density inversions
as ‘unphysical’. Density inversions have been suppressed in their models by replacing the
pressure scale height in the Mixing Length Theory with the density scale height (cf. Sect. 2.7).
This approach has often been adopted by many investigators in the past to prevent numerical
difficulties. As the density scale height tends to infinity when a density inversion starts to
develop, this measure tends to enormously increase the convective flux in the relevant layers. It
is doubtful whether in reality the convective flux can be increased so much, as the ratio of the
local thermal to the local dynamical timescale in the relevant layers is much smaller than one,
such that convective eddies lose their thermal energy much faster than they rise, and thus hardly
transport any energy at all. Multi-dimensional hydrodynamical simulations would help to settle
this issue. We briefly return to this point in Sect. 2.7.

2.6 Sub-surface convection

We also studied the convective velocities in the sub-surface convection zones associated with
the opacity peaks in our stellar models (Cantiello et al. 2009). We measure these velocities in
units of either the isothermal or the adiabatic sound velocity, i.e. cs,ad and cs,iso, respectively,
which we compute as

cs,ad =

√
γP
ρ

(2.14)
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Figure 2.18: Top: correlation between inflation and density inversions for our models with log L/L� > 5.
Bottom: zoomed-in view of the area within the back dotted lines in the top panel.
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and

cs,iso =

√
kBT
µ

=

√
Pgas

ρ
, (2.15)

where γ is the adiabatic index, P is the total pressure, ρ is the density, µ is the mean molecular
weight, T is the temperature, and kB is the Boltzmann constant. We define Miso as the maximum
ratio of the convective velocity over the isothermal sound speed in the stellar envelope, and Mad

correspondingly using the adiabatic sound speed.
The true sound speed is in between the adiabatic and isothermal speed, closer to the first one

in the inner parts of the star, and closer to the second in the inflated stellar envelope (cf. Sect. 5).
In Figs. 2.19 and 2.20, we show the values of Miso and Mad for our models in the HR diagram.
Whereas the convective velocities are always smaller than the adiabatic sound speed, Fig. 2.19
shows that the isothermal sound speed can be exceeded locally in our models by a factor of a
few. The convective velocity and sound speed profiles for an extreme model are presented in
Sec. 2.10.3.

Supersonic convective velocities (adiabatic or isothermal, depending on the physical condi-
tions in the envelope) may not be realistic and are outside the frame of the standard Mixing
Length Theory. Therefore, in some of our models, the convective velocities, and thus the
convective energy transport, may have been overestimated. A limitation of the velocities to the
adequate sound speed is expected to reduce the convective flux, which might lead to further
inflation of the stellar envelope.

The cool models, with the strongest inflation, have relatively smaller values of Miso (compared
to the hot WR-type models) but large values of Mad (Fig. 2.20) in the sub-surface convection
zones. This is primarily because of the fact that while cs,ad depends on the total pressure, cs,iso

only depends on the gas pressure. In the very outer layers of the cool, luminous models, β→ 1
and hence Pgas ≈ Ptot. In these situations, cs,ad and cs,iso are only a factor

√
γ apart, where γ is

the adiabatic index.
We find that the convective energy transport is not always negligible in the inflated models

(cf. Sec 2.4.1). We therefore evaluate the amount of flux that is actually carried by convection
in the inflated envelopes of our models. We define the quantity η(Miso) as the fraction of the
total flux carried by convection in the stellar envelope, at the location where the isothermal
Mach number is the largest. This quantity is plotted as a function of the effective temperature in
Fig. 2.21. It is evident from this figure that η(Miso) need not be small for stellar envelopes to be
inflated. However, the hotter a model is the lower its η(Miso)-value at a given luminosity (see
Fig. 2.22). For models hotter than Teff ≈ 63 kK (e.g. the hydrogen-free He stars), η(Miso) indeed
goes towards zero (Grassitelli et al., in preparation). The behaviour of the quantity η(Miso) in
the HR diagram is shown in Fig. 2.22.

2.7 Comparison with previous studies

2.7.1 Stellar atmosphere and wind models

Since the Eddington limit was thought to be reached in massive stars near their surface (cf.
Sect. 2.3), several papers have investigated this using stellar atmosphere calculations. Lamers &
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Figure 2.19: Upper HR diagram (log L/L� > 5) showing the maximum of the ratio of the convective
velocity to the local isothermal sound speed (Miso) of the analysed models as coloured dots. Models
with Miso < 1 are shown in black. Some representative evolutionary tracks of non-rotating models, for
different initial masses (indicated along the tracks in units of solar mass), are also shown with solid black
lines.

Fitzpatrick (1988) investigated the Eddington factors in the atmospheres of luminous stars in the
temperature-gravity diagram, while Ulmer & Fitzpatrick (1998) did so in the HR diagram. Both
studies took the full radiative opacity into account. While their technique did not allow them to
reach Eddington factors of one or more, Ulmer and Fitzpatrick found that model atmospheres
with a maximum Eddington factor of 0.9 are located near the observed upper luminosity limit
of stars in the Large Magellanic Cloud (Humphreys & Davidson 1979; Fitzpatrick & Garmany
1990).

The main feature in the lines of constant Eddington factors in the HR diagram found by
Ulmer and Fitzpatrick is a drop from Teff ' 60 000 K to 15 000 K. This may correspond to the
drop in the maximum Eddington factor seen in our models in the same temperature interval (cf.
Figs. 2.2 and 2.5). Note that the peak around Teff ' 30 000 K in Fig. 2.3 only corresponds to
helium-rich models, which are not considered by Ulmer and Fitzpatrick.

On the other hand, neither inflation nor super-Eddington layers or density inversions are
reported by Ulmer and Fitzpatrick, or, to the best of our knowledge, from any hot, main-
sequence star model atmosphere calculation so far. One reason might be that many model
atmospheres only include a rather limited optical depth range (e.g. up to τ = 100 in Ulmer and
Fitzpatrick), such that the iron opacity peak is often not included in the model. Additionally, the
computational methods employed might not allow for a non-monotonic density profile.

Given the ubiquity of inflation for models above log L/L� > 5.5 or M > 50 M� in the LMC,
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Figure 2.20: Upper HR diagram (log L/L� > 5) showing the maximum of the ratio of the convective
velocity to the local adiabatic sound speed Mad of the analysed models (computed with an adiabatic index
of 5/3) as coloured dots. Some representative evolutionary tracks of non-rotating models, for different
initial masses (indicated along the tracks in units of solar mass), are also shown with solid black lines.

and a correspondingly lower limit in the Milky Way due to its higher iron content, it is helpful
to construct model atmospheres that include this effect and identify its observational signatures.
As the density profiles of these kinds of atmospheres near the photosphere are significantly
different from those in non-inflated atmospheres, these signatures may indeed be expected.

Asplund (1998) gives a thorough analysis of the Eddington limit in cool star atmosphere
models. Indeed, he finds super-Eddington layers and density inversions in his models, and
gives arguments for the physically appropriate nature of these phenomena. He also discusses
the effects of stellar winds on these features, and finds they may be suppressed by extremely
strong winds, but not by winds with mass-loss rates in the observed range. Asplund does
not find inflation in his models, again, arguably because the iron opacity peak is not included
in his model atmospheres, which appears essential even for our models with cool effective
temperatures.

Owocki et al. (2004) and van Marle et al. (2008) studied the winds of stars that reach or
exceed the Eddington limit at their surface. As we have shown above, this condition is generally
not found in our models (cf. Figs. 2.7 and 2.8). However, it may occur in helium-rich stars (see
again Fig. 2.7) and hydrogen-free Wolf-Rayet stars (cf. Heger & Langer 1996), as well as in
stars that deviate from thermal or hydrostatic equilibrium. Noticeably, Owocki et al. (2004) find
that the mass-loss rates in this case are still quite limited, because of the energy loss attributed
to lifting the wind material out of the gravitational potential (see, Heger & Langer 1996).
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Figure 2.21: Convective efficiency η(Miso), which is the ratio of the convective flux to the total flux at the
position where the isothermal Mach number is the largest in the stellar envelope, as a function of the
effective temperature for all analysed stellar models in our grid.

We want to emphasize in this context that the Eddington limit investigated in the quoted
models as well as in our own may be different from the true Eddington limit, because of a
number of effects that are all related to the opacity of the stellar matter in the stellar envelopes.
One is that convection, which is necessarily present in the layers near or above the Eddington
limit, may induce density inhomogeneities or clumping that can alter the effective radiative
opacity (Shaviv 1998). In fact, depending on the nature of the clumping, the opacity may be
enhanced (Gräfener et al. 2012) or reduced (Owocki et al. 2004; Ruszkowski & Begelman
2003; Muijres et al. 2011). Furthermore, such opacity calculations are tedious, and even in the
currently used opacities, important contributions might still be missing.

Finally, the effect of stellar rotation on the stability limit in the atmospheres especially of
hot stars is clearly important (Langer 1997, 1998; Maeder & Meynet 2000). However, it adds
another dimension to this difficult problem and is therefore generally not included (cf. Sect.
2.7.2).

2.7.2 Stellar interior models

The peculiar core-halo density structure of inflated stars was first pointed out by Stothers & Chin
(1993), after Iglesias et al. (1992) found the large iron bump in the opacities near 170 000 K.
Further studies pointing out this phenomenon comprise Ishii et al. (1999), Petrovic et al. (2006),
Gräfener et al. (2012), and Köhler et al. (2015). Conceivably, inflation may be present in
further models of very massive stars, but often no statements on the presence or absence of this
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Figure 2.22: Upper HR diagram showing all the inflated stellar models in our grid as coloured dots. The
convective efficiency η(Miso), which is the ratio of the convective flux to the total flux at the position where
the isothermal Mach number is the largest in the stellar envelope, is colour coded. Some representative
evolutionary tracks of non-rotating models, for different initial masses (indicated along the tracks in units
of solar mass), are also shown with solid black lines.

phenomenon are made in these papers.
For example, the models for very massive stars by Yusof et al. (2013) only discuss the electron-

scattering Eddington factor in their models. On the ZAMS, their models are hotter and more
compact than those of Köhler et al. (2015) analysed here, which implies that inflation is either
weaker or absent. This difference might be due to the different treatment of convection in the sub-
surface convective zones, where Yusof et al. (2013) assume the mixing length to be proportional
to the density scale height instead of the standard pressure scale height. This prohibits the
formation of density inversions, and since the density scale height tends to infinity when a model
attempts to establish a density inversion, the convection may transport an arbitrarily large energy
flux in this scheme. While the physics of convection introduces one of the biggest uncertainties
in the atmospheres of stars close to the Eddington limit, efficient convective energy transport in
inflated envelopes appears unlikely (cf. Sect. 2.5).

A suppression of inflation may have significant consequences for the evolution of massive
stars, as the stellar models stay bluer and as a result have lower mass-loss rates and lower
spin-down rates. The final fates of these non-inflated stars is significantly different compared to
inflated stars (see Köhler et al. 2015, for a detailed discussion).

Gräfener et al. (2012) find inflation which, for their models without clumping, correspond
well to those of Petrovic et al. (2006) for the Wolf-Rayet case, and to our unpublished solar
metallicity main-sequence models, which show a bending of the zero-age main-sequence to
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cool temperatures for M ∼> 100 M�. The models of Ishii et al. (1999) also agree very well.
Including the work of Stothers & Chin (1993), we conclude that the effect of inflation in models
of massive main-sequence stars is found in at least four independent stellar structure codes, with
three of them quantitatively producing very similar results.

As pointed out above, massive star evolutionary models, which include effects of rotation,
are being produced routinely these days (cf. Maeder & Meynet 2010; Langer 2012; Chieffi &
Limongi 2013), but an investigation of the effect of stellar rotation on the stability limit in the
atmospheres of hot stars requires the construction of two-dimensional stellar models.

2.8 Comparison with observations

2.8.1 The VFTS sample

A prime motivation of Köhler et al. (2015) for computing the evolutionary models for the
very massive stars analysed here was to provide a theoretical framework for the VLT Flames-
Tarantula Survey (VFTS, Evans et al. 2011). Within VFTS, multi-epoch spectral data of about
700 early B and 300 O stars are being analysed through detailed model atmosphere calculations.
Within this effort, Bestenlehner et al. (2014) and McEvoy et al. (2015) derived the physical
properties of more than 50 very massive stars, with luminosities log(L/L�) > 5.5. We confront
the models of Köhler et al. (2015) with this sample in Fig. 2.23.

Two sets of model data are included in Fig. 2.23, one that uses the effective temperatures of
the Köhler et al. models directly, and a second one where the effective core temperature is used
as defined in Sect. 2.4 (cf. Eq. 2.10). The latter approximates the surface temperature of our
models if inflation was completely absent. An example calculation presented in Sec. 2.10.2,
where inflation in a 300 M� is suppressed by increasing the mixing length parameter, shows that
this approximation is indeed quite good. The zero-age main-sequence is also drawn for both
sets of models. Note that while wind effects are clearly seen in the spectra of all stars in the
sample, the optical depth of their winds is expected not to exceed τ = 2 (cf. Fig. 7 in Köhler
et al. 2015) until the stars become very helium rich at their surface. Therefore, the effective
temperatures derived from the observations need not be corrected for optically thick winds.

As shown in Bestenlehner et al. (2014), the hottest stars in their sample follow the ZAMS
of the Köhler et al. models very closely, well into the regime of inflation. One might expect
un-evolved stars to the left of the Köhler et al. ZAMS if inflation was not present. In that case,
the stars above log L/L� ' 6.2 might spend a significant fraction of their lifetime on the hot
side of the Köhler et al. ZAMS. The absence of these hot stars, however, does not conclusively
argue that inflation does exist in nature, i.e. even without inflation, the star formation history in
30 Doradus might preclude the existence of stars like this, or they may be hidden in their natal
cloud because of their youth (Yorke 1986; Castro et al. 2014).

On the cool side, Fig. 2.23 shows an absence of observed stars for log L/L� & 6.15 and Teff ∼<
35 000 K. As the evolutionary models predict about 30% of the core hydrogen burning to take
place at Teff ∼< 35 000 K in this luminosity regime, which may indicate that the inflation in the
models of Köhler et al. is too strong. On the other hand, again, the absence of correspondingly
cool stars 30 Doradus may be a result of the local star formation history.
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In the luminosity range below, at 5.5 . log L/L� . 6.15, stars as cool as Teff ∼< 15 000 K are
observed for which McEvoy et al. (2015) concluded that they are still core hydrogen burning
objects. The observed stars are somewhat cooler than the coolest core effective temperature
of our models, which may argue in favour of inflation in real stars. Note that the life time of
stars in the regime Teff < 20 000 K is only 10% for the Köhler et al. models in the considered
luminosity range.

In summary, as the stellar evolution models for these high masses are still quite uncertain,
we do not find possible to argue for or against inflation being present in the observed stars
considered here based on Fig. 2.23. In fact, it is intriguing that most of the observed stars
are found in the regime where the inflated and non-inflated models overlap. Nevertheless, the
observed sample above log L/L� ' 5.5 might constitute the best test case, since according to
our models, the envelopes of all of them are expected to be strongly affected by the Eddington
limit. Model atmosphere calculations for these stars, which include inflation, might shed new
light on this question.

2.8.2 Further possible consequences of inflation

S Doradus type variability

Gräfener et al. (2012) argue that the S Doradus type variability of LBVs may be related to the
effect of inflation, and, in particular, focussed on the case of AG Car (Groh et al. 2009). They
propose that an instability sets in when their 70 M� chemically homogeneous hydrostatic stellar
model is highly inflated (≈ 120 R�) by virtue of which the inflated layer becomes gravitationally
unbound and a mass-loss episode follows.

In contrast to this idea, our inflated hydrodynamic stellar models do not show any signs of
this kind of instability. This could be because of various simplifying assumptions made in
the models of Gräfener et al. (2012), in particular, their neglect of the convective flux in the
inflated envelopes (cf. Sect.2.6). Nevertheless, the physics of convection is very complex in
these envelopes, and our results do not necessarily imply that instabilities do not occur.

In fact, considering the hot edge of the S Doradus variability strip, according to Smith et al.
(2004), Fig. 2.22 shows that it roughly separates the models with a low maximum convective
efficiency (ηmax < 0.2) from those with a higher convective efficiency. If these high fluxes could
not be achieved in these envelopes (cf. Sect. 2.6), a dynamical instability might well be possible.

The hot edge of the S Doradus variability in the HR diagram also coincides quite well with
the borderline separating mildly (∆r/rcore < 1) from strongly (∆r/rcore > 1) inflated models.
Comparing this with the observed distribution of very massive stars in Fig. 2.23, which indicates
that essentially no stars are found far to the cool side of this line, could indicate again that
strongly inflated envelopes are indeed unstable and might lead to S Doradus type variability and
an increased time-averaged mass-loss rate.

LBV eruptions

Glatzel & Kiriakidis (1993a) speculated that strange mode pulsations might be responsible for
the LBV phenomenon. These pulsations are characterized by very short growth times (∼ τdyn)
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and small brightness fluctuations roughly of the order ∼ 10 . . . 100 mmag (Glatzel et al. 1999;
Grott et al. 2005). However, the mass contained in the pulsating envelopes of their models is
negligible compared to the stellar mass, and the associated brightness variations cannot explain
the humongous luminosity variations observed in LBV eruptions.

We have seen in Sect. 2.5 that an inflated envelope often produces a density inversion. These
density inversions have been repeatedly proposed as a source of instabilities giving rise to
eruptive mass-loss in LBVs (Maeder 1989; Maeder & Conti 1994; Stothers & Chin 1993).
Given our results, we consider it unlikely that a density inversion can be the sole cause of LBV
eruptions. Density inversions are a generic feature present in a multitude of our models (see
Fig. 2.16), while the LBV phenomenon is quite rare. Furthermore, the density inversions in our
models are found very close to the surface of the star with very small amounts of mass above
the inversion.

Given our results, inflation per se appears unlikely to cause LBV eruptions, again, because it
occurs too abundantly in our models, and also because the mass of the inflated envelope is gen-
erally very small. However, Fig. 2.24 reveals that this is not so for our coolest models. Whereas
for most models the mass of the inflated envelope is smaller than ∼ 10−3 M�, intriguingly it
rises to several solar masses in the models that have effective temperatures below ∼ 10 000 K.
These cool models, of which detailed examples are presented in Fig. 2.34, also show the highest
Eddington factors (Fig. 2.3) and the strongest inflation (Fig. 2.11). This behaviour is seen in the
mass range of 40 . . . 100 M�, which corresponds well to the masses of observed LBVs.

A key feature in our cool models with massive inflated envelopes is visible in Fig. 2.21. As
the opacity in the hydrogen recombination zone becomes very large, effectively blocking any
radiation transport, convective efficiencies of the order of η ' 1 are needed to transport the
stellar luminosity through this zone. Also, in the iron convection zone at the bottom of the
envelope, a high convective efficiency (η ' 0.5) is found in these models. As shown in Figs. 2.19
and 2.20, this requires sonic or even supersonic convective velocities in the framework of the
standard MLT as implemented in our code. It thus appears conceivable that in reality convection
is less efficient in this kind of a situation, e.g. because of viscous dissipation. When a star enters
this region with a massive inflated envelope, throughout which the stellar luminosity can neither
be transported by radiation nor by convection, hydrostatic equilibrium is possible any more, and
the loosely bound inflated envelope may by dynamically ejected. We believe that this scenario
may relate to major LBV eruptions.

As proposed by Langer (2012), a rapid evolutionary timescale of a star may be required to
obtain LBV outbursts in addition to the star reaching the Eddington limit. If evolution on the
thermal timescale is rapid enough, this might produce LBVs after core hydrogen exhaustion.
This rapid evolution may relate to most of the observed LBVs in our Galaxy and the Magel-
lanic Clouds, as well as LBVs after core helium exhaustion, which may address the recently
accumulated evidence of LBV outbursts in immediate supernova progenitors (Smith & Arnett
2014).

Supernova shock break-out

A recent study by Moriya et al. (2015) concluded that inflated stellar models can help to explain
the extended rise time of the shock break-out signal from the Type Ib supernova SN2008D
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Figure 2.24: Mass contained in the inflated envelope for all inflated models of our grid, as a function of
the effective temperature. The effective actual mass of the models is colour-coded (see colour bar to the
right).

(Soderberg et al. 2008). In this scenario, the shock break-out occurs deep inside the inflated
envelope and consequently the rise time is determined by the radiative diffusion time of the
envelope and not the light crossing time. They also noted that more of these kinds of events, if
observed in the future, might serve as indicators of inflated supernova progenitors.

Whereas the above result supports the idea that hydrogen-free Wolf-Rayet stars may possess
inflated envelopes (Petrovic et al. 2006; Gräfener et al. 2012), LBVs have also been considered
to be immediate progenitors of supernovae (Kotak & Vink 2006; Groh et al. 2013). In the realm
of high cadence supernova surveys, this opens up the possibility to also test the existence of
envelope inflation in hydrogen-rich stars through supernova shock break-out observations.

2.9 Discussion and conclusions

We investigated the internal structures of the massive star models computed by Brott et al. (2011)
and Köhler et al. (2015) using a 1-D hydrodynamical stellar evolution code, with particular
emphasis on the Eddington limit. We find that the conventional idea of sufficiently massive
stars reaching the Eddington limit at the stellar surface is not reproduced by our core hydrogen
burning models, not even at 500 M� (cf. Figs. 2.7 and 2.8). Instead, we find a suitably defined
Eddington limit inside the star (Eqn. 2.3) is reached by models with log(L/L�) & 5.6 (Fig. 2.2),
which leads to sub-surface convection, envelope inflation (Fig. 2.13), and possibly to pulsations.
Many of our models even exceed this Eddington limit, and in the extreme case of red supergiants
even by factors of up to seven (Fig. 2.3), with the consequence that strong density inversions
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develop such that hydrostatic equilibrium is maintained (Fig. 2.17).
In the analysed models, whose initial composition is chosen to match that of the LMC, all

stars above ∼ 40 M� reach the Eddington limit in their envelopes. As iron opacities are mainly
responsible for this phenomenon, we expect that this mass limit is higher at a lower metallicity,
and similarly lower for massive stars in our galaxy. Furthermore, there may be two groups
of stars for which this limit comes down even further. First, the centrifugal force in rapidly
rotating stars may lead to similar conditions in the envelope layers near the stellar equator, i.e.
to a strong latitude dependence of inflation. Perhaps, this could give rise to the so-called B[e]
supergiants, which show a slow and dense equatorial wind and a fast polar wind at the same
time (Zickgraf et al. 1985). Second, the mass losing stars in interacting close binary systems
evolve to much higher L/M-values than corresponding single stars (Langer & Kudritzki 2014),
and are therefore expected to reach the Eddington limit for much lower initial masses.

The stability of the inflated envelopes is not investigated here, but many of them are likely
to be pulsationally unstable (Glatzel & Kiriakidis 1993a; Saio et al. 1998, Sanyal et al. in
preparation). If so, it is expected that the pulsations will lead to mass-loss enhancements (e.g.
Moriya & Langer 2015), or to the loss of the inflated envelope. In the latter case, the envelope is
expected to re-grow unless the achieved time average mass-loss rate exceeds the high critical
mass-loss rate (Sect. 2.4.2). We find that in our coolest models, the mass contained in the inflated
envelopes can reach several solar masses (Fig. 2.24), and speculate that their dynamical loss
may resemble LBV major eruptions (cf. Sect. 2.8.2). Consequently, even though reaching or
exceeding the Eddington limit may not immediately lead to strong outflows in stars, clearly the
mass-loss rate of the stars is strongly affected, in the sense that the mass-loss is significantly
enhanced one way or another.

It will be crucial to test observationally whether luminous, main-sequence stars indeed possess
inflated stellar envelopes. This possibility has not yet been investigated with stellar atmosphere
models for hot stars. Perhaps the best candidates are the S Doradus variables (Gräfener et al.
2012), which appear in the part of the HR diagram where our models predict a radius inflation
by more than a factor of two (cf. Fig. 2.10).

Finally, we note that besides massive stars, the Eddington limit is relevant to various other
types of stars, as luminous post-AGB star, X-ray bursts, Novae, R Corona Borealis stars, and
accreting compact objects. It may be interesting to assess to what extent similar phenomena as
found in this work might play a role in these objects.

2.10 Supplementary material

2.10.1 Interior structure of a 85 M� stellar model

2.10.2 Effect of efficient convection on inflation

Knowing that convective flux is proportional to the mixing length, we show here (Fig. 2.30) that
by increasing the mixing length parameter α in an inflated 300 M� model near the ZAMS, the
inflation gradually goes away and what we are left with is an almost non-inflated star, whose
radius is well-approximated by core radius rcore of the inflated model.
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Figure 2.25: Density structure of the stellar model. The black solid line marks the base of the inflated
envelope, i.e. where β = 0.15. The intersection of the dotted lines with the red line on either side mark
the points where β = 0.15 ± 0.045.
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Figure 2.26: Run of Γ in the interior of the stellar model.
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Figure 2.27: Rosseland mean opacity κ in the interior of the stellar model.
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Figure 2.28: Run of β(= Pgas/Ptot) in the interior of the stellar model.
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Figure 2.29: Fraction of flux carried by radiation (Lrad/Ltot) in the interior of the stellar model.
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Figure 2.31: Convective velocity, isothermal sound speed, and adiabatic sound speed profiles in a 147 M�
WNL type star with Ys = 89%.

2.10.3 Convective velocity profile in a WR model

In Fig. 2.31, the convective velocity is shown as a function of radius in a massive (147 M�)
WR-type (YS = 0.89) stellar model. The variation of isothermal and adiabatic sound speeds are
also plotted for comparison. The convective velocities exceed the local isothermal sound speed
in the envelope where conditions are non-adiabatic, i.e. the thermal adjustment time is short.
In these models, turbulent pressure becomes important (which is not taken into account in our
models) as well as standard MLT fails to be a good approximation for modelling convection.

2.10.4 Representative models

The profiles of different relevant physical quantities are shown for a few selected stellar models
at five distinct effective temperatures corresponding to the three peaks in Γmax and the two
troughs in between the peaks (cf. Fig. 2.2).
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Figure 2.32: Detailed structure examples for stellar models with an effective temperature near 50 000 K,
for three different luminosities (cf. Fig. 2). The dashed line marks the point at which β falls below 0.15,
i.e. the beginning of the inflated envelope. The square symbol marks the temperature TFe at which κ is
maximum because of the iron opacity bump. The hatched regions show the convective zones.
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Figure 2.33: Detailed structure examples for stellar models with an effective temperature near 25 000 K,
for three different luminosities (cf. Fig. 2). The dashed line marks the point at which β falls below 0.15,
i.e. the beginning of the inflated envelope. The square and the cross mark the temperatures TFe and TFe at
which κ is maximum because of the iron and the helium opacity bumps respectively. The hatched regions
show the convective zones.
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Figure 2.34: Detailed structure examples for stellar models with an effective temperature near 5 000 K,
for two different luminosities (cf. Fig. 2). The dashed line marks the point at which β falls below 0.15, i.e.
the beginning of the inflated envelope. The square, cross and the circle mark the temperatures TFe, THe,
and TH at which κ is maximum because of the iron, helium, and hydrogen opacity bumps respectively.
The hatched regions show the convective zones.

67



Chapter 2 Massive main-sequence stars evolving at the Eddington limit

lo
g

 (
ρ
 [

g
/c

m
3
])

log L/L⊙ = 4.5; Teff = 32628 K

-8

-6

-4

-2

 0

lo
g

 (
ρ
 [

g
/c

m
3
])

log L/L⊙ = 5.8; Teff = 32826 K

-8

-6

-4

-2

 0

 2

lo
g

 (
ρ
 [

g
/c

m
3
])

log L/L⊙ = 7.1; Teff = 32842 K

-10

-8

-6

-4

-2

 0

 2

lo
g

 (
T

/K
)

 4.5

 5.5

 6.5

 7.5
lo

g
 (

T
/K

)

 4.5

 5.5

 6.5

 7.5

lo
g

 (
T

/K
)

 4.5

 5.5

 6.5

 7.5

Γ

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Γ

 0.5

 0.6

 0.7

 0.8

 0.9

Γ

 0.75

 0.8

 0.85

 0.9

 0.95

 1

β

 0.7

 0.8

 0.9

β

 0.1

 0.2

 0.3

 0.4

 0.5

β

 0.05

 0.15

 0.25

κ
 [

c
m

2
 g

-1
]

 0.5

 1

 1.5

 2

κ
 [

c
m

2
 g

-1
]

 0.2

 0.4

 0.6

κ
 [

c
m

2
 g

-1
]

 0.25

 0.35

 0.45

L
ra

d
/L

to
t

 0

 0.2

 0.4

 0.6

 0.8

 1

L
ra

d
/L

to
t

 0

 0.2

 0.4

 0.6

 0.8

 1

L
ra

d
/L

to
t

 0

 0.2

 0.4

 0.6

 0.8

 1

lo
g

 (
o

p
ti
c
a

l 
d

e
p

th
)

Radius [R⊙]

-2

 0

 2

 4

 6

 8

 10

0 1 2 3 4 5 6

lo
g

 (
o

p
ti
c
a

l 
d

e
p

th
)

Radius [R⊙]

-2

 0

 2

 4

 6

 8

 10

0 5 10 15 20 25

lo
g

 (
o

p
ti
c
a

l 
d

e
p

th
)

Radius [R⊙]

-2

 0

 2

 4

 6

 8

 10

0 20 40 60 80 100 120

Figure 2.35: Detailed structure examples for stellar models with an effective temperature near 32 000 K,
for three different luminosities (cf. Fig. 2). The dashed line marks the point at which β falls below 0.15,
i.e. the beginning of the inflated envelope. The square symbol marks the temperature TFe at which κ is
maximum because of the iron opacity bump. The hatched regions show the convective zones.
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Figure 2.36: Detailed structure examples for stellar models with an effective temperature near 10 000 K,
for three different luminosities (cf. Fig. 2). The dashed line marks the point at which β falls below
0.15, i.e. the beginning of the inflated envelope. The square, cross and the circle mark the temperatures
TFe, THe, and TH at which κ is maximum because of the iron, helium, and hydrogen opacity bumps
respectively. The hatched regions show the convective zones.
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CHAPTER 3

The metallicity dependence of envelope
inflation in massive stars

D. Sanyal, N. Langer, D. Szécsi, S.-C. Yoon and L. Grassitelli
Astronomy & Astrophysics, to be submitted

3.1 Introduction

Massive stars, although rare, are cosmic engines in the universe. They drive the dynamical and
chemical evolution of galaxies with their strong stellar winds, high luminosities and spectacular
explosions. The earliest massive stars, i.e. the metal-free Population III stars may have played a
major role in the reionisation of the universe (Bromm et al. 2009). Furthermore, massive stars
in low metallicity environments are believed to be the progenitors of long duration gamma ray
bursts and pair instability supernovae (Heger & Woosley 2002; Langer et al. 2007). Recent
discoveries of superluminous supernovae like SN 2007bi (Gal-Yam et al. 2009) also point
towards very massive stars as progenitors. Modelling the evolution of massive stars even on
the main sequence become challenging at higher masses because of two major uncertainties:
mass-loss and energy transport processes (Langer 2012). Accurate models of massive stars
across a wide range of metallicities are therefore needed to facilitate comparisons with the
available observational data.

Recently evidence has accumulated that stars more massive than the often accepted upper
mass limit of ∼ 150 M� (Figer 2005) exist in the local universe. For example, Crowther et al.
(2010) estimated present day masses of up to 260 M� for several stars in the Tarantula nebula of
the LMC. Furthermore, in the recently concluded VLT-FLAMES Tarantula Survey of massive
stars (Evans et al. 2011) in the LMC, Bestenlehner et al. (2014) identified three stars with initial
mass estimates of & 150 M�. Therefore models of very massive stars with up-to-date physics
have become increasingly relevant.

While the mass-luminosity (M − L) relation for main-sequence stars is steep at lower masses,
L ∝ M5 for M ≈ M�, it is much less so at higher masses where L ∝ M1.1 for M ≈ 500 M�

(Köhler et al. 2015). In general one can show that L ∝ Mα such that α → 1 for M → ∞
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(Kippenhahn et al. 1990). Therefore one might wonder whether the Eddington limit, which is
proportional to L/M, will ever be reached considering simple opacity laws. The Eddington limit
is considered to be of central importance to the stability consideration of massive stars as noted
by A. S. Eddington in Eddington (1926), where he pointed out that if stars have a luminosity
greater than its Eddington luminosity, then the radiation emitted would blow up the star.

The classical Eddington limit, that is proportional to the electron-scattering opacity and the
star’s L/M ratio, is reached at & 105 M� for Solar composition (Kato 1985, 1986). But, when the
Eddington limit is defined in the stellar interior considering the Rosseland mean opacity, Sanyal
et al. (2015) showed that main-sequence models with LMC composition reach the Eddington
limit at a mass of M ' 40 M�. Such stellar models, instead of developing a strong outflow,
re-adjust their structure such that a dilute and extended envelope is produced, a process which is
called envelope inflation. This effect was earlier pointed out by Ishii et al. (1999) for zero-age
main-sequence models, and by Petrovic et al. (2006) and Gräfener et al. (2012) for helium star
models. As a result of such an envelope structure the surface temperatures of these models are
much lower than they would have been without this effect, and has consequences for the further
evolution of the stars (Köhler et al. 2015). Indeed, the distribution of OB stars in our Galaxy
shows many stars with masses > 30 M� in the effective temperature range 10 00− 30 000 K, and
it has been suggested that these stars are affected by envelope inflation (Castro et al. 2014).

The metallicity (Z) of a star affects many of its physical properties like the wind mass-loss rate,
opacity and the equation of state. The OPAL opacity tables from Iglesias et al. (1992) introduced
an opacity peak at T ∼ 2 × 105 K caused by bound-bound transitions of iron-group elements.
This opacity peak drastically changed the envelope structure of stellar models (Stothers & Chin
1993) and even new pulsational instability strips were discovered in the Hertzsprung-Russell
diagram (Pamyatnykh 1999). Since the Eddington factor depends on opacity, the Fe-bump
which is a function of Z plays a major role in determining the extent of envelope inflation in a
massive star model.

In this paper, we extend the study by Sanyal et al. (2015) over a wide range of metallicities
from Galactic to metal-free, and investigate the properties of the stellar models in the context of
the Eddington limit and envelope inflation. Section 3.2.1 presents an overview of the grids of
models used in this study while in Sections 3.2.2 and 3.3 respectively we explain our concept of
the Eddington limit and envelope inflation. We discuss how the Eddington limit and envelope
inflation change with metallicity in Sec. 3.4. We give our conclusions in Sec. 3.5.

3.2 Method

3.2.1 Stellar models

The stellar models used in the present study were computed with a one-dimensional hydro-
dynamic Lagrangian code (BEC) that includes up-to-date input physics including rotation
(for details, see Heger et al. 2000; Yoon et al. 2006; Brott et al. 2011; Köhler et al. 2015,
and references therein). Grids of models computed with five metallicities were used, i.e., for
the Milky Way (MW), LMC, SMC, I Zwicky 18 (I Zw 18) and metal-free (PopIII). The ZMW ,
the ZLMC and the ZSMC models are published in Brott et al. (2011) and Köhler et al. (2015),
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Figure 3.1: The mass fraction of the metals for the chemical compositions used in our model grids.

whereas the ZI Zw 18and the ZPopIII models are from Szécsi et al. (2015) and Yoon et al. (2012b),
respectively. The initial chemical compositions and the initial mass ranges in each of these
grids are summarised in Table 3.1, and the values of the metallicities on a linear scale are
shown in Fig. 3.1. In this paper, we consider only the core hydrogen burning models that are
either non-rotating or slowly rotating, i.e. with vrot ≤ 100 km s−1, vrot being the initial equatorial
rotational velocity at the photosphere.

Table 3.1: The initial chemical compositions (in mass fraction) and the range of initial masses (in units
of M�) of the stellar evolutionary sequences at different metallicities that were used in this study. The
symbol Xi,� refers the mass fraction of the element i in the Sun.

MW LMC SMC I Zw 18 PopIII

XFe/XFe,� 1 0.454 0.246 0.025 0
XO/XO,� 1 0.641 0.276 0.028 0

XHe 0.264 0.256 0.251 0.248 0.240
Minit 3 − 100 1 − 500 5 − 60 9 − 294 10 − 1000

The standard non-adiabatic mixing length theory (MLT, Böhm-Vitense 1958; Kippenhahn
et al. 1990) was used to model the energy transport in the convective zones in the stellar interior
with a mixing length parameter of α = l/Hp = 1.5 (Langer 1991), where l is the mixing
length and Hp is the pressure scale height. The parameters for core-convective overshooting
(α = 0.335) and rotationally induced chemical mixing ( fc = 0.0228, fµ = 0.1) were adopted
from Brott et al. (2011). Transport of angular momentum by Spruit-Tayler dynamo (Spruit
2002) was treated following Petrovic et al. (2005). Radiative opacities from the OPAL tables
(Iglesias & Rogers 1996) were used for temperatures above 8000 K. For temperatures below
8000 K the opacity tables from Alexander & Ferguson (1994) were used.

3.2.2 The Eddington Limit

Conventionally, a star is considered to be at the Eddington limit when its luminosity L equals
its Eddington luminosity (LEdd ), defined as the condition when the radiative acceleration (grad)
balances the gravitational acceleration (g) at the stellar surface. The radiative acceleration is
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proportional to the stellar luminosity and the opacity κ. Considering electron scattering as the
only source of opacity, i.e., κ = κe, the classical Eddington factor is defined as

Γe =
grad

g
=

κeL
4πcGM

, (3.1)

where the physical constants have their usual meaning. Using this definition, stellar models
reach the Eddington limit only at masses M & 105 M� (Kato 1986).

When the Rosseland mean opacities are used, the LMC models from Köhler et al. (2015) do
not reach the Eddington limit at their surface, even at 500 M� (Sanyal et al. 2015). However,
one can also define an Eddington factor locally (Langer 1997) such that

Γ(r) :=
Lrad (r)
LEdd (r)

=
κ(r)Lrad (r)
4πcGM(r)

, (3.2)

where M(r) is the Lagrangian mass coordinate, κ(r) is the Rosseland mean opacity and L(r)
is the local luminosity. Since the convective luminosity does not contribute to the radiative
acceleration, it is not considered in Eqn. (3.2). Using this definition, core-hydrogen burning
LMC models with masses as low as ∼ 40 M� reach the Eddington limit in their interior (Sanyal
et al. 2015). However, instead of a super-Eddington outflow, a hydrostatic structure with an
extended envelope is obtained (cf. Sec. 3.3), often associated with a density inversion. It has
been argued in the literature (Langer 1997; Sanyal et al. 2015) that the concept of the Eddington
limit as a stability criterion does not apply in the stellar interior. If not explicitly stated otherwise,
we will use the definition in Eqn. 3.2 for the Eddington factor in the rest of the paper.

Since the Rosseland mean opacity κ depends on the chemical composition and hence the
metallicity, the Eddington factor is also expected to be a function of metallicity. Sanyal et al.
(2015) showed that in the LMC models from Köhler et al. (2015), the opacity peaks caused
by the partial ionisation of iron group elements, helium and hydrogen shape the profile of the
Eddington factor inside a massive star model. In this paper we investigate how the metallicity
influences the Eddington factor in the stellar interior.

3.2.3 Mass-loss

MW, LMC, SMC and I Zw 18models:

For stellar models with effective temperatures higher than 22 000 K, the mass-loss prescription
from Vink et al. (2001) was employed to account for the winds of O- and B-type stars. The mass-
loss rate prescription from Nieuwenhuijzen & de Jager (1990) was used at effective temperatures
less than 22 000 K, if the Nieuwenhuijzen & de Jager (1990) mass-loss rate exceeded that of
Vink et al. (2001). In the Wolf-Rayet (WR) evolutionary phases, i.e. when the surface helium
mass fraction (Ys) is greater than 70%, the empirical mass-loss rates from Hamann et al. (1995)
was used, scaled down by a factor of 10 (Yoon et al. 2006).
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Pop III models:

For metal-free hot stars, a very low mass-loss rate of 10−14 M� yr−1 is predicted near the classical
Eddington limit (Marigo et al. 2003; Krtička & Kubát 2006; Yoon et al. 2012b). Therefore, in the
ZPopIII grid stellar wind mass-loss rates were applied only if there was any surface enrichment
of CNO elements by rotational mixing. Hence the non-rotating models practically did not suffer
from any mass-loss over their lifetimes. For hydrogen-rich (Xs(H) > 0.3) rotating stars, the
mass-loss prescriptions from Kudritzki et al. (1989) and Nieuwenhuijzen & de Jager (1990)
were used for Teff > 104 K and Teff > 104 K respectively, with a metallicity scaling of Z0.69. For
helium-rich (Xs(H) < 0.3) stars, mass-loss rates following the prescription of Nugis & Lamers
(2000) were applied that has a metallicity scaling of Z0.5. However, this mass loss enhancement
for helium-rich stars is employed only up to Z = 10−5, because at higher metallicities iron lines
become important and the CNO lines are not any more the main driving force causing the stellar
wind (Vink & de Koter 2005).

Rotationally enhanced mass-loss

The effect of rotationally enhanced mass-loss (Friend & Abbott 1986; Langer 1997) is treated in
our models as,

Ṁ(v) = Ṁ(v = 0)
(

1
1 −Ω

)0.43

, (3.3)

where

Ω =
v

vcrit
and vcrit =

√
GM

R
(1 − Γavg). (3.4)

Here Γavg is the Eddington factor averaged over the region with optical depth between 2/3 and
100. The enhancement of the mass-loss rate is limited by the thermal timescale mass-loss rate
of the star to avoid the singularity in Eqn. (3.3) as v approaches vcrit (Yoon et al. 2012b). Note
that for the models analysed in this paper the enhancement to the mass-loss rate is negligible.

3.2.4 Additional models

In the evolutionary sequences computed by Brott et al. (2011) and Köhler et al. (2015), the
data regarding the structure of a stellar model is stored for every 50th computed model, i.e., at
non-regular time intervals since the time steps are not uniform along the evolution. For the
ZI Zw 18sequences, every 250th model is stored. In order to have a higher model density in certain
parts of the HR diagram for the present study, several evolutionary tracks (without rotation)
were re-computed with the same input parameters, as summarised in Table 3.2.

3.3 Envelope inflation

As already mentioned in Sec. 3.2.2, stellar layers reaching the Eddington limit in their interior
lead to extended and dilute envelopes (Ishii et al. 1999; Gräfener et al. 2012; Köhler et al. 2015;
Sanyal et al. 2015). An example of the density structure of such an inflated stellar model is
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Chapter 3 The metallicity dependence of envelope inflation in massive stars

Table 3.2: The initial masses (in units of M�) of the non-rotating evolutionary sequences that were
re-computed for this study.

MW LMC SMC I Zw 18

40 40 50 100
50 60 60 150
60 70 80 196
80 100

shown in Fig. 3.2 where the region with a steeply declining density profile is referred to as the
non-inflated core and the region with a relatively flat density profile is referred to as the inflated
envelope. Whereas the core radius (rcore ) of this model is 25.2 R�, the extent of the inflated
envelope is about 1.7 times that of rcore . The profile of the Eddington factor shows that in the
core it is Γ < 1, but in the envelope Γ ≈ 1. At the surface of the star, Γ drops to 0.82.

To our knowledge, an analytical criterion for inflation is not available in the literature for
models at various evolutionary stages, i.e from hot WR stars (Petrovic et al. 2006) to cool
core-hydrogen burning red supergiants (Gräfener et al. 2012; Sanyal et al. 2015; Szécsi et al.
2015). In this study we follow Sanyal et al. (2015) to determine whether a stellar model is
inflated or not. Since inflation is related to values of the Eddington factor, which in turn implies
dominance of radiation pressure over gas pressure, the inflated region must have a small enough
value of β, where β is the ratio of the gas pressure (Pgas) to the total pressure (P). However, for
inflated models with Teff . 10 000 K (cf. Sec. 3.4.3) the assumption of a small β-value is not
valid any more in the outer part of the inflated envelope (cf. Appendix D in Sanyal et al. 2015).
However, at the base of the inflated region we find this assumption to be always valid. For all
the model grids considered in this paper we therefore adopt a threshold value of β = 0.15 to
identify the base of the inflated envelope rcore in a stellar model in accordance with Sanyal et al.
(2015). We motivate our choice of using a threshold value of β to identify the occurrence of an
inflated envelope below.

The equation of hydrostatic equilibrium inside a star is given as

dP
dr

= −ρg, (3.5)

where ρ is the density at r. Writing P = Pgas + Prad where the radiation pressure is Prad = 1
3aT 4,

the above equation can be cast in the following form:

(Γ − 1) =
1
ρg

dPgas

dr
. (3.6)

Therefore, Γ→ 1 leads to a vanishing gas pressure gradient and Γ > 1 in the hydrostatic stellar
interior merely implies a positive gas pressure gradient (Joss et al. 1973; Paxton et al. 2013).
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Figure 3.2: Density profile of a 79 M� solar metallicity core-hydrogen burning model showing the inflated
envelope. The model had an initial mass of 100 M�. The radial co-ordinate has been scaled with the core
radius rcore . The blue line (refer to the right Y-axis) shows the run of the Eddington factor Γ (eqn. 3.2) in
the interior of the model. The Eddington factor gets close to unity in the inflated region.

Using Eqn. (3.5) in Eqn. (3.6), we get

(Γ − 1) = −
dPgas

dP
= −

d(βP)
dP

(3.7)

= −β − P
dβ
dP

. (3.8)

Locally, for β either constant or slowly varying, it is

Γ ' 1 − β. (3.9)

Therefore Γ . 1 implies a low value of β. Since we adopted β = 0.15 as the inflation criterion,
we expect to find inflated models with Γ > 0.85, and this is indeed the case (Sanyal et al. 2015).
Equation 3.9 was earlier arrived at by Gräfener et al. (2012) and the validity of the assumption
of a constant β in the inflated envelope was shown in studies by Gräfener et al. (2012) and
Sanyal et al. (2015).

To show that Eqn. (3.9) is consistent with the occurrence of a flat density profile, Eqn. (3.6)
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can also be written as

(Γ − 1) =
1
ρg

d
dr

(
RρT
µ

)
. (3.10)

Rearranging Eqn. (3.10) and dividing by ρT on both sides (assuming a constant µ), we get

1
Hρ

:=
d ln ρ

dr
=

µ

RT
(Γ − 1)g −

d ln T
dr

=
gµ

RT
(Γ − 1 + ∇β) ,

where Hρ is the density scale height and ∇ is the temperature gradient defined as ∇ := d ln T
d ln P .

Substituting β = 1 − Γ in the above expression, we obtain

1
Hρ

=
µg

RT
(∇ + 1)(Γ − 1), (3.11)

which implies that Hρ → ∞ as Γ→ 1. Therefore, when Γ(r) is close to unity, the density scale
height becomes very large and leads to an extended, flat density profile which we identify as a
signature of inflation.

Quantitatively, we define inflation in a stellar model as ∆r/rcore := (R? − rcore )/rcore , where
R? is the stellar radius and rcore is the radial co-ordinate where the β value drops below 0.15 for
the first time in the stellar interior. Since there is some arbitrariness in our inflation criterion
only those models for which our criterion predicts ∆r/rcore > 0.05 are considered to be inflated.

Langer (1997) showed that if the Eddington factor as defined in the stellar interior as

Γ′(r) =
κ(r)L(r)

4πcGm(r)
, (3.12)

i.e., taking the total luminosity into account, then the Schwarzschild criterion for convective
instability can be written in the following form:

Γ′(r) ≥ (1 − β)
32 − 24β

32 − 24β − β2 . (3.13)

For β � 1, the above inequality reduces to

Γ′(r) ≥ (1 − β). (3.14)

Since Γ = Γ′
Lrad

L from Eqns. (3.2) and (3.13), the above inequality can be written as

Γ ≥ (1 − β)
Lrad

L
(3.15)

Since Lrad ≤ L everywhere inside the star, from Eqns. (3.9) and (3.14) we conclude that
the inflated envelope will always be convectively unstable. Furthermore, the densities in the
sub-surface convection zones of massive stars are low, and convection is strongly non-adiabatic
such that in general the luminosity carried by convection is much smaller than that carried by
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Figure 3.3: The zero-age main-sequence (solid lines) and the terminal-age main-sequence lines (dotted
lines) above log (L/L�) > 4 of the analysed stellar models at different metallicities. The masses of some
representative models (black squares) are indicated along the ZAMS. The position of the TAMS when
the models start to develop envelope inflation is marked with coloured dots and the the corresponding
initial masses of those models are labelled alongside.

radiation, and hence Lrad /L ≈ 1, or Γ ≈ Γ′.

3.4 Results

3.4.1 Hertzsprung-Russell (HR) diagram

The HR diagram in Fig. 3.3 shows the zero-age main-sequence (ZAMS) and the terminal-age
main-sequence (TAMS) of the analysed non-rotating models. The ZAMS is defined by the
condition that 3% of hydrogen (by mass) has been burnt whereas the TAMS is defined by the
location at which the models reach the maximum radius over their main-sequence lifetime, i.e.,
until the central helium mass fraction is < 0.98.

The ZAMSs of the different metallicities are located roughly parallel to one another up to
log L/L� ∼ 6 on the HR diagram , such that the Pop III ZAMS has the highest Teff (and smallest
radius) and the MW ZAMS has the lowest Teff (and largest radius) for corresponding model
masses.
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The LMC ZAMS reaches a maximum Teff of ∼ 57 000 K and then starts to bend towards lower
values around log L/L� ∼ 6.6, that corresponds to a mass of ∼ 200 M�. Above this critical
mass the surface temperature of the ZAMS models decrease further. The lower the metallicity,
the higher is the luminosity and the effective temperature at which the bend is expected to be
located (Ishii et al. 1999). This feature is not seen for all the metallicities in Fig. 3.3 because
the initial mass ranges of the evolutionary sequences do not extend to high enough values (see
Table 3.1). Nevertheless one can notice an increase in the slope of the ZAMS’s in the upper HR
diagram.

Using the latest OPAL opacities, the bending of the ZAMS was earlier investigated by Ishii
et al. (1999). They computed models with metallicities ranging from Z = 0.1 to Z = 0.004 and
found that the ZAMS curves redwards at sufficiently high masses for all the metallicities. The
Solar metallicity ZAMS in their study had a bend at M ∼ 100 M� which is consistent with our
results.

The redward curving of the ZAMS is a consequence of envelope inflation of massive luminous
stars, as discussed in Sec. 3.3. When the layers in the stellar interior reach the Eddington limit
either because of an opacity bump or because of a high L/M ratio, the high radiation pressure
pushes the layers outwards such that density and hence opacity decreases, and the Eddington
factor obtains a value . 1.

If convection is efficient then the star does not need to re-adjust its structure, but in the
luminous stars discussed here the low densities in their outer layers implies that convective
energy transport within the framework of the standard MLT is not efficient enough to bring
down the Eddington factor below one. Therefore the envelope expands giving rise to a core-halo
density structure (Fig. 3.2).

Table 3.3: Model properties (mass, luminosity, effective temperature and the classical Eddington factor)
at the points marked by filled dots in Fig. 3.3 where the TAMSs bend redwards.

Z Minit ( M�) Mnow ( M�) log L/L� Teff [K] Γe

MW 25 23.6 5.27 20783 0.20
LMC 25 24.4 5.29 24066 0.21
SMC 30 29.3 5.48 25409 0.26

I Zw 18 34 33.8 5.59 30787 0.30
PopIII 60 60.0 6.03 37417 0.47

The redward bend is also present in the TAMS lines of all metallicities. The higher the
metallicity, the lower is the luminosity at which the bend occurs, similar to the trend expected
for the ZAMS lines. The TAMS however curves redwards at a lower luminosity than the
ZAMS. For example, the ZLMC TAMS bends at log L/L� ≈ 5.3 whereas the ZAMS bends at
log L/L� ≈ 6.6. From the mass-luminosity relation for homologous stars, we know that L ∝ µβ

for a fixed mass, where the exponent β varies in the range 3 − 6 (Kippenhahn et al. 1990).
Therefore, at TAMS a model has a higher L/M value than at ZAMS because of a higher mean
molecular weight.
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The stellar parameters at the points (marked with filled dots in Fig. 3.3) where the TAMS lines
bend towards cooler effective temperatures are noted in Table 3.3. This feature marks the onset
of envelope inflation because below this bend we do not find any TAMS model to be inflated
but above the bend we find inflated models. With a decrease in metallicity the opacity in the
stellar envelope decreases (cf. Sec. 3.4.4) and hence Γ ≈ 1 can be achieved only with a higher
L/M value. Therefore the low-Z TAMS models show envelope inflation at higher luminosities.
The TAMS extends to temperatures below ∼ 5000 K, leading to core hydrogen-burning red
supergiant models. We note that the TAMS bending occurs before we identify the first inflated
model. This might be related to our ad-hoc criterion for inflation.

Furthermore, the TAMS for ZMW , ZLMC and ZI Zw 18bend bluewards above log L/L� of 5.7,
6.0 and 6.8 respectively that has not been shown in Fig. 3.3 for the sake of clarity. This blueward
bend occurs because the mass-loss rates in this part of the HR diagram are high enough to strip
the hydrogen-rich outer layers of the envelope and produce helium-rich WR models (Brott et al.
2011; Köhler et al. 2015). Once the helium-rich layers are exposed, the mass-loss rates increase
even further such that the models evolve towards higher surface temperatures, or the helium
ZAMS.

3.4.2 The spectroscopic HR diagram

In the spectroscopic HR (sHR) diagram introduced by Langer & Kudritzki (2014), instead of the
luminosity the quantity L := T 4

eff
/g is plotted as a function of the effective temperature. This

has the advantage over the standard HR diagram that one neither needs to know the distance
to a star nor its reddening to represent it on a sHR diagram. Furthermore, the quantity L is
proportional to Γe such that

Γe =
κeL

4πcGM
=
κeσT 4

eff

cg
=
κeσ

c
L , (3.16)

where the constants have their usual meaning. Hence for Solar hydrogen abundance,

log(Γe) ' log(L /L�) − 4.6. (3.17)

Figure 3.4 shows the maximum Eddington factor Γmax in the interior of the analysed models
for the five grids. Since the iron bump opacity increases non-linearly (cf. Fig. 3.8) with increasing
iron abundance, i.e., with increasing metallicity, layers in the stellar interior reach the Eddington
limit at a lower L , i.e., at a lower L/M. This is demonstrated in the different panels of Fig. 3.4.
Whereas we find models with Γmax > 0.9 for masses as low as ∼ 30 M� in the MW grid, the
same is achieved at M ∼ 100 M� in the Pop III grid. Furthermore, an evolutionary model with a
higher initial mass encounters a higher Γmax earlier in its evolution because of its higher L/M
ratio. For example, the 50 M� MW sequence starts to develop super-Eddington layers in the
midst of its main-sequence life, whereas the 80 M� sequence already has Γmax > 1 on its ZAMS.

In the ZMW and the ZLMC grids, there are models with Γmax > 1 in the Teff range 35 − 55 kK.
These models have the Fe opacity peak close to their surface where convective energy transport
is inefficient such that Γmax reaches values above one (Sanyal et al. 2015). In the temperature
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Figure 3.4: Spectroscopic Hertzsprung-Russell diagrams showing the non-rotating and slowly-rotating
core-hydrogen burning models in the five grids corresponding to the different metallicities (see labels).
The left Y-axis shows the quantity log(L /L�) whereas the right Y-axis shows the corresponding values
of log(Γe), in all the five panels. The Γe values are computed at the stellar surface considering electron-
scattering opacity with a hydrogen abundance of X = 0.73 (completely ionised) and the black dotted
line marks the location Γe = 1. Note that the assumption of completely ionised hydrogen breaks down
for models with Teff below ≈ 10 000 K. Black, blue and red dots correspond to models with Γmax < 0.9,
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range 20 − 30 kK but at log (L /L�) > 4.4, we also find models with Γmax > 1. These models
are hydrogen-deficient, either because of strong mass-loss or because of efficient rotational
mixing previously. The super-Eddington layers in these models are caused by the helium opacity
bump located close to their surface, coupled with inefficient convection. The models with SMC
metallicity or lower do not evolve to have helium-rich envelopes during their main-sequence
evolution, at least not in the mass and rotational velocity range considered here. For the SMC
and the I Zw 18metallicity, the Fe-opacity peak, although present, is much weaker compared to
the MW and the LMC. In other words, to reach the same value of Γmax the models with lower
metallicity need to have a higher L/M ratio.

In the 60 M� MW sequence for example, Γmax exceeds unity very close to the ZAMS but
at Teff < 32 kK Γmax falls below one. This drop in Γmax is explained by relatively efficient
convection in the envelope as the Fe-bump moves deeper into the star where densities are
relatively higher. The evolution of Γmax versus Teff for the 60 M� sequence is shown in Fig. 3.5.
The increase of Γmax at Teff < 14 000 K is explained by strong mass-loss that increases the
L/M ratio and the surface helium abundance. However we note that Γe increases throughout its
main-sequence evolution. A similar trend exists in other evolutionary sequences in Fig. 3.4.

None of the Pop III models in the investigated parameter range have Γmax > 1 at Teff >
10 000 K. Since the Fe-bump is completely absent, Γ = 1 is never reached. Neither are these
models helium-enriched at their surface because of negligible wind mass-loss that would have
increased their L/M ratio.

The log Γe values shown on the right Y-axis in Fig. 3.4 gives little information about the Γmax

in the stellar interior. For example the 80 M� MW ZAMS model has super-Eddington layers in
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its envelope but its Γe value is only 0.27. This shows that Γe is not a good proxy for the true Γ

while investigating the structure and the stability of massive star envelopes.
At the stellar surface the classical Eddington factor can not exceed unity if hydrostatic

equilibrium is to be maintained. Therefore Γe = 1 is an impenetrable upper limit (Langer &
Kudritzki 2014). However in the ZLMC grid there are apparently many models with Γe > 1
(Fig. 3.4) but they are all helium enriched at the surface such that X � 0.73 (Köhler et al. 2015).
The true Γe = 1 for these models therefore is located at a higher L such that they all lie below
it. For example, if X = 0 the Γe = 1 line in Fig. 3.4 shifts upwards by 0.24 dex.

Across all the metallicities, there are models with Γmax > 1 at Teff < 9000 K. This is because
of the opacity peak caused by hydrogen recombination, and hence is not influenced by the metal
content in the star. The Γmax values of these models can be as high as 6 for the MW models
to & 8 for the Pop III models, i.e., in the outer envelope (around the hydrogen recombination
temperature) of such a model the luminosity transported by radiation can be a few times the
Eddington luminosity (Sanyal et al. 2015). The opacities in the hydrogen recobination zone can
be ∼ 10 times that of the Fe-opacity peak. Hydrostatic equilibrium in these super-Eddington
layers is maintained by building up a positive gas pressure gradient and a positive density
gradient (Joss et al. 1973; Sanyal et al. 2015).

One might expect that these peculiar structures, coupled with the fact that they are located
beyond the observed Humphreys-Davidson (H-D) limit (Humphreys & Davidson 1979) are
prone to various instabilities and possibly undergo violent mass-loss episodes such that it
prevents them from staying long enough on the cool side of the H-D limit. However, in our
hydrodynamic 1-D models we find no sign of a violent outflow.

3.4.3 dependence of envelope inflation on metallicity

The extent of envelope inflation in the analysed models is summarised in the sHR diagrams
in Fig. 3.6. Comparing with Fig. 3.4, we note that barring a few, none of the models with
Γmax < 0.9 are inflated whereas models with Γmax > 1 all have inflated envelopes. Therefore, as
mentioned in Sec. 3.3 the occurrence of inflated envelopes is related to models approaching the
Eddington limit (as defined by Eqn. (3.2)) in their interior. In general, the hotter models are less
inflated than the cooler models for a given L , in agreement with the results obtained by Sanyal
et al. (2015). This is expected because the effective temperature is strongly affected by inflation.
The strongest inflation is found in models with Teff . 8000 K, for all Z. The most extreme cases
are found in the ZI Zw 18and the ZPopIII models, where ∆r/rcore can go up to a few hundred.

The Eddington limit is either approached with large opacities or with a high L/M ratio.
Models with lower metal abundances, i.e. with a weaker Fe-opacity bump, need to attain
a higher L/M ratio, or a higher Γe, to reach the Eddington limit and inflate their envelopes.
Therefore inflation starts at higher L as Z goes down. However, we reiterate that reaching the
Eddington limit is a sufficient, but not a necessary condition for envelope inflation to occur
(cf. Eqns. (3.9) and (3.11)) because the gas pressure gradiant might also contribute in inflating
the envelope.

Figure 3.7 marks the regions in the sHR diagram that separates the non-inflated models from
the inflated ones, considering the same sample as in Fig. 3.6. For each metallicity grid the Teff

range of the models were divided into 20 equispaced bins and in each bin the un-inflated model
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Figure 3.6: An sHR diagram showing the metallicity dependence of inflation for the analysed models in
our grid. The left Y-axis shows the quantity log(L /L�) whereas the right Y-axis shows the corresponding
values of log(Γe). The Γe values are computed assuming a solar hydrogen abundance (completely ionised).
Models marked with open black dots are not inflated whereas the coloured dots represent models with
inflated envelopes. The colour of the dots indicate the strength of inflation, log (∆r/rcore ). The black line
is the ZAMS, and the masses of some representative models (in units of M�) are indicated along it.
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and the hatched region above it is the forbidden zone where no hydrostatic model can lie.

with the highest L was selected. These data points were then joined and the resulting line
was smoothed using Bézier splines. These lines do not extend to Teff below ∼ 10 000 K (see
Fig. 3.6). This is because we do not find any core-hydrogen burning model that is not inflated in
this temperature range and hence the boundaries cannot be drawn.

The lines for ZMW and ZLMC show a pronounced dip around Teff ∼ 35 kK. This is because
of the influence of the Fe-bump coupled with inefficient convection, as previously mentioned.
At lower temperatures convection becomes more efficient and so these lines move upwards to
higher L . For lower metallicities this dip is not clearly identified because the Fe-bump is either
weak, or absent.

In the MW and LMC grids, the models start to develop inflated envelopes even on the ZAMS,
at masses above ∼ 80 M� and ∼ 125 M� respectively. At lower metallicities this is also expected
to happen, albeit at higher masses and hence at higher L , which is beyond the parameter space
explored here.
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3.4.4 Role of opacity in determining envelope structure

OPAL opacities

The Rosseland mean opacity κ is a function of density, temperature and chemical composition
such that for a given ρ and T , κ increases with an increase in metallicity. This is demonstrated in
Fig. 3.8 where the three opacity peaks caused by partial ionisation of iron, helium and hydrogen
at their characteristic temperatures are visible. Note that the opacity does not vary linearly with
metallicity around the Fe bump temperature. The slope dκ

dZ is higher for higher values of Z.
In this section we investigate how the strength of these opacity peaks determine the density
structure of the inflated envelope.

In Fig. 3.9, we take a look at the OPAL opacities around the Fe-bump for the MW and LMC
metallicities. As mentioned before, in the inflated envelope the condition Γ ≈ 1 holds true. Let
the corresponding opacity be κEdd such that Γ = κEdd Lrad /4πcGm ≈ 1. Consider two models
with the same L/M but with metallicities ZMW and ZLMC such that κEdd = 0.6 (dot-dashed
line), and assume that the convective efficiency is negligible. At the peak of the Fe-bump
(log(T/K) ≈ 5.22) marked by the vertical black line, the MW model has to decrease its density
by two orders of magnitude, from 10−8 g cm−3 to ≈ 10−10 g cm−3 whereas the LMC model only
has to go down to ∼ 10−9 g cm−3 to satisfy the constraint Γ = 1. Therefore, the higher metallicity
model will adjust its envelope structure such that it has a lower envelope density. In practice
however, convection may mediate this effect (Sanyal et al. 2015).
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Opacity in the inflated envelope

As mentioned before, the opacity bumps caused by the partial ionisation zones at character-
istic temperatures play a major role in determining the structure of an inflated envelope. As
prototypical examples, we have selected three sequences with Z = ZLMC and initial masses
60 M�, 70 M� and 100 M�. The base of the inflated envelope in these models is located around
the characteristic Fe-bump temperature TFe ≈ 180 000 K. The maximum opacity within the
Fe-bump (κmax

Fe ), i.e. between 5 < log(T/K) < 5.5, for the three sequences are shown in the top
panel of Fig. 3.10, for that part of the evolution where the models are not helium-enriched at
the surface, i.e. Ys < 0.3. At any given value of ∆r/rcore , the higher mass model has a lower
κmax

Fe because it has higher luminosity, and hence needs to decrease its opacity further to maintain
κ ≈ κEdd .

The 60 M� sequence for example develops a larger inflated envelope as it evolves, while
increasing its L . The opacity within the Fe-bump and κmax

Fe therefore decrease in the initial
phase because convection is relatively inefficient. As the model evolves to cooler effective
temperatures, the Fe-bump goes deeper inside the star where densities are higher, and convection
becomes efficient. Hence, κmax

Fe increases at Teff . 25 000 K. In the case of the 70 M� sequence
however, there is a drop in κmax

Fe at Teff < 5000 K. In this phase of the evolution, a high mass-loss
rate (∼ 10−5 M� yr−1) causes a sharp increase in L . As a result, Lrad increases in the Fe-bump
region. But the convective efficiency does not increase enough (for details, see Sec. 3.6.1) such
that it can prevent κFe from going down.

Models with a higher metallicity have a stronger Fe-bump, the effect of which is seen in
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Figure 3.10: Top: Maximum opacity within the Fe-bump region for three different evolutionary sequences
with initial masses 60, 70 and 100 M� from the LMC grid, as a function of ∆r/rcore . The effective
temperature of the model is colour-coded. Only the part of the evolution where Ys < 0.3 has been plotted.
Bottom: Same as in the top panel, but for four metallicities.
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the bottom panel of Fig. 3.10. While κmax
Fe for the 80 M� ZMW model with the highest Teff is

∼ 1.2 cm2 g−1, the same quantity for the 196 M� ZI Zw 18model is ∼ 0.5 cm2 g−1. The slope of κmax
Fe

versus ∆r/rcore is steeper for the ZMW evolutionary sequences compared to the other sequences
at lower metallicities because of the nature of the OPAL opacities explained in Sec. 3.4.4.

3.4.5 Mass contained in the inflated envelopes

In this section we investigate the inflated envelope masses of our models. In Fig. 3.11 we
compare the 80 M� sequences in the MW, LMC and SMC model grids and show that for a
given Teff , the higher metallicity model has a lower envelope mass. At relatively high effective
temperatures (Teff > 45 000 K), i.e. when the sequences start developing inflated envelopes for
the first time during their evolution, the envelope masses for all three sequences are similar but
at as they evolve to lower Teff, the distinction becomes clear. For example, at Teff = 30 000 K
the 80 M� ZMW model has a distinctly smaller envelope mass than the corresponding ZLMC and
ZSMC models, the difference in their core radii being negligible. The ZLMC and the ZSMC models
however have comparable envelope masses over the whole Teff range. This trend is probably
related to the relative strength of the iron opacity peaks for these metallicities (cf. Fig. 3.8).

For evolutionary sequences of a given metallicity, say, ZLMC , the ones with higher L ’s have
lower envelope masses (Menv ), as shown in the top panel of Fig. 3.12. For small inflation, i.e.
∆r/rcore < 0.1, the envelope mass in the three ZLMC sequences is comparable but as ∆r/rcore

increases, the sequences separate out such that for a given ∆r/rcore , the 100 M� sequence with
the highest L has the lowest envelope mass and comparing with Fig. 3.10, the lowest κmax

Fe .

90



3.4 Results

10
-6

 

10
-5

 

10
-4

 

10
-3

 

10
-2

 

10
-1

 

10
0
 

10
1
 

 0.01  0.1  1  10  100

M
e

n
v
 [
M

⊙
]

60 M⊙
70 M⊙

100 M⊙

ZLMC

10
-6

 

10
-5

 

10
-4

 

10
-3

 

10
-2

 

10
-1

 

10
0
 

10
1
 

 0.01  0.1  1  10  100

M
e

n
v
 [

M
⊙

]

∆r/rcore

50 M⊙ ZMW

80 M⊙ ZMW

60 M⊙ ZLMC

70 M⊙ ZLMC

60 M⊙ ZSMC

80 M⊙ ZSMC

196 M⊙ ZIZw18

Figure 3.12: Top: Inflated envelope masses for 3 sequences from the LMC grid as a function of ∆r/rcore ,
such that Ys < 0.3.
Bottom: Same as in the top panel, but for four metallicities.

91



Chapter 3 The metallicity dependence of envelope inflation in massive stars

We note that for the 70 M� sequence for example, the envelope mass varies by more than five
orders of magnitude over its main-sequence lifetime. The drop in Menv near the end of the 70 M�

sequence is because of its blueward evolution in the HR diagram caused by strong mass-loss
(cf. Sec. 3.4.3).

In the bottom panel of Fig. 3.12, a few representative sequences from the MW, LMC, SMC
and I Zw 18grids are shown that depicts how Menv changes with inflation. The higher metallicity
models have lower envelope mass for a fixed ∆r/rcore . For example, at ∆r/rcore = 1, the 60 M�

ZLMC sequence has Menv = 3×10−3 M� while the 60 M� ZSMC sequence has Menv = 6×10−3 M�.
At high inflation (∆r/rcore > 10), some of the lines touch each other which is probably related
to the different L/M ratios of the models.

We investigate the envelope masses of all the inflated models in Fig. 3.13. The envelope
mass spans several orders of magnitude from ∼ 10−5 M� to ∼ 100 M�. In general we find that
Menv increases with a decrease in Teff for a given metallicity. This increase in Menv is distinctly
steeper at Teff . 8000 K (bottom panel of Fig. 3.13) compared to that at Teff > 10 000 K. Below
10 000 K, the low-Z models have very massive envelopes (bottom panel of Fig. 3.13). The
models which contain the hydrogen opacity bump show strong density inversions (Sanyal et al.
2015) and because of this sharp rise in density the envelope mass increases.

At Teff > 10 000 K, there is a spread in Menv over a few orders of magnitude but at the lowest
effective temperatures, the spread is much narrower. This is because the sequences which evolve
to effective temperatures below ∼ 8000 K do so for a narrow mass range. At higher initial
masses strong mass-loss prevents them from evolving to low surface temperatures, and at lower
initial masses inflation is not strong enough.

The envelope mass is determined both by the extent of inflation (∆r/rcore ) and the metallicity.
As the metallicity increases, the models with the most massive inflated envelopes (the cool
supergiants) are found at lower masses. This is a consequence of the applied mass-loss rates.
The wind mass-loss prescriptions used in stellar evolution codes are generally functions of
luminosity, temperature, mass, radius and chemical composition of the model. With an increase
in luminosity or mass, the wind mass loss rates increase and the most massive stars in our
ZMW and ZLMC grids become helium-rich WR stars (Köhler et al. 2015) and do not become cool
enough to contain massive envelopes (& 1 M�), as explained in the previous paragraph. At lower
Z this happens at higher masses. At Z = 0 models never become helium-rich at the surface
unless they are very fast rotators.

3.5 Discussion and conclusions

We have performed a study of the envelope structures of main-sequence massive star models
computed with the following metallicities: ZMW , ZLMC , ZSMC , ZI Zw 18and ZPopIII . We investig-
ated the Eddington factors in their interior and its connection to envelope inflation as a function
of metallicity.

As expected we found that the Eddington limit is metallicity dependent such that models
with a higher Z reach Γ = 1 in their interior at a lower mass. While a 30 M� MW model has
Γ ≈ 1 in its interior, it requires a 150 M� Pop III model to reach similar Eddington factors
on the hot side of the HR diagram, i.e., at Teff > 10 000 K. For models with Teff below the
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hydrogen recombination temperature, metallicity has no effect and super-Eddington layers can
be found down to ∼ 5 M� models, although in the post main-sequence phase (Langer et al. 2015).
Proximity to the Eddington limit leads to envelope inflation in our models. We find inflated
models at all the metallicities investigated, albeit at different L/M ratios (Fig. 3.7). At a higher
Z, envelope inflation starts at lower masses because of larger opacities that help approach Γ ≈ 1.
We reiterate that envelope inflation might already start to develop before reaching the Eddington
limit because of the contribution from the gas pressure gradient (cf. Sec. 3.3). Envelope inflation
is responsible for the redward bending of the ZAMS and the TAMS in the upper HR diagram
(Fig. 3.3), that is also supported by observations (Castro et al. 2014). The extent of inflation
might be used to infer the value of αMLT for massive stars by comparing the main-sequence
width of the models against the observational TAMS (Castro et al. 2014; Bestenlehner et al.
2014).

We find that the mass contained in the inflated envelopes can range from ∼ 10−6 M� in the
hot, luminous models to ∼ 100 M� in the cool supergiant type models, across the whole range
of metallicities investigated. While the observational signatures of these envelopes needs to
be explored further, the ones with high envelope masses (Menv > 1 M�) seem to be promising
candidates for explaining the violent LBV eruptions, for e.g., the 1860 outburst η Car, and
other η Car analogs (Khan et al. 2015) or supernova imposters. These models are near the
Eddington limit, have several solar masses in the loosely bound envelope and can potentially
match the energy output of 1049−1050 erg seen in an LBV outburst. The details of the instability
responsible for the outburst still needs to be investigated in detail. On the other hand, if the
inflated envelopes are lost episodically from the models with small envelope masses, 10−3 M� or
lower, it will cause them to shrink to the non-inflated core radius but will not be able to change
the bolometric luminosity appreciably. These models have been put forward to explain the
S-Doradus type variations by Gräfener et al. (2012).

Moriya et al. (2015) proposed that an observational consequence of a supernova progenitor
with an inflated envelope is that it extends the rise time of the supernova shock-breakout signal.
This naturally explains the long (∼ 50 s) shock breakout X-ray signal detected from the Type Ic
SN 2008D (Soderberg et al. 2008) that is believed to have had a compact WR progenitor.

Luminous helium stars also show pronounced core-halo structures and such models have been
investigated in the past (Ishii et al. 1999; Petrovic et al. 2006; Gräfener et al. 2012; Tramper
et al. 2015). The apparent mismatch in radii between model atmosphere calculations and stellar
interior models of massive Galactic Wolf-Rayet stars has been claimed to have been reconciled
by envelope inflation (Gräfener et al. 2012).

The inflated models are potentially unstable against the so-called strange-mode instability
(Gautschy & Glatzel 1990; Glatzel & Kiriakidis 1993a) because of low heat capacities in their
dilute envelopes (Glatzel 1994). Glatzel & Kiriakidis (1993a) reported that their solar metallicity
models with log(L /L�) & 4 are unstable to strange-mode oscillations. This result coincides
with the boundary between the inflated and non-inflated models in our ZMW grid. Furthermore,
these oscillations might drive mass-loss from the star (Grott et al. 2005). The pulsational
properties of our models will be explored in detail in a forthcoming study.

A critical ingredient in the physics of envelope inflation is convection, i.e. how convective
energy transport is treated in these regions. The MLT is probably not the best model of
convection in the radiation-pressure dominated regions where convective velocities approach
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the sound speed (Canuto & Mazzitelli 1991; Sanyal et al. 2015). In the literature, stellar
models computed with increased convective efficiency do not show signs of envelope inflation
(Ekström et al. 2012; Yusof et al. 2013). Jiang et al. (2015) recently performed 3-D radiation
hydrodynamics simulations of massive star envelopes and concluded that for a 80 M� ZAMS
model, standard MLT overestimates the convective flux in the inflated region around the Fe-
bump. In that case inflation in our 1-D models has been largely underestimated, and it will
be interesting to look at the quantitative differences. Jiang et al. (2015) also found turbulent
velocities that exceed the isothermal sound speed, driving shocks in the envelope and creating
an inhomogeneous, clumpy medium. They, however, do not see any phenomenon that can lead
to the ejection of the envelope. We note that they only simulated a small patch of the envelope
around the Fe-bump, whereas we find the largest Eddington factors and the strongest inflation
in our coolest models that contain the hydrogen recombination zone in their interior (Fig. 3.4).

Grassitelli et al. (2016b) recently investigated the role of turbulent pressure (Pturb) in stellar
models computed with the metallicities ZMW , ZLMC and ZSMC , and found that its effect on stellar
structure is negligible regardless of the metallicity (Grassitelli et al. 2015b). However, the ratio
of Pturb to Ptotal in the stellar envelope decreases for lower metallicities at a given temperature and
luminosity. This trend is consistent with our results for inflation (Figs. 3.6 and 3.7). At higher
metallicities the density in the inflated envelope is lower which implies inefficient convection
and therefore a large and negative entropy gradient. Hence the convective velocities and the
Mach number is also higher which leads to higher turbulent pressure.

Furthermore, Grassitelli et al. (2015b) found a correlation between macroturbulent velocities
in Galactic OB stars and the fraction of turbulent pressure in the stellar envelope models. Since
the turbulent pressure contribution in the inflated envelope becomes stronger in the upper HR
diagram, high macroturbulent velocities (& 80 km s−1, Simón-Díaz 2015; Grassitelli et al. 2015b)
might well be a signature of envelope inflation in hot, massive stars. The conditions in the
inflated envelope might be inferred via asteroseismic studies (Aerts et al. 2014), especially if
the connection between inefficient convection and high-order non-radial pulsations is confirmed
(Aerts et al. 2009; Grassitelli et al. 2015a,b).

It might be interesting to look at the fate of the inflated envelopes in close binaries, since
∼ 70% of all massive stars are believed to interact during their lifetimes (Sana et al. 2012).
The loosely bound envelopes might help to stabilise mass-transfer in close massive binary
systems, especially in metal-rich systems where this is expected to happen at lower masses. In
close binaries, the hydrogen envelope is usually lost from the mass donor that bares its helium
core and increases the L/M ratio. Helium stars with solar metallicity start to develop inflated
envelopes from ∼ 10 M� (see Fig. 19 in Köhler et al. (2015)). Many of the type Ib/c progenitors
in binary systems are thus expected to have inflated envelopes (Woosley et al. 2010).

3.6 Supplementary material

3.6.1 Evolution of a 70 M� inflated LMC model

We present the evolution of a typical inflated model, the 70 M� ZLMC sequence, with respect to
its inflated envelope and the properties at the Fe-bump.
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Figure 3.14: Maximum opacity in the temperature range 5 < log(T/K) < 5.5 with change in inflation.

The κmax
Fe (Fig. 3.14) and the density at κmax

Fe (Fig. 3.15) decrease initially as ∆r/rcore increases,
because of an increase in Lrad /M (Fig. 3.16). The product of these two quantities, which is
proportional to Γ, also increases initially up to ∆r/rcore ≈ 0.1 (Fig. 3.17) Thereafter it starts
decreasing with a decrease in Lrad /M. The Lrad /M decreases in this phase of the evolution
because of a rise in convective efficiency at this location, shown in Fig. 3.18. This is because
as Teff of the model keeps decreasing, the Fe-bump moves deeper inwards into the star where
density is higher and hence convection is relatively efficient. When convection is capable of
transporting the energy, Lrad need not be high such that Γ = 1. The inflated envelope keeps on
increasing in size in spite of ΓFe coming down to values as low as 0.91.

At ∆r/rcore & 20, Lrad /M and ΓFe increase again while κmax
Fe decreases. Since the star experi-

ences high mass-loss rates at such low effective temperatures, its L/M ratio increases sharply in
this phase (Fig. 3.19), but the convective efficiency does not increase as much. Hence to let the
relatively high radiative flux to pass through, the model reduces its opacity which pushes up
the value of Γ at that location. Note that at Teff below ∼ 8000 K the location of Γmax is in the
hydrogen recombination zone and not within the Fe-bump.
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Figure 3.15: Density at the position of κmax
Fe , with change in ∆r/rcore .
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Figure 3.16: The Lrad /M ratio at the position of κmax
Fe , with change in ∆r/rcore .
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Figure 3.17: The Γ value at the position of κmax
Fe , with change in ∆r/rcore .
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Figure 3.18: The ratio of convective flux to the total flux ,at the position of κmax
Fe , with change in ∆r/rcore .
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3.6 Supplementary material

 4.05

 4.1

 4.15

 4.2

 4.25

 4.3

 4.35

 0.01  0.1  1  10  100

[L
/M

]

∆r/rcore

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

T
e

ff
 [
k
K

]

Figure 3.19: Change of L with ∆r/rcore .
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CHAPTER 4

Extended supernova shock breakout
signals from inflated stellar envelopes

T. J. Moriya, D. Sanyal, and N. Langer
Astronomy & Astrophysics, 2015, 575, L10

For this chapter, I computed all the stellar evolutionary models starting from the helium
zero-age main-sequence up to at least carbon ignition in the core. I also contributed to
the analysis and interpretation of the results and the preparation of the draft.

4.1 Introduction

The first electromagnetic signals from a supernova (SN) are emitted when the shock wave
that travels through the stellar interior reaches the stellar surface (e.g., Colgate 1974; Klein
& Chevalier 1978; Ensman & Burrows 1992; Matzner & McKee 1999; Tominaga et al. 2011;
Tolstov et al. 2013). Photons trapped in the shock wave are suddenly released near the surface
and start to be observed at this moment. This sudden release of photons in the shock wave near
the stellar surface is called shock breakout.

The shock breakout signals are strongly affected by the properties of the SN progenitor and
can be used to estimate them. Especially the duration of the shock breakout signals is assumed
to approximately correspond to the light-crossing time tlc of the progenitor, that is, tlc ' R?/c,
where R? is the progenitor radius and c is the speed of light. If a Wolf-Rayet (WR) star explodes,
its shock breakout signal is expected to have a duration of about 1 − 10 sec because typical radii
of WR stars are on the order of 1 − 10 R� (e.g., Crowther 2007; Woosley et al. 2010).

The shock breakout durations are, however, suggested to be extended for several reasons.
For example, if the circumstellar medium (CSM) density is high enough to be optically thick,
shock breakout durations can be extended as a result of photon diffusion in the dense CSM (e.g.,
Balberg & Loeb 2011; Svirski & Nakar 2014a,b). Aspherical photospheres may also cause
an extension of the shock breakout durations (Suzuki & Shigeyama 2010; Couch et al. 2011).
In addition, the duration of the shock breakout signals from Type Ib SN 2008D was observed
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to last for ∼ 300 sec with a rise time of ∼ 60 sec (Soderberg et al. 2008; Modjaz et al. 2009),
indicating a progenitor radius of R? ' tlcc ∼ 130 R�. The indicated progenitor radius is too
large to correspond to a WR star, but its SN spectral type and the early light curve modeling
point to a WR progenitor with a radius smaller than 10 R� (e.g., Chevalier & Fransson 2008;
Rabinak & Waxman 2011, see also Dessart et al. 2011; Bersten et al. 2013). The observed
long shock breakout duration may also indicate the existence of mechanisms to extend shock
breakout signals.

In this Letter, we argue that shock breakout rise times can be extended significantly if SN
progenitors have inflated envelopes. In that case, the shock breakout signals diffuse in the
inflated envelope, resulting in the extension of the shock breakout rise times. The diffusion
times td of canonical WR SN progenitors are shorter than the light-crossing time tlc (Table 4.1).
However, we show that the diffusion time can be much longer than the light-crossing time in
inflated WR SN progenitors even if their radii are on the order of the solar radius.

We first explain the inflation of stellar envelopes and our inflated stellar evolution models in
Sect. 4.2. We show the effect of the inflated envelopes on the SN shock breakout signals in Sect.
4.3. Our conclusions and their implications are summarized in Sect. 4.4.

4.2 Inflation of stellar envelopes

We first discuss the inflation of stellar envelopes. Inflation refers to the extended low-density
envelopes in stellar models that reach Eddington luminosity in their outer layers (Ishii et al.
1999; Petrovic et al. 2006; Gräfener et al. 2012). The phenomenon was first discussed by Kato
(1985, 1986) in the context of supermassive stars, considering electron-scattering as the only
opacity source. The envelope inflation in the models discussed below is, however, caused by
the Fe-group opacity bump at T ∼ 200 kK (Ishii et al. 1999; Petrovic et al. 2006; Gräfener
et al. 2012). When the stellar envelope approaches the Eddington luminosity, it will become
convectively unstable (Langer 1997). The convective luminosity would need to carry any
super-Eddington flux so that the radiative luminosity does not exceed the Eddington luminosity.
However, if the envelope density is too low, convection cannot become efficient enough to
transport sufficient energy inside the envelope. Then, the star expands its envelope in order to
find a structure with a lower opacity so that the Eddington luminosity is not exceeded.

To discuss the actual structure of inflated envelopes in WR SN progenitors, we performed
stellar evolution calculations by using an advanced one-dimensional hydrodynamic binary
stellar evolution code (BEC; see Heger et al. 2000; Yoon et al. 2006; Woosley et al. 2010; Brott
et al. 2011) to model WR stars as nonrotating hydrogen-free helium stars. The code solves the
Lagrangian version of the equations for mass, energy, and momentum conservation together
with convective and radiative energy transport and is explicitly coupled to a diffusive mixing
scheme and a nucleosynthesis network (see Kozyreva et al. 2014 for details). BEC incorporates
the latest input physics (Heger et al. 2000; Yoon et al. 2006; Woosley et al. 2010; Brott et al.
2011; Köhler et al. 2015) and is well-suited to investigate stars evolving close to the Eddington
limit with inflated envelopes (Köhler et al. 2015; Sanyal et al. 2015).

In particular, the opacities used to compute the models were interpolated from the OPAL
tables (Iglesias & Rogers 1996), which contain an opacity enhancement around T ∼ 200 kK

102



4.3 Shock breakout in inflated stellar envelopes

due to Fe-group elements. Convection was treated within the framework of the standard mixing-
length theory (Böhm-Vitense 1958) with the mixing length set to 1.5 times the local pressure
scale height. The WR mass-loss recipe proposed by Nugis & Lamers (2000) was used for our
computations. The stellar surface was set at the photosphere where the optical depth is 2/3. We
investigate the evolution of helium stars with initial masses of 10 and 12 M� in this Letter. We
explored two sets of models, one with solar metallicity and the other with half-solar metallicity.
The half-solar metallicity models were computed until the oxygen-burning stage, while solar
metallicity models were only computed until carbon ignition because we encountered numerical
problems to iteratively converge models with large inflated envelopes that are larger at higher
metallicity (Ishii et al. 1999). The inflation in these models at the time of the SN explosion
could thus be somewhat stronger than we assume here. The evolutionary tracks of the models in
the Hertzsprung-Russell (HR) diagram are presented in Fig. 4.1. The final stellar properties are
summarized in Table 4.1.

The helium zero-age main-sequence models of both 10 and 12 M� stars are marginally
inflated. As a consequence of the applied mass loss, they lose mass and decrease in luminosity
during the core helium-burning phase. After helium is exhausted in the core, the stars begin
to contract and become hotter and brighter. The models are hardly inflated during this phase
because the Fe-group opacity bump is only partially contained inside the stars. When the helium-
shell ignites, the evolutionary tracks eventually move toward cooler temperatures because of
the mirror principle (e.g., Kippenhahn et al. 2012). As the models become cooler, they become
significantly inflated and exhibit a pronounced core-halo structure, as shown in Fig. 4.2. The
electron-scattering Eddington factors of our models are shown in Table 4.1. When the full
opacity is counted into the Eddington factor, all models reach the critical value of one. The
envelope inflation is stronger for the solar metallicity models because the prominence of the
Fe-group opacity bump increases with metallicity, as found in the studies by Ishii et al. (1999)
and Petrovic et al. (2006). For comparison, we also show a polytropic star with M? = 7 M� and
R? = 2.4 R� obtained with the polytropic index of 3 which does not have an inflated envelope.
Figure 4.2 shows that our stellar models have extended low-density layers on top of the core
structure. This type of the envelope inflation is also found in the previously reported models
with similar final core masses (Yoon et al. 2012b). The evolution and final position of our stars
in the HR diagram are consistent with their models.

4.3 Shock breakout in inflated stellar envelopes

The shock breakout in a SN occurs when photons start to leak from the shock wave, that is, when
the dynamical timescale tdy of the shock propagation in the remaining unshocked stellar envelope
with radius ∆R (tdy ' ∆R/vsh) becomes similar to the diffusion timescale td ' τ∆R/c, where vsh

is the shock velocity and τ is the optical depth in the remaining unshocked stellar envelope (e.g.,
Weaver 1976). The shock breakout condition can be simply expressed as τ ' c/vsh. For a shock
breakout at the stellar surface without the inflated envelope, ∆R is so small that td is smaller than
the light-crossing time tlc ' R?/c, making the shock breakout duration tlc ' R?/c. For example,
in the case of the 2.4 R� polytropic star we show in Fig. 4.2, the light-crossing time is tlc ' 5.60
sec and the diffusion time is td ' 1.31 sec, assuming vsh = 10000 km s−1 (Table 4.1).
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Figure 4.1: Evolutionary tracks of the helium star models in the HR diagram. The initial metallicity,
initial mass, and final mass of the models are shown. The locations of helium-shell ignition (circles),
core carbon ignition (squares), and core oxygen ignition (triangles) are marked. Lines of the constant
radii of 0.5, 1, and 2 R� are also shown.

The inflated stellar models are characterized by extended low-density envelopes (Fig. 4.2). As
a result, ∆R can be much larger than the corresponding values for the uninflated stellar models.
In Fig. 4.3, we show the optical depth in our stellar models. In Table 4.1, we summarize the
light-crossing time tlc and the diffusion time td for several shock velocities. In the uninflated
polytropic model, the shock breakout occurs at the edge of the stellar surface (∆R = 0.0187 R�
for τ = 30), making the diffusion time shorter than the light-crossing time. If the progenitor
has an inflated envelope, however, the shock breakout can occur at the bottom of the inflated
envelope, keeping ∆R large when the shock breakout occurs. For example, our solar-metallicity
10 M� model has ∆R = 1.73 R� for τ = 30 because of the envelope inflation. The large ∆R
makes the diffusion time (td ' 121 sec) much longer than the light-crossing time (tlc ' 5.67 sec).
Thus, the timescale of the shock breakout signals within the inflated envelopes can be dominated
by the diffusion time, and their rise time is determined by the diffusion time. The subsequent
light curve is expected to decline exponentially with an e-folding timescale of the diffusion time
due to the photon diffusion in the shocked envelope. Overall, the total shock breakout duration
becomes significantly longer than the light-crossing time. The dynamical timescales of our
inflated envelopes at the time of their explosions are ∼ 2000 sec, and the inflated envelopes can
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Figure 4.2: Final density structure of our stellar models. We also show the structure of a star without the
envelope inflation, which is a polytiropic star of 7 M� and 2.4 R� with the polytropic index of 3. The
inflated stellar models have the extended low-density regions on top of the core structure.

be sustained until the shock passes through.
We have computed the diffusion times for several shock velocities between 10000 and 30000

km s−1. If the shock velocity at the shock breakout is too high, the diffusion time becomes
shorter than the light-crossing time. In our models, the diffusion time starts to be shorter than
the light-crossing time when the shock velocity is higher than ∼ 30000 km s−1 (Table 4.1).
The shock velocity is suggested to reach above 30000 km s−1 at the shock breakout in WR
stars (e.g., Nakar & Sari 2010). However, previous studies assume that WR stars only have a
steeply declining envelope as in our polytropic model. A flat inflated envelope exists on top
of the steeply declining core in the density structure of our models. The flat density structure
decelerates the shock significantly, and the shock velocity at the shock breakout in inflated
envelopes can be lower than 30000 km s−1. Because the shock propagation in inflated stellar
structure has not yet been investigated, hydrodynamical modeling in inflated envelopes is
required to estimate the shock velocity at breakout in this case.

The sizes of the inflated envelopes in the half-solar-metallicity models are smaller than those
in the solar-metallicity models because the Fe-group opacity bump is weaker with decreasing
metallicity. However, the diffusion time can still be longer than the light-crossing time, and the
shock breakout rise times can be longer than 10 sec in these WR stars.
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Figure 4.3: Optical depth τ in our models. The optical depth in the polytropic star is obtained with the
constant opacity of 0.2 cm2 g−1.

Although higher metallicity models are preferred to have large ∆R and thus long td in terms
of opacity, the inflated envelope can disappear because of higher mass-loss rates. Petrovic et al.
(2006) showed that the inflated envelope disappears when the mass-loss rate of the star is higher
than the critical mass-loss rate defined as

Ṁmax ' 4πR2
mρm

√
GM?

Rm
, (4.1)

where ρm is the lowest density in the inflated envelope and Rm is the radius at the lowest density
(see also Gräfener et al. 2012). We show the ratio of the mass-loss rate in our models to
the critical mass-loss rate in Table 4.1. Our solar-metallicity models are close to the critical
mass-loss rates. Higher-metallicity stars are likely to exceed the critical mass-loss rate.

Although we have focused on WR SN progenitors in this Letter, stars do not need to be
WR stars to have inflated envelopes. When stars are near the Eddington luminosity, they can
have inflated envelopes even if they are hydrogen-rich. For example, luminous blue variables
are hydrogen-rich stars that are close to the Eddington luminosity, and they have recently
been suggested to be SN progenitors (e.g., Gal-Yam et al. 2009). They can also have inflated
envelopes when they explode.

107



Chapter 4 Extended supernova shock breakout signals from inflated stellar envelopes

To confirm that some SN progenitors are actually inflated stars, observational consequences
of the inflated envelopes in SN observational properties other than the shock breakout rise times
are required to be investigated. Because the inflated envelopes in our models only have ∼ 10−8

M�, they are not likely to strongly affect later SN observables such as its light curve. However,
the shock breakout spectra or very early SN spectra such as that recently obtained by Gal-Yam
et al. (2014) may be affected by an inflated envelope. It is especially important to distinguish the
shock breakout extension caused by an inflated envelope from that produced by a dense stellar
wind because the shock breakout signals can be extended by the photon diffusion in both cases.
Estimates of the progenitor mass-loss rate, for instance from multiwavelangth SN observations,
may constrain the wind density near the stellar photosphere and thereby confirm or rule out a
shock break-out extension caused by winds (see Sect. 4.3.1 for the case of SN 2008D). Maeda
(2013) also discusses possible observational consequences of the inflated envelopes.

4.3.1 SN 2008D

The extension of shock breakout signals by an inflated envelope may explain the long duration
of the shock breakout signal observed in SN 2008D. Even if the progenitor of SN 2008D is
a WR star with R? ∼ R�, our result show that the rise time of the shock breakout signals can
be ∼ 60 sec because of the long diffusion time in the inflated envelope below which the shock
breakout occurs. The shock-breakout luminosity decline after the luminosity peak is found to
be similar to an exponential decay for a while (Soderberg et al. 2008), which is consistent with
the diffusion interpretation.

The observed high temperature of the shock breakout signals in SN 2008D (∼ 0.1−1 keV, e.g.,
Modjaz et al. 2009; Li 2008) is suggested to indicate the shock velocity above ∼ 20000 km s−1

(e.g., Katz et al. 2010; Balberg & Loeb 2011). The longest diffusion time for vsh = 20000 km s−1

among our models is 19 sec from the solar 12 M� model. Although it is shorter than observed,
∼ 60 sec, the diffusion time is still much longer than the light-crossing time. The observed
e-folding timescale in the declining phase (∼ 130 sec, Soderberg et al. 2008) is also longer
than the diffusion time in our models, but our models do predict the overall extension of the
shock breakout signals. The shock temperature becomes ∼ 0.1 keV using vsh = 20000 km s−1

and our inflated envelope density (Katz et al. 2010), which corresponds to the observational
constraints (e.g., Modjaz et al. 2009) and can explain the observed thermal X-ray luminosities
(∼ 1043 erg s−1) with a radius of ∼ R�. More investigations are required to see whether the
X-ray spectra can be explained by our model.

The later shock velocity is observed to be 0.25c (Soderberg et al. 2008). However, the shock
can have accelerated after the shock breakout because of the steep density decline between the
stellar surface and the low density wind (cf., Tolstov et al. 2013). Thus, the observed velocity
may not correspond to the actual shock velocity at the shock breakout.

The estimated SN ejecta mass of SN 2008D is 3 − 7 M� (Soderberg et al. 2008; Mazzali
et al. 2008; Tanaka et al. 2009; Bersten et al. 2013). Our pre-SN stellar models (Table 4.1)
have 6.3 − 7.8 M�. Subtracting a remnant mass of about 1.4 M�, the expected ejecta masses
from our inflated stellar models are consistent with those of SN 2008D. The mass-loss rates of
our models are also consistent with that estimated from radio observations (7 × 10−6 M� yr−1,
Soderberg et al. 2008).
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The metallicity at the location where SN 2008D appeared is estimated to be 0.5 Z� based
on the metallicity gradient in the host galaxy (Soderberg et al. 2008). Our 0.5 Z� stars do not
inflate enough to explain the long shock breakout rise time of ∼ 60 sec. However, Galactic
metallicity gradients have large dispersions (e.g., Pedicelli et al. 2009). Since our Z� stars have
much longer diffusion times, it is possible that the progenitor metallicity of SN 2008D is around
Z� or higher, and the progenitor had a sufficiently inflated envelope to show the long shock
breakout rise time with the estimated shock velocity. Recent metallicity measurements at the
location of SN 2008D support our arguments (Modjaz et al. 2011; Thöne et al. 2009).

4.4 Conclusions

We have shown that the rise times of supernova shock breakout signals can be extended because
of inflated stellar envelopes. The shock breakout can occur within the low-density inflated
envelopes in which the shock breakout signals are diffused and extended. The long diffusion
time in the inflated envelopes makes the shock breakout rise times long. The shock breakout
timescale is then dominated by the diffusion time instead of by the light-crossing time. Even if
a SN progenitor has a radius on the order of the solar radius whose light-crossing time is a few
seconds, the rise time of the shock breakout signals can be more than 100 seconds because of
the inflated envelope. The extension of the shock breakout signals by the inflated envelope may
explain the mysterious long shock breakout rise time observed in Type Ib SN 2008D, although
more investigations are required to confirm this.

The actual existence of inflated stellar envelopes is still widely debated. While we find the
envelope inflation in our stellar evolution models, the envelope inflation is not as prominent in
other models (e.g., Ekström et al. 2012). If inflated envelopes exist, they are also pulsationally
unstable (e.g., Glatzel et al. 1993) with unknown consequences. If we can confirm that SN shock
breakout signals from WR SN progenitors have signatures of inflated envelopes, for example,
extended shock breakout signals from SN progenitors with low mass-loss rates, it may indicate
the common existence of inflated stellar envelopes in nature. The shock breakout signals can be
a viable probe of unsolved problems in stellar structure as well as a touchstone of the stellar
evolution theory, which predicts the final status of the massive stars.
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CHAPTER 5

Outlook

“We are all in the gutter, but some of us are looking at the stars."
- Oscar Wilde, in Lady Windermere’s Fan

Massive stars are the major source of metals without which life on earth would not have
been possible – this fact alone makes them interesting objects to study. Our understanding
of stellar evolution, especially in the field of massive stars has made rapid strides over the
last couple of decades, boosted by significant improvements in high-resolution spectroscopy,
spectropolarimetry, asteroseismology, transient searches and of course, numerical modelling.

Although the concept of the Eddington limit is old and quite simple in its original formulation,
it is only recently that we have started to understand its detailed implications and explore its
observational consequences in the context of massive stars. The key result of this thesis is that
massive stars (above ∼ 30 M� in our Galaxy) reach the Eddington limit in their interior and
develop extended inflated envelopes that have far-reaching consequences for their structure and
evolution. Though envelope inflation is predicted within the framework of the standard Mixing
Length Theory, not all stellar evolution codes include this effect. For example, in the models of
very massive stars by Yusof et al. (2013), envelope inflation is suppressed by allowing convection
to be extremely efficient in the the outer layers of stars. Having mapped out the Eddington limit
and envelope inflation in the upper H-R diagram over a wide range of metallicities, we must
henceforth identify and predict their observational consequences that will help us constrain the
models and further our understanding of the physics of very massive stars. Envelope inflation
predicts a broadening of the terminal-age main-sequence (Chap. 2, cf. Castro et al. 2014) and
an extension in the rise times of shock breakout signals from Type Ib/c supernovae (Moriya
et al. 2015; Sanyal et al. 2015), both of which are supported by observations. I discuss below a
few key issues that needs to be addressed in the future and some of the challenges that lie ahead.

Comparison to multi-dimensional simulations: Envelope inflation is predicted for massive
stars not only by the latest one-dimensional models, but also in the three-dimensional radiation
hydrodynamic simulations that includes a better treatment of turbulent energy transport (Jiang
et al. 2015). Although more such detailed studies are needed to explore the parameter space
in the upper H-R diagram, it has already opened up possibilities for calibrating the efficiency
of convective energy transport and the effect of density homogeneities (“clumps”) in the 1-D
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models.
Envelope instabilities: The connection between inefficient convection and envelope inflation

has been pointed out several times in Chap. 2, 3. As convection becomes inefficient, the
velocities of the convective blobs increase, and approach the local sound speed. Therefore,
the turbulent pressure which is proportional to the Mach number, increases. These turbulent
pressure fluctuations in hot luminous stars might excite high-order g-modes, which may explain
the macroturbulent broadening in the spectra of stars found outside the classical instability
domains (Grassitelli et al. 2015b). Therefore macroturbulent broadening as an observational
signature of inflated envelopes might serve as a probe to determine the extent of inflation,
thereby constraining the model of convective energy transport in the sub-surface layers of
massive stars. Furthermore, the interaction between the sub-surface convective layers and the
overlying radiative layers in the inflated envelopes of classical WR stars have been predicted
to induce small-scale velocity fields at the surface that causes line-profile variability in their
spectra (Grassitelli et al. 2016a).

The so-called strange-mode instability is predicted only for stars which show a pronounced
core-halo density structure (Glatzel 1994). The strange modes are characterised by growth rates
in the dynamical regime, i.e. much faster than the modes excited by the standard κ-mechanism
or the ε-mechanism (Glatzel & Kiriakidis 1993a,b). However, non-linear stability analyses that
predict amplitudes and brightness variations are scarce and outdated (Grott et al. 2005). Since
the occurrence of strange-modes is dependent on envelope inflation, which in turn is connected
to inefficient convective energy transport, a non-linear stability analysis of stellar models over a
wide range of temperatures in the upper H-R diagram is required to facilitate a comparison with
observations of strange-mode candidates (Aerts et al. 2010), thereby constraining the effect of
envelope inflation in the models. There are open questions that needs to addressed, for example,
whether these pulsations can drive a strong mass-loss from the star (cf. Moriya & Langer 2015),
and what is the nature of coupling between convection and pulsations (cf. Sonoi & Shibahashi
2014).

Mass-loss: As we have mentioned already in the introductory chapter, wind mass-loss has
a deterministic influence on the lives of massive stars starting from the main-sequence phase.
Recent investigations of wind models of very massive stars have revealed that as the classical
Eddington limit is approached, the mass-loss rates increase drastically (Gräfener et al. 2011;
Vink et al. 2011; Bestenlehner et al. 2014). In other words, there is a ‘kink’ in the slope of the
Ṁ versus Γe relation at the transition point between optically thin and optically thick winds,
which roughly corresponds to Γe ∼0.7. This feature will not only reduce the extent of redward
evolution of massive very stars in the H-R diagram, but might also have severe consequences
on their final fates, and therefore it is desirable that this mass-loss enhancement is included in
stellar evolutionary models. Since envelope inflation results in a lowered surface temperature
and a higher mass-loss rate, stellar models that include this effect will reach the critical Γe

value (or the ‘kink’) earlier in their evolution. Furthermore, model atmosphere calculations for
massive stars which include inflation might shed new light on the topic.

LBV eruptions: Although the exact mechanism of the instability responsible for the LBV
Giant Eruptions has not been clearly identified yet, in this thesis we have shown that we are very
close to arriving at a consistent model. In the region populated by LBVs in the H-R diagram, we
find models that have a few Solar masses in their inflated envelopes such that these envelopes are
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very loosely bound to the non-inflated core of the star. A dynamical instability in the envelope
therefore offers a possibility to eject several Solar masses of material in one go. This possibility
will be explored in a forthcoming study.
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