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Questions?!



Cosmological parameters!

•  A branch of modern cosmological research focuses on 
measuring cosmological parameters from observed 
data (e.g. the Hubble constant, the cosmic density of 
matter, etc.).!

•  In this class we will review the main techniques used 
for model fitting (i.e. extracting information on 
cosmological parameters from existing observational 
data) and forecasting (i.e. predicting the uncertainty 
on the parameters when future experiments will 
become available). The latter is a crucial ingredient 
for optimizing experimental design.!
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Key problems!

•  How do you fit a model to data?!

•  How do you incorporate prior knowledge?!

•  How do you merge multiple sources of information?!

•  How do you treat uncertainties in model 
parameters?!
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Example: power spectrum of CMB 
temperature fluctuations!

Variance at 
multipole l 
(angle ~180o/l)!
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Dunkley et al. 2009
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Dunkley et al. 2009
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The current state of the art 

Bennett 2006 
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What is the meaning of these plots?!

•  What’s the difference between the 1D and the 2D 
plots?!

•  What is a confidence interval?!

•  What is a credibility interval?!

•  What does marginalisation mean?!

•  What’s the difference between the frequentist and 
the Bayesian interpretation of statistics?!
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R.A. Fisher (1890-1962)!

“Even scientists need their heroes, and R.A. Fisher was the hero of 
20th century statistics” (B. Efron)!

“Fisher was to statistics what Newton was to Physics” (R. Kass)!
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Fisher’s concept of likelihood!

•  “Two radically distinct concepts have been confused under the name of 
‘probability’ and only by sharply distinguishing between these can we state 
accurately what information a sample does give us respecting the population from 
which it was drawn.” (Fisher 1921)!

•  “We may discuss the probability of occurrence of quantities which can be 
observed…in relation to any hypotheses which may be suggested to explain these 
observations. We can know nothing of the probability of the hypotheses…We may 
ascertain the likelihood of the hypotheses…by calculation from observations:…to 
speak of the likelihood…of an observable quantity has no meaning.” (Fisher 1921)!

•  “The likelihood that any parameter (or set of parameters) should have any 
assigned value (or set of values) is proportional to the probability that if this 
were so, the totality of observations should be that observed.” (Fisher 1922)!



Probability of the data versus 
likelihood of the parameters!

•  Suppose you are counting how many cars pass in front of your 
window on Sundays between 9:00 and 9:02 am. Counting experiments 
are generally well described by the Poisson distribution. Therefore, 
if the mean counts are λ, the probability of counting n cars follows 
the distribution:!

•  This means that if you repeat the experiment many times, you will 
measure different values of n following the frequency P(n). Note 
that the sum over all possible n is unity. !

•  Now suppose that you actually perform the experiment once and you 
count 7. Then, the likelihood for the model parameter λGIVEN the 
data is: !
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€ 

P(n | λ) =
λne−λ

n!

€ 

L(λ) = P(7 | λ) =
λ7e−λ

5040



The likelihood function!
•  This is a function of λ only but it is NOT a probability distribution 

for λ! It simply says how likely it is that our measured value of n=7 
is obtained by sampling a Poisson distribution of mean λ. It says 
something about the model parameter GIVEN the observed data.!
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The likelihood function!
•  Let us suppose that after some time you repeat the experiment and 

count 4 cars. Since the two experiments are independent, you can 
multiply the likelihoods and obtain the curve below. Note that now 
the most likely value is λ=5.5 and the likelihood function is 
narrower than before, meaning that we know more about λ.!
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Likelihood for Gaussian errors!
•  Often statistical measurement errors can be described by 

Gaussian distributions. If the errors σi of different 
measurements di are independent:!

•  Maximizing the likelihood corresponds to finding the values of 
the parameters θ= {θ1,…,θn} which minimize the χ2 
function (weighted least squares method).!

C. Porciani! Estimation & forecasting! 15!

€ 

L(θ) = P(d |θ) =
1
2πσ i
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−lnL(θ) =
(di −mi(θ))
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2 + const.= χ 2(θ,d)
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∑ + const.



The general Gaussian case!
•  In general, errors are correlated and !

where Cij=<εi εj> is the covariance matrix of the errors. !

•  For uncorrelated errors the covariance matrix is diagonal and 
one reduces to the previous case.!

•  Note that the covariance matrix could also derive from a 
model and then depend on the model parameters. We will 
encounter some of these cases in the rest of the course. !
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€ 

−lnL(θ) =
1
2

di −mi(θ)[ ] Cij
−1 d j −m j (θ)[ ] + const.= χ 2(θ,d)

2j=1

N

∑
i=1

N

∑ + const.
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The Likelihood function: a summary!
•  In simple words, the likelihood of a model given a dataset is proportional to 

the probability of the data given the model!

•  The likelihood function supplies an order of preference or plausibility of the 
values of the free parameters θi by how probable they make the observed 
dataset!

•  The likelihood ratio between two models can then be used to prefer one to 
the other!

•  Another convenient feature of the likelihood function is that it is 
functionally invariant. This means that any quantitative statement about the 
θi  implies a corresponding statements about any one to one function of the 
θi by direct algebraic substitution!
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Maximum Likelihood!
•  The likelihood function is a statistic (i.e. a function of the data) which gives 

the probability of obtaining that particular set of data, given the chosen 
parameters θ1, … , θk of the model. It should be understood as a function of 
the unknown model parameters (but it is NOT a probability distribution for 
them)!

•  The values of these parameters that maximize the sample likelihood are 
known as the Maximum Likelihood Estimates or MLE’s.!

•  Assuming that the likelihood function is differentiable, estimation is done by 
solving!

•  On the other hand, the maximum value may not exists at all.!

€ 

∂L(θ1,...,θk )
∂θi

= 0

€ 

∂ lnL(θ1,...,θk )
∂θi

= 0or!



Back to counting cars!
•  After 9 experiments we collected the following data: 7, 4, 2, 6, 4, 5, 

3, 4, 5. The new likelihood function is plotted below, together with a 
Gaussian function (dashed line) which matches the position and the 
curvature of the likelihood peak (λ=4.44). Note that the 2 curves 
are very similar (especially close to the peak), and this is not by 
chance.!
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Score and information matrix!
•  The first derivative of the log-likelihood function with respect to the 

different parameters is called the Fisher score function: !

•  The Fisher score vanishes at the MLE.!

•  The negative of the Hessian matrix of the log-likelihood function with 
respect to the different parameters is called the observed information 
matrix: !

•  The observed information matrix is definite positive at the MLE. Its 
elements tell us how broad is the likelihood function close to its peak 
and thus with what accuracy we determined the model parameters.!
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€ 

Si =
∂ lnL(θ)
∂θi

€ 

Oij = −
∂ 2 lnL(θ)
∂θi ∂θ j



Example!
1 datapoint!

Low information!
Large uncertainty in λ!

9 datapoints!
High information!

Small uncertainty in λ!
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Fisher information matrix!
•  If we took different data, then the likelihood function for the 

parameters would have been a bit different and so its score function 
and the observed information matrix.!

•  Fisher introduced the concept of information matrix by taking the 
ideal ensemble average (over all possible datasets of a given size) of 
the observed information matrix (evaluated at the true value of the 
parameters).!

•  Under mild regularity conditions, it can been shown that the Fisher 
information matrix also corresponds to !

i.e. to the covariance matrix of the scores at the MLE’s.!
C. Porciani! Estimation & forecasting! 22!

€ 

Fij = −
∂ 2 lnL(θ)
∂θi ∂θ j

€ 

Fij =
∂ lnL(θ)
∂θi

∂ lnL(θ)
∂θ j



Cramér-Rao bound!

•  The Cramér-Rao bound states that, for ANY unbiased 
estimator of a model parameter θi, the measurement error 
(keeping the other parameters constant) satisfies!

•  For marginal errors that also account for the variability of 
the other parameters (see slide 35 for a precise definition), 
instead, it is the inverse of the Fisher information matrix 
that matters and!
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€ 

Δθi ≥
1
Fii

€ 

Δθi ≥ Fii
−1



Fisher matrix with Gaussian errors!
•  For data with Gaussian errors, the Fisher matrix assumes the 

form (the notation is the same as in slide 20)!

where!

(note that commas indicate derivatives with respect to the 
parameters while data indices are understood)!
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€ 

Fij =
1
2
Tr C−1C,i C

−1C, j +C
−1Mij[ ]

€ 

Mij = m,i m, j
T +m, j m,i

T

Information from the signal!Information from the noise!
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Properties of MLE’s!

As the sample size increases to infinity (under weak regularity conditions):!

•  MLE’s become asymptotically efficient and asymptotically unbiased!
•  MLE’s asymptotically follow a normal distribution with covariance matrix (of the 

parameters) equal to the inverse of the Fisher’s information matrix (that is 
determined by the covariance matrix of the data).!

However, for small samples, !

•  MLE’s can be heavily biased and the large-sample optimality does not apply!
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Maximizing likelihood functions!

•  For models with a few parameters, it is possible to evaluate 
the likelihood function on a finely spaced grid and search for 
its minimum (or use a numerical minimisation algorithm).  !

•  For a number of parameters >>2 it is NOT feasible to have a 
grid (e.g. 10 point in each parameter direction, 12 parameters 
= 1012 likelihood evaluations!!!)!

•  Special statistical and numerical methods needs to be used to 
perform model fitting.!

•  Note that typical cosmological problems consider models with 
a number of parameters ranging between 6 and 20.!
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Forecasting!

•  Forecasting is the process of estimating the 
performance of future experiments for which data 
are not yet available!

•  It is a key step for the optimization of 
experimental design (e.g. how large must be my 
survey if I want to determine a particular 
parameter to 1% accuracy?)!

•  The basic formalism has been developed by Fisher 
in 1935 !
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Figure of merit!

Figure of merit = 1 / (area of the ellipse) 
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Fisher 4cast (Matlab toolbox)!
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Counting cars, again!
•  In our study of the car counts we implicitly assumed that all the 

values of λ are equally likely a priori (i.e. before we started taking 
the data). However, we didn’t consider that an automatic gate 
regulates the traffic in our street and does not allow more than 8 
cars to enter every 10 minutes. Therefore λ cannot be larger than 
8 and the likelihood derived from our counts should have been 
truncated at λ=8.!

•  Also, we live close to a church and whenever there is a wedding the 
traffic is more intense than usual. This means that on wedding days 
a higher value of λ is more likely than on non-wedding days.!

•  Moreover, a fellow that had been living in our flat before us did the 
same exercise and told us that he obtained λ=4.2±0.5.!

•  Is there a way to account for all this information in our study? !
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The Bayesian way!
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What is probability?!

•  Frequentist: the long-run expected frequency of 
occurrence of a random event!

•  Axiomatic: given a sample space Ω, a σ-algebra F of events E (a 
set of subsets of Ω), we call probability measure a real function on 
F such that P(E)≥0, P(Ω)=1, and for any countable series of pairwise 
disjoint events P(E1 U E2 U … U EN)=P(E1)+P(E2)+…+P(EN). These are 
known as Kolmogorov axioms. !

•  Bayesian: a measure of the degree of belief (the 
plausibility of an event given incomplete knowledge)!



Reasoning with beliefs!
•  There is 90% chance that today it will rain!

•  There is a 30% chance that my favourite football team will win 
the league this year!

•  There is a 10% chance that I will fail the observational 
cosmology examination!

•  There is a 0.1% chance that I will die before being 30!

•  There is 68.3% chance that H0 lies between 67 and 73 km/s/
Mpc!
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Bayes theorem!

€ 

p(θ | x) =
p(x |θ)p(θ)

p(x)

Posterior probability 
for the parameters 

given the data

Prior probability 
for the parameters 
(what we know 
before performing 
the experiment)!

Likelihood function!

Evidence 
(normalization 
constant useful 
for Bayesian 
model selection)!

€ 

p(x |θ) = L(x |θ)

€ 

p(x) = p(x |θ) p(θ) dθ∫
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Bayesian estimation!
•  In the Bayesian approach to statistics, population parameters are associated with a 

posterior probability which quantifies our DEGREE OF BELIEF in the different values!

•  Sometimes it is convenient to introduce estimators obtained by minimizing the posterior 
expected value of a loss function!

•  For instance one might want to minimize the mean square error, which leads to using 
the mean value of the posterior distribution as an estimator!

•  If, instead one prefers to keep functional invariance, the median of the posterior 
distribution has to be chosen!

•  Remember, however, that whatever choice you make is somewhat arbitrary as the 
relevant information is the entire posterior probability density.!
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Estimation: frequentist vs Bayesian!

•  Frequentist: there are TRUE population parameters 
that are unknown and can only be estimated by 
the data!

•  Bayesian: only data are real. The population 
parameters are an abstraction, and as such some 
values are more believable than others based on 
the data and on prior beliefs.!
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Confidence vs. credibility intervals!
•  Confidence intervals (Frequentist): measure the variability due to sampling 

from a fixed distribution with the TRUE parameter values. If I repeat the 
experiment many times, what is the range within which 95% of the results 
will contain the true values?!

•  Credibility interval (Bayesian): For a given significance level, what is the 
range I believe the parameters of a model can assume given the data we 
have measured?!

•  They are profoundly DIFFERENT things even though they are often confused. 
Sometimes practitioners tend use the term “confidence intervals” in all cases 
and this is ok because they understand what they mean but this might be 
confusing for the less experienced readers of their papers. PAY ATTENTION! !
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Marginalisation!

Dunkley et al. 2009

€ 

p(ϑ 2 | x) = p(θ | x) dθ1dθ3... dθn∫

Marginal probability: posterior probability of a given parameter 
regardless of the value of the others. It is obtained by integrating the 
posterior over the parameters that are not of interest.!

Marginal errors 
characterise the 
width of the 
marginal posterior 
distributions.!



How can we do this in practice?!
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Markov Chain Monte Carlo!
Andrey Andreyevic Markov!

(1856-1922)!
Monte Carlo Casino!

(1863-now)!
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Markov Chain Monte Carlo!

•  WHAT? A numerical simulation method!

•  AIM: Sampling a given distribution function (known 
as the target density) !

   i.e. generate a finite set of points in some 
parameter space that are drawn from a given 
distribution function. !

•  HOW? By building a Markov chain that has the 
desired distribution as its equilibrium distribution!
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Markov chains!

•  A Markov chain is a sequence of random variables 
(or vectors) Xi (where i is an integer index: i=0,…,N) 
with the property that the transition probability!

  This means that the future of the chain does not 
depend on the entire past but only on the present 
state of the process.!
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€ 

P(xN +1 | x0,...,xN ) = P(xN +1 | xN )



Monte Carlo!

•  The term Monte Carlo method refers, in a very general term, 
to any numerical simulation which uses a computer algorithm 
explicitly dependent on a series of (pseudo) random numbers!

•  The idea of Monte Carlo integration was first developed by 
Enrico Fermi in the 1930s and by Stanislaw Ulam in 1947!

•  Ulam and von Neumann used it for classified work at Los 
Alamos and as a “code name” for the project chose “Monte 
Carlo” as a reference to the famous Casino in Monaco.  !
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€ 

f (x)p(x)dx ≈ 1
N

f (xi)
i=1

N

∑∫     [where the xi are samples from p(x)]



MCMC and Bayesian statistics!
•  The MCMC method has been very successful in modern Bayesian 

computing.!
•  In general (with very few exceptions) posterior densities are too 

complex to work with analytically.!
•  With the MCMC method, it is possible to generate samples from an 

arbitrary posterior density and to use these samples to approximate 
expectations of quantities of interest.!

•  Most importantly, the MCMC is guaranteed to converge to the 
target distribution under rather broad conditions, regardless of 
where the chain was initialized. !

•  Furthermore, if the chain is run for very long time (often required) 
you can recover the posterior density to any precision.!

•  The method is easily applicable to models with a large number of 
parameters (although the “curse of dimensionality” often causes 
problems in practice).!
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MCMC algorithm!
•  Choose a random initial starting point in parameter space, and 

compute the target density!

•  Repeat:!
  Generate a step in parameter space from a proposal 

distribution, generating a new trial point for the chain.!
  Compute the target density at the new point, and accept it 

or not with the Metropolis-Hastings algorithm (see next 
slide).!

  If the point is not accepted, the previous point is repeated in 
the chain.!

•  End Repeat!



The Metropolis algorithm!
Nicholas Constantine Metropolis!

(1915-1999)!

“Equation of state calculation by fast 
computing machines”!

Metropolis et al. (1953)!
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•  After generating a new MCMC 
sample using the proposal 
distribution, calculate!

•  Then sample u from the uniform 
distribution U(0,1)!

•  Set θt+1=θnew if u<r; otherwise 
set θt+1=θt!

•  Note that the number of 
iterations keeps increasing 
regardless of whether a proposed 
sample is accepted.!

€ 

r = probability of acceptance = min f (θnew )
f (θold )

,1
 

 
 

 

 
 



The Metropolis algorithm!
•  It can be demonstrated that the Metropolis algorithm works.!

•  The proof is beyond the scope of this course but, if you are 
curious, you can check standard statistics textbooks including 
Roberts (1996) and Liu (2001).!

•  You are not limited to a symmetric random-walk proposal 
distribution in establishing a valid sampling algorithm. A more 
general form, now known as the Metropolis-Hastings 
algorithm, was proposed by Hastings (1970). In this case:!
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€ 

r = probability of acceptance = min f (θnew )q(θt |θnew )
f (θold )q(θnew |θt )

,1
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The proposal distribution!

•  If one takes too small steps, it takes long time to 
explore the target and the different entries of the 
chain are very correlated!

•  If one takes too large steps, almost all trials are 
rejected and the different entries of the chain are 
very correlated!

•  There is an optimal proposal distribution (easy to 
identify if we knew already the target density) !



Effect of the sampling distribution!

C. Porciani! Estimation & forecasting! 52!

Gaussian 
proposal 
distrbution 
with σ= 0.2, 
acceptance 
rate =85.1%!

Gaussian 
proposal 
distrbution 
with σ= 10.2, 
acceptance 
rate =4.1%!

Gaussian 
proposal 
distrbution 
with σ= 2.2, 
acceptance 
rate =37.9%!



Mixing!

Bad mixing! Metastability!
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Mixing refers to the degree to which the Markov chain explores the support of the 
posterior distribution. Poor mixing may stem from inappropriate proposals (if one is using 
the Metropolis-Hastings sampler) or from attempting to estimate models with highly 
correlated variables.!



Burn-in !
•  Mathematical theorems guarantee 

that the Metropolis algorithm will 
asymptotically converge to the 
target distribution independently 
of its starting point.!

•  However, there will be an initial 
transient of unknown length during 
which the chain reaches its 
stationary state.!

•  In practice, you have to assume 
that after Nb iterations, the chain 
converged and started sampling 
from its target distribution.!

•  The value of Nb is called the burn-
in number.!
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Issues with MCMC!

•  You have to decide whether the Markov Chain has 
reached its stationary distribution!

•  You have to decide the number of iterations to 
keep after the Markov Chain has reached 
stationarity!

•  Convergence diagnostics help to resolve these 
issues. Note, however, that most diagnostics are 
designed to verify a necessary but NOT sufficient 
condition for convergence.!
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Visual analysis via Trace Plots!
•  The simplest diagnostic is obtained by plotting the value of one 

model parameter versus the simulation index (i.e. the first point in 
the Markov chain has index 1, the second 2, and so on). !

•  This is called a Trace Plot.!

•  As we will see, a trace tells you if a longer burn-in period is needed, 
if a chain is mixing well, and gives you an idea about the stationary 
state of the chain.!

•  Trace plots must be produced for all the parameters, not only for 
those of interest! If some of parameters have bad mixing you cannot 
get accurate posterior inference for parameters that appear to 
have good mixing.!
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Example I!
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 The figure displays a “perfect” trace plot, not easy to achieve in high-dimensions !

If  the 
chain has 
reached 
stationarity 
the mean 
and the 
variance of 
the trace 
plot should 
keep 
relatively 
constant. !

A chain that 
mixes well 
traverses 
the 
posterior 
space 
rapidly, and 
it can jump 
from a 
remote 
region of 
the 
posterior to 
another in 
relatively 
few steps.   !



Example II!
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 If you have a chain like this, increase the burn-in sample size.!

This chain 
starts at a 
very 
remote 
location 
and makes 
its way to 
the 
targeting 
distribution
.!

This chain 
mixes well 
locally and 
travels 
relatively 
quickly to 
the target 
distribution, 
reaching it 
in a few 
hundred 
iterations.!



Example III!
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 In order to obtain a given number of independent samples you need to run the 
chain for much longer.!

This trace 
plot shows 
marginal 
mixing. The 
chain is 
taking 
small steps 
and does 
not 
traverse 
its 
distribution 
quickly.!

This type of 
trace plot is 
typically 
associated 
with high 
correlation 
among the 
samples. The 
chain takes 
too long to 
forget 
where it 
was before.!



Example IV!
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 This type of chain is entirely unsuitable for making parameter inferences!!

This chain 
has serious 
problems. It 
mixes very 
slowly, and it 
does not give 
any evidence 
of 
convergence.!

You would 
want to try 
to improve 
the mixing of 
this chain. 
For example, 
you might 
consider 
changing the  
proposal 
distribution 
or 
reparameteri
zing your 
model.!



Convergence!
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Verde et al. 2003, first-year WMAP data!

Although the trace plot on the left may appear to indicate that the chain has converged after 
a burn-in of a few hundred steps, in reality it has not fully explored the posterior surface. !

This is shown on the right where two chains of the same length are plotted. Using either of 
these two chains at this stage will give incorrect results for the best-fit cosmological 
parameters and their errors.!



Statistical diagnostics!

•  Gelman-Rubin: uses parallel chains with dispersed 
initial values to test whether they all converge to 
the same target distribution.!

•  Geweke: tests whether the mean estimates of the 
parameters have converged by comparing means 
from the early and latter part of the Markov 
chain.!

•  Raftery-Lewis: Evaluates the accuracy of the 
estimated percentiles by reporting the number of 
samples needed to reach the desired accuracy.!

•  And many, many, more... !
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How to plot the results!
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