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No prior knowledge of cosmology is necessary, your prerequisite are a basic understanding of electrodynamics and thermal physics and some familiarity with
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The last scattering

CMB: Surface of LashScattering

Uniform!
T=273 K
= 3000 K/ 1100

AT/T ~ 107

All photons have travelled roughly the same distance since the recombination.
We can think of the CMB being emitted from inside of a spherical surface, we’re
at the center. This surface has a thickness, just like the surface of a cloud.
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The last scattering surface
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The visibility function is defined as the probability density that a photon
is last scattered at redshift z: g(z) ~ exp(-7t) dt/dz

Probability distribution is well described by Gaussian with mean z ~ 1100
and standard deviation 6z ~ 80.
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But why CMB is so uniform?

It might seem natural that the early, hot universe was in thermal equilibrium, but in fact this is quite
unnatural! This is because of the cosmological horizon, which is the distance the photons have
traveled since the Big Bang, and defines the size of the “sky patch” that could be in causal contact.

The Horizon Problem

The Horizon Problem

Uniform!
AT/T ~ 10°

z=1100

Simple calculation tells us that scales larger than ~1.7° in the sky were not in causal contact at
the time of last scattering. However, the fact that we measure the same mean temperature
across the entire sky suggests that even super-horizon scales were once in causal contact.

This led to the idea of Inflation.
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Cosmology recap

Einstein’s field equation reduces to two independent dynamical equations for the scale factor a(t)
(see cosmology lecture notes)

a
a  4rnG +3p +/1
a3 T 273

For matter dominated universe (Einstein-de Sitter universe, Qm=1), things are particularly simple:

— xa ”, a(t) o t2/3, H(t) = —, H(z) = Hy(1 + z)3/?

aQ

= — constant, a(t) oc exp(At/3),

Some definitions. The comoving distance-redshift relation gives us the distance travelled by light in comoving
coordinates between two epochs. The conformal time is the time slowed down by the expansion of the universe.

_ [ _/i
X=° . H) "=/ a)
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Horizon scale at Last Scattering

Fundamental Mode
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Inflation LS '
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CMB

Distance to the last scattering surface sphere
(assume Qm=1 EdS universe = H(z) = Ho(1+2)3/2)

c ZLS 3/
rLs = (1+2)77/“dz
Ho Jo
2c
- (1= (14 225)""?)
Ho

Thus, the factor 2c/Ho is approximately the

osserver COMoving distance to the LSS (zis >>1).

The particle horizon length at the time of last

scattering (i.e. the distance light could travel since
big bang) is give by

< cdz 2c
dy(z = zps) = = (14 zpg)" /2
ZLS H(Z) HO

for zp ¢ =~ 1100, means that

OLS = (1 + 215) Y2~ 1.7°
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Inflation solves the horizon problem

Inflation turns the horizon problem on its head! By postulating a phase of the universe with
accelerated expansion, it can be shown that the comoving scales grow more quickly than the
horizon, and the universe evolves towards flatness rather than away. Two points that were in causal
contact initially (d < dn) will expand so rapidly that they will be causally disconnected.

continuity equation

The density evolution of the universe, filled with dp dlnp
“matter” with equation of state p =wp (in c=1 it (4 p) 7 dlna ( w)p
units), is shown on the right. For ordinary matter comoving Hubble radius, (aH)~" w = 7

(w=0) or radiation (w=1/3) we get decelerated

i i - - -1 _ g1, 5(1+3w 5 (1+3w)
expansion and an increasing Hubble radius. (eH)™" = H, a203%) T x a2

From the equation for the acceleration of a_ —(1 + 3w) (ﬁp> a (L) <0
the universe, we immediately see that the a 3 dt \aH
condition for acceleration (i > 0) is that we — 5

have negative pressure, i.e. /+3w < 0. In this di (H ) <0 = ‘;T‘; >0 = p+3p<0
phase the Hubble radius shrinks with time. AN

In an inflationary universe, there is no singularity a=0 at the conformal time r=0. During the
exponentially expanding phase, conformal time is negative and evolves towards zero.

dt 1 1
a (t) « ef'', H = const. T = /— x ——e Ht, a(r) = -
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Inflation solves the horizon problem

Inflation turns the horizon problem on its head! By postulating a phase of the universe with
accelerated expansion, it can be shown that the comoving scales grow more quickly than the
horizon, and the universe evolves towards flatness rather than away. Two points that were in causal
contact initially (d < dn) will expand so rapidly that they will be causally disconnected.

our worldline
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d r<1V > hep-th > arXiv:0907.5424

High Energy Physics - Theory

[Submitted on 30 Jul 2009 (v1), last revised 30 Nov 2012 (this version, v2)]

TASI Lectures on Inflation

Daniel Baumann

arXiv.org > astro-ph > arXiv:astro-ph/0301448

Astrophysics
[Submitted on 22 Jan 2003 (v1), last revised 21 Jul 2004 (this version, v2)]

Cosmology, inflation, and the physics of nothing

Image credit: Daniel Baumann

william H. Kinney (SCAP, Columbia Univ.) (see www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf)



Inflation solves the horizon problem

Inflation turns the horizon problem on its head! By postulating a phase of the universe with
accelerated expansion, it can be shown that the comoving scales grow more quickly than the
horizon, and the universe evolves towards flatness rather than away. Two points that were in causal
contact initially (d < dn) will expand so rapidly that they will be causally disconnected.

Inflationary scenario solves the
horizon problem! The Hubble
sphere shrinks during inflation and
the conformal time is negative. The
space-like singularity at =0 s
replaced by the reheating (end-of-
inflation) surface.

This is t=0, but the Big Bang

singularity has now been * CMB
reheating

replaced by the “reheating
surface” at the end of inflation

The universe goes through roughly
60 e-folding during this inflationary
expansion (this number is model-
dependent). All points on the CMB
line has overlapping light cones and
come from causally connected
regions of space.
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Inflation solves flatness problem

Inflation also solves the flatness problem, the question why the spatial curvature of the observed
Universe is nearly zero ((Qk < 0.005 at 95% confidence from Planck data). The question of “fine
tuning” is avoided by postulating the phase of rapid, exponential expansion.

Recall the density parameter is related to the curvature of the Universe as following:

K d|Q—1]
QO = —K/(a’H?).

a?H? K /( ) dloga

In matter dominated Universe a < 0, aHH = a, so aH increases at early times, and the value of Q-1

becomes closer and closer to zero.

Q—-1=

>0, 14+3w>0.

28BN — 1| K 10~17, assuming TN ~ 1MeV and Zeq ™ 103. At the GUT epoch,
Taut ~ 1019 GeV, |QquTt — 1| < 1072, Unless the initial conditions are set very precisely,
the universe either collapses too quickly or expands too fast before large-scale structure can
form. This is known as the flatness problem.

But the accelerated expansion also turns the flathess problem on its head! Since now a > 0, the
curvature of the Universe moves towards zero instead of away from it during the expansion.

We see immediately that the condition for acceleration a > 0 is that

a (1 3 ) (47TG ) the equation of state be characterized by negative pressure, 1 4+ 3w < 0.
—=—(1l+4+ow —p
@ 3 This means that the universe evolves toward flatness rather than away:
d|2—1
dloga
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Physics of inflation

Let us consider a homogeneous single scalar field ¢ whose potential

energy can lead to the accelerated expansion of the universe. The q‘)\(’@ &0
energy density and the pressure of the inflaton are given by GQ\Q\X ‘&(\Qﬁ
O e &
O o
1 .9 1 .9 @«g 6(9\ QK\\Q
p=-¢"+tV(p), p=5¢"—V(p) GG
2 2 R\ o @6\(\
SNRIPANCS Q
Then, from the condition of acceleration a > 0 we obtain: @do ‘\%\6\ K&%\@i%\é\
2 @d& \S\O()Q(\ @\(\* \@K\)‘\\g
"<V e N O
2 (90) Od \(S\O Q
@@
So Inflation happens when P.E. of the field
dominates over the K.E. Ignoring the K.E. V(9)
term in the Friedmann equation (below), we A 00
get the recipe for exponential expansion: & _— .
- () - v
~\a/) 3md [2
H2= "y (¢) = const a(t) o eflt \/ ¢
= = . ) =
3mp, CbCE‘IB 2end reheating
Ag
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Physics of inflation

Inflation occurs if the universe is filled with a scalar field ¢, which has non-vanishing scalar potential
V(o) (it cannot be constant because inflation must end!). This homogeneous field ¢ then satisfies the

equation
dVv

dp’

@+ 3Hp = — a(t) o exp (/Hdt), H =~ const.

For a relatively flat potential (dV/d¢ small), the acceleration term can be neglected. The Friedmann
equation in this case is H2=8n/3G V(o). If ¢ varies slowly, then V(¢) and thus H also varies slowly, and

the parameters of inflation are almost time independent. This is known as a slow-roll inflation.

V(o) '
A Y0, Slow-roll parameters, which determines
RN & the number of e-foldings, are directly
Nb‘&:‘& ~. measurable from CMB experiments.
'\‘“ WY (@°
Q, “ V/ 2
’Q(‘ \e¥ » _ V@) |ep) = =M ( )
\\%(\@% o° = 5 277\ Vv
LY V/I
Q , — -
@CﬁIB Pend reheating
Ag¢

Example of an inflaton potential. Acceleration occurs when the potential energy of
the field, V(¢), dominates over its kinetic energy, %¢2 Inflation ends at ¢enq when the
kinetic energy has grown to become comparable to the potential energy, %qﬁz ~ V. CMB
fluctuations are created by quantum fluctuations d¢ about 60 e-folds before the end of
inflation. At reheating, the energy density of the inflaton is converted into radiation.
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Inflation and the CMB

Inflationary scenario also solves the

flatness problem, origin of g ,
. . INE

fluctuations problem, magnetic w st L.

monopole (and other superheavy

. . fraction
relics) problem. And the main support EEEEE
for inflation comes from the CMB.

380,000

. ] years ’ ” ‘\ prgzslsnt
Observation of the CMB provides
evidence of a remarkable story: " ears " s
That we all came from quantum " ‘--. .
fluctuations! L

* Fluctuations we observe today in CMB and the matter
distribution originate from quantum fluctuations during

inflation

y i» Mukhanov&Chlblsov (1981)

ST oS8 Guth & Pi (1982)
g, o B <'-'-;=~*f—* " Hawking (1982)
SRR e 5| Starobinsky (1982)
L SRR '~" “ Bardeen, Steinhardt&Turner
(1983)
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Predictions of inflation & the CMB

Inflationary models make specific set
of predictions that can be verified
with CMB data:

= L = Horizon length = ¢/H

vy

&

&

Small spacial curvature

Superhorizon

Nearly scale-invariant spectrum of
density perturbations

[Sa)

=

=
CMB temperature anisotropies from .
large to small angular scales (Sachs- NN\ N\ NS\ N\ NSNS =2”17%
Wolfe effect and acoustic peaks) _ ‘

Subhorizon

Gaussian perturbations "‘ "" I= %ﬁ%

Existence of primordial gravity

SPACE
waves!

Figure from Carlstrom, Crawford & Knox (2015), Physics Today

An Introduction to the CMB 05: CMB temperature anisotropies (part 1) 15



16

05: CMB temperature anisotropies (part 1)

An Introduction to the CMB



Amplitude of the temperature
anisotropies

CMB is primarily a uniform glow across
the sky. But..

Turning up the contrast, a dipole
pattern becomes prominent at a level of
10-3. This is from the motion of the Sun
relative to the CMB monopole (rest
frame).

Enhancing the contrast further (at the
level of 10-5, and after subtracting the
dipole, temperature anisotropies
appear.
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Temp. anisotropies & dark matter

From the fact that non-linear structures exist today in the
Universe, the linear growth theory predicts that density
perturbations at z = 1100 (the time of CMB release) must
have been of the order of

0(a=1) S

> 1073
D.(acwms)

d(acm) =

After the CMB was discovered in 1965, fluctuations were sought at the relative
level of 10-3, but were not found. Eventually they were found at a level of 10-5.

The reason is that density contrast we see foday is dominated by dark matter,
while the CMB temperature differences are couple to baryons. DM perturbations
grow independently of the baryons. While the radiation-baryon fluid oscillated
and therefore couldn’t grow in amplitude, the DM perturbations continued to
grow. Since DM has no coupling to the electromagnetic spectrum nor to the

baryons, this growth happened without pumping the perturbations in the CMB
to equal levels.

In fact, this can be seen as a proof that a baryonic universe can not form the
present structures and a non-interacting form of matter must dominate!

An Introduction to the CMB 05: CMB temperature anisotropies (part 1)
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Deployable Sun, Earth,"
. RF/Thermal Shield

Melium Dewar — - .-

N 'Depl_oyabié Solar Panels -

" Deployable f\/la’st‘

" TDRSS Orhni Antennia, -

Credit: NASA
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COBE satellite

~~Earth Sensors .

S .WFF Omm Antenna .

Launched on Nov. 1989 on a Delta
rocket.

DIRBE: Measured the absolute sky
brightness in the 1-240 pm
wavelength range, to search for the
Infrared Background

FIRAS: Measured the spectrum of the
CMB, finding it to be an almost perfect
blackbody with Tp =2.725 + 0.002 K

DMR: Found “anisotropies” in the
CMB for the first time, at a level of 1
part in 105

2006
Nobel
prize in
physics
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DMR on COBE
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Differential Microwave Radiometer

£
~—Horn Antennasssswe, » protective

: }Enclosme
J
7 ; '.
.

The 8.6 mm DMR receiver partially assembled.
Corrugated cones are antennas,

e Differential radiometers measured at
frequencies 31.5, 53 and 90 GHz, over
a 4-year period

e Comparative measurements of the
sky offer far greater sensitivity than
absolute measurements
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COBE DMR Measurements
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The CMB dipole

B

The actual 100 GHz
channel map from the
Planck satellite, showing
the dipole variation of
Intensity across the sky.
The corresponding
temperature difference
IS 3.36 mK.

e Measured velocity: 390+30 km/s

e After subtracting out the rotation and revolution of the Earth, the velocity of the
Sun in the Galaxy and the motion of the Milky Way in the Local Group one finds:
V=627 +22km/s

e Towards Hydra-Centaurus, 1=276+3° b=30+3°

? Can we measure an intrinsic CMB dipole ?

5
&
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Velocity induced change on CMB

If you are moving with velocity 3 with respect to the CMB blackbody, then the intensity
change in the direction p=cos(0) would be

~1
73 |ex 1+6p )
I, =1y« [ep(mm> 1]

This follows from the simple formula for relativistic Doppler boost:

Expanding in powers of 3, we thus get

I, 23 | xe” ze® z\ e*?2+1 5, 1\ , 3
el L 1Al ((—) u+—>6 +O(8)

et — 1 e? — 1

The second term is just the well-known CMB
dipole, with frequency dependence of a pure
temperature change. The second order term
contains a y-distortion, from the mixing of
blackbodies, and also a contribution to the
pure temperature dipole.

An Introduction to the CMB 05: CMB temperature anisotropies (part 1)
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Velocity induced change on CMB

Now, if there is also temperature fluctuations (as indeed we have!), then there will also be
aberration and modulation of those fluctuations. To see that, we write the anisotropic CMB sky
intensity in a general way:

S = @) | S v@y @)

where f(z) = xze*/(e® — 1) comes from the derivative of a blackbody at a
fixed temperature, and Y (z) = a:[gz—fi — 4] is the y-distortion spectrum.

Again, applying a velocity boost to this and expanding in powers of 3, we get

:{\0‘\ \%’{\Q‘\

PO The first term is again the temperature dipole,
it any B w8 showing a change of intensity. The second
Al'(’) AT'(n') . . .
If() =P+ Tenrs (1+38u) < term gives the modulation and aberration

AT (&) — effects, both linear in B (so about 1000 times

N, n smaller than the intensity dipole). The first

+Y(2) [y(n )L+ 36u) + Br ToMmB ] term in the second line gives modulation and
dY (z) aberration of the y-distortion anisotropies,

+ Bu y [Y2(x) — T ] + O(B%) whereas the second term is an additional y-

T modulation from temperature anisotropies.

(Note that these effects are not unique to

CMB, they occur for all astronomical
n =n-V@-p) observations!)

Direction of incoming photons changes from n to i’
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Modulation and aberration of the anisotropies

Both these are level ~B effects. Modulation is the
brightening/dimming of temperature anisotropies, and
aberration is a relativistic shift in their angular size.
These were measured by Planck in 2013 to about 40.

(a) Tl’Rl.\lORl)l.’\L

T T

Fig.1. Exaggerated illustration of the Doppler aberration and
modulation effects, in orthographic projection, for a velocity
v = 260000kms™' = 0.85¢ (approximately 700 times larger
than the expected magnitude) toward the northern pole (indi-
cated by meridians in the upper half of each image on the left).
The aberration component of the effect shifts the apparent posi-
tion of fluctuations toward the velocity direction, while the mod-
ulation component enhances the fluctuations in the velocity di-
rection and suppresses them in the anti-velocity direction.
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Temperature anisotropies:
The CMB power spectrum

Angular scale
90° 18° 1 02 0.1° 0.0/ 0.05°

10, :
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Recap: Gaussian random fields
and power spectrum

A random field is the generalization of random variables at different points in space
(and/or time). Denoting such fields by §(x), their statical properties are described by
the correlation function of the form ($p(x)d(y)). In general there can also be three-point

and higher orders correlation terms. But these vanish for Gaussian random fields!

For Gaussian random fields, the variables take on the Gaussian probability
distribution. In this case, the 2-point correlation function describes its statistical
properties completely! We can also take advantage of the homogeneity and isotropy
of the fields, to take Fourier transform of the field, and define the power spectrum,
P(k), which only depends on the amplitude of the wave vector k. Thus (¢x¢-x)' = P(k)

P(k) = Id3r 5(7) e’ Gaussian random fields are
fully described by their 2nd
order moment.

d’k

3

P k —il;'f"
(k)e In real (map) space:

2-pt correlation function

In fourier space:
Power spectrum
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Recap: Gaussian random fields
and power spectrum

InP(k In P(k) In P(k In P(k In P(k
A A A A

> > > > >

Ink In k& In k& In k& In k&

Realizations for P(k) = k™" withn € {0, 1, 2, 3,4} from left to right.

00 %0

0o

See https://garrettgoon.com/gaussian-fields/
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CMB temperature anisotropies

e The basic observable is the CMB intensity as a function of frequency
and direction on the sky. Since the CMB spectrum is an extremely good
black body with a fairly constant temperature across the sky, we
generally describe this observable in terms of a temperature fluctuation

g(ga ¢) — T(Q,q%) :

e The equivalent of the Fourier expansion on a sphere is achieved by
expanding the temperature fluctuations in spherical harmonics

AT 00 14
(9 ¢ Z Z Cbgm TfL Qb)
=1 m=—¥¢
¢(=0,1,..., m=—0—C+1,...,¢
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Analogy: Fourier series

saaWiooil w'ave

Sdfikire wale

. f ~
. | - | 0, &
B B
.3 0 &
| X
0.5 1.5 ) T 0.4
n c
-] . 5 0.2
. | — | \
-] - ,u‘.a,\:.p
trianele wave setticicle

Sum sine waves of different frequencies to approximate any function.

Each term has a coefficient, or amplitude. Know these amplitudes
and you know the function!
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Spherical harmonics functions

Check out the wikipedia pages on (% n 1) (g m)'
Legendre polynomials and spherical Ym (9 ) — Pm (cos 9) T
harmonics (or ask ChatGPT!) 47 (L 4+ m)!

a\\’\.\‘

o \“° / / YV AQ = Sy dQ = sin 8 dip dB
8=0 Js=0

t=0 . monopole
& e .l 8= 360°/(2+1) = 150°/
N T (imagine cutti h
_ , imagine cutting up a sphere
(=] o . ‘\ dipole into ¢+ stripes)

A fully exact relation between
- ™ multipole ¢ and 1D angle 6
{=2 | u 2 -_ ‘ ' quadrupole cannot be given. We use the

above approximation.

- .\ 4N 4 1 /1
— " 0 N
(=3 | - ; !9 ‘4®)  octopole W9 =3y
.= g =3 o L3 g
m—() m=1 m=2 m=3 ‘(6‘@;\ 51/ 5= sinfe ™
T . : : : RISt 1 /3
Red implies positive values, blue 1s negative. This plot 5\)‘(‘6(00“‘(’6 Y (6, ) = 54/ — cosb
- ons! w0 "
shows only half the harmonic functions! w“‘ V(6,0 1 \/T s
m=-[,-Il+1,...,-1,0,+1,...,1-1,] foreach ! 1 \7¥P) = 57 5, SInve
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Visualizing the multipoles

Figure 6: Randomly generated skies containing only a single multipole £. Staring from top
left: £ =1 (dipole only), 2 (quadrupole only), 3 (octupole only), 4, 5, 6, 7, 8, 9, 10, 11, 12.
Figure by Ville Heikkila.
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Visualizing the multipoles (real CMB)

WMAP 2007 result
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Spherical harmonics & power spectrum

CMB temperature anisotropies are expressed in terms of spherical harmonics

00 14
=5 N @ Yin(6,¢),  where T(a) = 6T(8)/Th

/=1 m=—/¢

We define the (.) operator as the ensemble average, over all possible realizations from the
same underlying theory, and we can use that to define correlation between the a;,-s

Cemef P = <a’€m Aty > = Cp 0ubmm = <“€m Oy >

where we used the homogeneity and isotropy (i.e. rotational invariance) of the anisotropies.
From this we can obtain the 2-point correlation function of the temperature anisotropies:

(T'(0)T <Z Z al, Yom (0 §‘; Y a Yo (0, @ )>

=0 m=—¢ =0 m/=—/¢
00 14
— <Z Z |a£n|2Yém(97 ¢)Yém(9/7 ¢/)> .
(=0 m=—¢
4:17r > (20 +1)CIT Py (f - i) where we uz:d thf identity
PE(ﬁ . ﬁ/) — 7+ 1 Z Yem(ﬁ)YEm
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Spherical harmonics & power spectrum

Therefore, from the definition of variance, we see that the angular power spectrum, C,
gives the variance of a temperature field at a particular -mode.

We define ©(n) = 70, 8,4) = T

T 100 ¢
A A * m(A\ym'* (A %‘ 80 _
O(M)OM) = > > (OmO}, )Y (R)Y*(h) & |
'm 0'm/ E 60
= Y oY vr@yrm) S ol
l m X
20 + 1 =21

— CY

- 47

The variance of temperature anisotropies
6T\ 20+ 1
— — C
() )=

Credit: Wayne Hu
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Power at different scales

| 00 1000

The variance of temperature anisotropies Cred it Wayne Hu
9 http://background.uchicago.edu/~whu/metaanim.html

ST\?*\ > 2041,

T - Z 47 ¢
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Spherical harmonics summary

Temperature anisotropies are expressed in terms of spherical harmonics

AT 2\ 5T
TOH=D Y anYi0.0)  aum= [ dOV;(60,0)7-0.0

=1 m=—¢

Gaussian random field: Mean of the harmonic coefficients is zero, uncorrelated on different scales and angles

(apm) = 0. (apmap,) =0 if ¢4/ orm#m'

The expectation values of the coefficients give the power spectrum (sum over all m-modes for a given |)

For a Gaussian random field, the C, contains all the statistical information. Thus the
cosmological analysis of CMB temperature anisotropies (and likewise for its
polarization anisotropies, see later) consists of computing the Ci-s from the real sky
and comparing those with the theoretical models (e.g., using Bayesian methods).

The correspondence between the 21 +1
2-pt correlation function in real space | & (x) = (f (n) f (n')) = E C;P; (cos(6))
and the angular power spectrum C; T An
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Spherical harmonics summary

In real space In harmonic space

NP 1 o . m 1 m
oo (0) = (B(R)O(R)) = i K_ZO(25+ 1)Cy Py cosd, ni' =cosf  Cr=(laf'|") = 20 +1 Em: a7 |’

|~180%80 relates to the angular size of the pattern, and m relates to the direction on
the sky. (|lam|2) is independent of m (since CMB is isotropic).

The mean (am) is zero, but the variance is non-zero! The variance is the
sum of angular power on all scales.

2
< (JT(;, (b)) > <Z afm,},f'm(og ¢) Z (I,Z,"&,Y?;rn,(g’ ¢)>

im g'm/’
— Z Z n'rrl (93 ¢))/£*"m’ (9: ¢) <a£m az’m'>
£ mm'
. 20 + 1
4500 " " ) = ch Z I}/Em(or ¢)|2 - A Cg ’
‘ V4 m £

temperature anisotropies were generated from
primordial density perturbations alone (Sachs-Wolfe
effect — see later).

/ <
| / It is customary to plot this variance a l(l+1)Cl/2@
3 2000} / < This quantity is expected to be a constant i
I |

10 10° 10°
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CMB sky — Power spectrum

S RN

+1)C [y K

¢

10’ 10° 10°
Spherical harmonic number ell ~ 180%

Computing the power spectrum from sky

. ¢
temperature fluctuations should then be easy! AT 0 B > £(p
You just need to Fourier transform the map and T (0,9) = S: p aem Y, (0, D)
calculate the coefficients a;, and then take the =1 m=—¢
statistical average. In practice, of course, this is
. . . . - 2
numerically challenging for maps with millions Cy — (‘agm|>

of pixels on the sky.
What we are plotting is the amplitude of fluctuations on each scale. It is also called

the TT power spectrum, to denote the autocorrelation and to distinguish it from
the polarization spectra (later in the class).
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Exercise!
Power spectrum — CMB sky

We give you this as an exercise (using iPython notebook) to create a CMB sky patch
from its power spectrum. Use an online CMB power spectrum generator (as with CAMB
in the NASA LAMBDA site: https://lambda.gsfc.nasa.gov/toolbox/camb_online.html)
to get your C,; vs |, make a 2D version of it, and Fourier transform it to create your own

CMB sky!
—x v

815 4
. -

400

6 4
5000 A

4000 A

100
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0 1000 2000 3000 4000 5000 A - -300
l ]

o
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Cosmic variance

10 1
Angular scale -l' | | | | Illl | | | | Ill
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Multipole moment, ¢ TR g 100

We only have one Universe, so we are intrinsically limited to the number of independent
m-modes we can measure — there are only (21 + 1) of these for each multipole.

0
We obtained the following expression for the power spectrum: O, — 1 Z (|a |2>

20+ 1

m=—F

We can see (2/1+1)C, follows a x? distribution. It has (2/+1) degrees of freedom, thus its variance is
simply 2(2I+1). Therefore we get , for any given C,
oc, = V2/(20+1) C,

How well we can estimate an average value from a sample depends on how many points
we have on the sample. This cosmic variance is an unavoidable source of uncertainty
when constraining models!




Cosmic variance formal derivation

e We only have access to our sky, not the ensemble average

e There are 2/ + 1 m-modes of given £ mode, so average

A

1
Co=——) 0, O
CT U+ ; bm =t
e (Cy) = C, but now there is a cosmic variance

» _ {(Ce=C)(Ce—C) _ (CiC) = C

0] p—
“ % C?

1 * *
T (20112 (D OimOtm O Opmr) — 1

1

mm/

e Note that the distribution of C, is that of a sum of squares of
Gaussian variates

e Distributed as a x? of 2¢ + 1 degrees of freedom

e Approaches a Gaussian for 2/ + 1 — oo (central limit theorem)
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Cosmic variance & sample variance

Multipole moment 1

B000 [T e Cosmic variance: on scale |
< 0 : there are only 2/+71 independent
2 | modes, so we have a fundamental
g 0F level of uncertainty
U_LD_) 3000
% 2000 [ 2
N AC) =4/ ——=C]
£ 1000 £
2 1 2[ + 1
0 E3 ! L L
90° 2° 0.5° 0.2°
Angular Size _ _
e If the fraction of sky covered is f,
then the errors are increased by a
10000.00F | P factor IAfuy and the resulting
i T NN . .
1000.00p variance is called sample
Nﬁ 100.00f variance (for example, fuy ~ 0.65
> E N E for the Planck satellite)
I 10.00F Cosmic Variance  \~_ 3
= 3 N )/
% 1.00 3 (AC1)2 — (Cy + Ng)2
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Cosmic variance limits on the
current CMB data

Current Planck temperature power spectrum (TT) is already cosmic variance limited,
out to the angular scales where primordial effects are dominant. Hence, there is no
gain to be made by measuring the CMB temperature anisotropies with more precision.

Within the next 4-5 vyears, LiteBIRD satellite will make cosmic variance-limited
measurement of the EE mode of polarization power (highly useful for measuring the
universe’s optical depth caused by reionization, for example). And BB mode of
polarization is fully unconstrained at the large scale. So there is plenty to discover!
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I
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Questions?

L 3

Feel free to email me or ask questions
in our eCampus Forum
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