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The last scattering “sphere”

3

All photons have travelled roughly the same distance since the recombination.
We can think of the CMB being emitted from inside of a spherical surface, we’re 

at the center. This surface has a thickness, just like the surface of a cloud.
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The last scattering surface

4

The visibility function is defined as the probability density that a photon 
is last scattered at redshift z:  g(z) ~ exp(-τ) dτ/dz

Probability distribution is well described by Gaussian with mean z ~ 1100 
and standard deviation  δz ~ 80.

This width is 
important for 
“Silk damping” 
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But why CMB is so uniform?

5

It might seem natural that the early, hot universe was in thermal equilibrium, but in fact this is quite 
unnatural! This is because of the cosmological horizon, which is the distance the photons have 

traveled since the Big Bang, and defines the size of the “sky patch” that could be in causal contact.  

2≈

Simple calculation tells us that scales larger than ~1.7◦ in the sky were not in causal contact at 
the time of last scattering. However, the fact that we measure the same mean temperature 
across the entire sky suggests that even super-horizon scales were once in causal contact. 
This led to the idea of Inflation. 
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Cosmology recap

6

Einstein’s field equation reduces to two independent dynamical equations for the scale factor a(t) 
(see cosmology lecture notes)

For matter dominated universe (Einstein-de Sitter universe, Ωm=1), things are particularly simple:

Interesting things happen when the universe is 𝛬-dominated (i.e there’s only a cosmological const)!

Some definitions. The comoving distance-redshift relation gives us the distance travelled by light in comoving 
coordinates between two epochs. The conformal time is the time slowed down by the expansion of the universe.
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Horizon scale at Last Scattering

7

The particle horizon length at the time of last 
scattering (i.e. the distance light could travel since 
big bang) is give by 

Thus, the factor 2c/H0 is approximately the 
comoving distance to the LSS  (zLS >>1).

   H0   

Distance to the last scattering surface sphere 
(assume Ωm=1 EdS universe ➞ H(z) = H0(1+z)3/2 )

   H0   

   H0   

C
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Inflation solves the horizon problem
Inflation turns the horizon problem on its head! By postulating a phase of the universe with 

accelerated expansion, it can be shown that the comoving scales grow more quickly than the 
horizon, and the universe evolves towards flatness rather than away. Two points that were in causal 

contact initially ( d < dH ) will expand so rapidly that they will be causally disconnected. 

The density evolution of the universe, filled with 
“matter” with equation of state p = 𝒘ρ (in c=1 

units), is shown on the right. For ordinary matter 
(w=0) or radiation (w=1/3) we get decelerated 

expansion and an increasing Hubble radius. 

From the equation for the acceleration of 
the universe, we immediately see  that the 
condition for acceleration (ä > 0) is that we 

have negative pressure, i.e. 1+3w < 0. In this 
phase the Hubble radius shrinks with time. 

In an inflationary universe, there is no singularity a=0 at the conformal time 𝝉=0. During the 
exponentially expanding phase, conformal time is negative and evolves towards zero.

⇒
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Inflation solves the horizon problem

Image credit: Daniel Baumann
(see www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf)

Horizon problem in the conventional 
Big Bang model. Our past light 
cone intersects the space-like slice 
marked CMB (the last scattering 
surface) at points p and q, whose 
own light cones don’t overlap, as 
they hit the singularity at 𝛕=0.

Inflation turns the horizon problem on its head! By postulating a phase of the universe with 
accelerated expansion, it can be shown that the comoving scales grow more quickly than the 

horizon, and the universe evolves towards flatness rather than away. Two points that were in causal 
contact initially ( d < dH ) will expand so rapidly that they will be causally disconnected. 
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Inflation solves the horizon problem

This is 𝝉=0, but the Big Bang 
singularity has now been 

replaced by the “reheating 
surface” at the end of inflation 

Image credit: Daniel Baumann
(see www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf)

Inflationary scenario solves the 
horizon problem! The Hubble 
sphere shrinks during inflation and 
the conformal time is negative. The 
space-like singularity at 𝛕=0 is 
replaced by the reheating (end-of-
inflation) surface.

The universe goes through roughly 
60 e-folding during this inflationary 
expansion (this number is model-
dependent). All points on the CMB 
line has overlapping light cones and 
come from causally connected 
regions of space.

Inflation turns the horizon problem on its head! By postulating a phase of the universe with 
accelerated expansion, it can be shown that the comoving scales grow more quickly than the 

horizon, and the universe evolves towards flatness rather than away. Two points that were in causal 
contact initially ( d < dH ) will expand so rapidly that they will be causally disconnected. 
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Mechanism of inflation
Inflation occurs if the universe is filled with a scalar field φ, which has non-vanishing scalar potential 
V(φ) (it cannot be constant because inflation must end!). This homogeneous field φ then satisfies the 
equation

For a relatively flat potential (dV/dφ small), the acceleration term can be neglected. The Friedmann 
equation in this case is H2 = 8π/3G V(φ). If φ varies slowly, then V(φ) and thus H also varies slowly, and 
the parameters of inflation are almost time independent. This is known as a slow-roll inflation.

Slow-roll parameters, which determines 
the number of e-foldings, are directly 
measurable from CMB experiments.

More o
n inflation 

during th
e CMB 

polarization lect
ures



An Introduction to the CMB 04: CMB temperature anisotropies (part 1)

Inflation and the CMB

12

Observation of the CMB provides 
evidence of a remarkable story: 
That we all came from quantum 
fluctuations!

Inflationary scenario also solves the 
flatness problem, origin of 
fluctuations problem, magnetic 
monopole (and other superheavy 
relics) problem. And the main support 
for inflation comes from the CMB.
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Predictions of inflation & the CMB

13

Inflationary models make specific set 
of predictions that can be verified 
with CMB data:

Small spacial curvature


Nearly scale-invariant spectrum of 
density perturbations


CMB temperature anisotropies from 
large to small angular scales (Sachs-
Wolfe effect and acoustic peaks)


Gaussian perturbations


Existence of primordial gravity 
waves!

Figure from Carlstrom, Crawford & Knox (2015), Physics Today



An Introduction to the CMB 04: CMB temperature anisotropies (part 1) 14

Temperature Anisotropies
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Amplitude of the temperature 
anisotropies

15

CMB is primarily a uniform glow across 
the sky. But..

Turning up the contrast, a dipole 
pattern becomes prominent at a level of 
10-3. This is from the motion of the Sun 
relative to the CMB monopole (rest 
frame).

Enhancing the contrast further (at the 
level of 10-5, and after subtracting the 
dipole, temperature anisotropies 
appear.
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Temp. anisotropies & dark matter

16

From the fact that non-linear structures exist today in the 
Universe, the linear growth theory predicts that density 
perturbations at z = 1100 (the time of CMB release) must 
have been of the order of

After the CMB was found in 1965, fluctuations were sought at the relative level 
of 10-3, but they were not found. Eventually they were found at a level of 10-5. 

The reason is that density contrast we see today is dominated by dark matter, 
while the CMB temperature differences are couple to baryons. DM perturbations 
grow independently of the baryons. While the radiation-baryon fluid oscillated 
and therefore couldn’t grow in amplitude, the DM perturbations continued to 
grow. Since DM has no coupling to the electromagnetic spectrum nor to the 
baryons, this growth happened without pumping the perturbations in the CMB 
to equal levels. 

In fact, this can be seen as a proof that a baryonic universe can not form the 
present structures, and a non-interacting form of matter must dominate!
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COBE satellite

17

Launched on Nov. 1989 on a Delta 
rocket.

DIRBE:  Measured the absolute sky 
brightness in the 1-240 μm 
wavelength range, to search for the 
Infrared Background

FIRAS: Measured the spectrum of the 
CMB, finding it to be an almost perfect 
blackbody with T0 = 2.725 ± 0.002 K 

DMR:  Found “anisotropies” in the 
CMB for the first time, at a level of 1 
part in 105 

2006 
Nobel 

prize in 
physics

Credit: NASA
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DMR on COBE

18

Differential Microwave Radiometer

• Differential radiometers measured at 
frequencies 31.5, 53 and 90 GHz, over 
a 4-year period
• Comparative  measurements  of  the 
sky  offer  far  greater  sensitivity  than 
absolute measurements

Credit: NASA
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COBE DMR Measurements

19

COBE DMR results
First announced in Smoot et al. (1992)

Credit: Archeops team

2006 Nobel Prize in Physics 
for George Smoot



An Introduction to the CMB 04: CMB temperature anisotropies (part 1)

The CMB dipole

20

• Measured velocity: 390±30 km/s
• After subtracting out the rotation and revolution of the Earth, the velocity of the     
  Sun in the Galaxy and the motion of the Milky Way in the Local Group one finds:
  v = 627 ± 22 km/s
• Towards Hydra-Centaurus, l=276±3° b=30±3°

Can we measure an intrinsic CMB dipole ?

The actual 100 GHz 
channel map from the 

Planck satellite, showing 
the dipole variation of 

intensity across the sky. 
The corresponding 

temperature difference 
is 3.36 mK. 
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Velocity induced change on CMB

21

If you are moving with velocity β with respect to the CMB blackbody, then the intensity 
change in the direction μ=cos(θ) would be

This follows from the simple formula for relativistic Doppler boost: 

Expanding in powers of β, we thus get 

The second term is just the well-known CMB 
dipole, with frequency dependence of a pure 
temperature change. The second order term 
contains a y-distortion, from the mixing of 
blackbodies, and also a contribution to the 
pure temperature dipole.
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Velocity induced change on CMB
Now, if there is also temperature fluctuations (as indeed we have!), then there will also be 
aberration and modulation of those fluctuations. To see that, we write the anisotropic CMB sky 
intensity in a general way:

Again, applying a velocity boost to this and expanding in powers of β, we get

The first term is again the temperature dipole, 
showing a change of intensity. The second 
term gives the modulation and aberration 
effects, both linear in β (so about 1000 times 
smaller than the intensity dipole). The first 
term in the second line gives modulation and 
aberration of the y-distortion anisotropies, 
whereas the second term is an additional y-
modulation from temperature anisotropies. 
(Note that these effects are not unique to 
CMB, they occur for all astronomical 
observations!)

Direction of incoming photons changes from 

aberration

modulation
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Modulation and aberration of the anisotropies

23

Planck collaboration (2013)

Both these are level ~β effects. Modulation is the 
brightening/dimming of temperature anisotropies, and 

aberration is a relativistic shift in their angular size. 
These were measured by Planck in 2013 to about 4σ.

Planck collaboration (2020)

Now also measured 
through the SZ signal 
modulation in the sky
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Temperature anisotropies:
The CMB power spectrum

24



An Introduction to the CMB 04: CMB temperature anisotropies (part 1)

Recap: Gaussian random fields
and power spectrum

25

A random field is the generalization of random variables at different points in space 
(and/or time). Denoting such fields by ϕ(x), their statical properties are described by 

the correlation function of the form ⟨ϕ(x)ϕ(y)⟩. In general there can also be three-point 
and higher orders correlation terms. But these vanish for Gaussian random fields!


For Gaussian random fields, the variables take on the Gaussian probability 
distribution. In this case, the 2-point correlation function describes its statistical 

properties completely! We can also take advantage of the homogeneity and isotropy 
of the fields, to take Fourier transform of the field, and define the power spectrum, 

P(k), which only depends on the amplitude of the wave vector k. Thus                      .  

Gaussian random fields are 
fully described by their 2nd 

order moment.

In real (map) space:
  2-pt correlation function

In fourier space:
  Power spectrum
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Recap: Gaussian random fields
and power spectrum

26

See https://garrettgoon.com/gaussian-fields/
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CMB temperature anisotropies

27

• The basic observable is the CMB intensity as a function of frequency 
and direction on the sky. Since the CMB spectrum is an extremely good 
black  body  with  a  fairly  constant  temperature  across  the  sky,  we 
generally describe this observable in terms of a temperature fluctuation

• The equivalent of the Fourier expansion on a sphere is achieved by 
expanding the temperature fluctuations in spherical harmonics
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Analogy: Fourier series

28

Sum sine waves of different frequencies to approximate any function.

Each term has a coefficient, or amplitude. Know these amplitudes 
and you know the function!
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Spherical harmonics functions

29

𝟅 ≈ 360°/(2l+1) ≈ 180°/l 
(imagine cutting up a sphere 
into 2l+1 stripes)
A fully exact relation between 
multipole l and 1D angle θ 
cannot be given. We use the 
above approximation.

Red implies positive values, blue is negative. This plot 
shows only half the harmonic functions!

m = −l, −l+1, … , −1, 0, +1, … , l−1, l  for each l

Check out the wikipedia pages on 
Legendre polynomials and 

spherical harmonics 

monopole

dipole

quadrupole

octopole

Firs
t tw

o 

spherica
l 

harmonic 

functio
ns

Orthonormality 

conditio
n
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Visualizing the multipoles
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Visualizing the multipoles (real CMB)

31

WMAP 2007 result
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Spherical harmonics & power spectrum

32

CMB temperature anisotropies are expressed in terms of spherical harmonics

where

We define the ⟨.⟩ operator as the ensemble average, over all possible realizations from the 
same underlying theory, and we can use that to define correlation between the alm-s

⇒

where we used the homogeneity and isotropy (i.e. rotational invariance) of the anisotropies. 
From this we can obtain the 2-point correlation function of the temperature anisotropies:

where we used the identity 
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Spherical harmonics & power spectrum
Therefore, from the definition of variance, we see that the angular power spectrum, Cl , 
gives the variance of a temperature field at a particular l-mode.

Credit: Wayne Hu

We define

The variance of temperature anisotropies
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Power at different scales

34

Credit: Wayne Hu
http://background.uchicago.edu/~whu/metaanim.html

The variance of temperature anisotropies

http://background.uchicago.edu/~whu/metaanim.html
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For a Gaussian random field, the Cl contains all the statistical information. Thus the 
cosmological analysis of CMB temperature anisotropies (and likewise for its 

polarization anisotropies, see later) consists of computing the Cl-s from the real sky 
and comparing those with the theoretical models (e.g., using Bayesian methods).


The correspondence between the 
2-pt correlation function in real space 

and the angular power spectrum Cl

Spherical harmonics summary
Temperature anisotropies are expressed in terms of spherical harmonics 

Gaussian random field: Mean of the harmonic coefficients is zero, uncorrelated on different scales and angles

The expectation values of the coefficients give the power spectrum (sum over all m-modes for a given l)
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Spherical harmonics summary

36

l~180º/θ relates to the angular size of the pattern, and m relates to the direction on 
the sky.〈|alm|2〉is independent of m (since CMB is isotropic).

The mean〈alm〉is zero (Gaussian random field), but the variance is non-zero!
The variance is the sum of angular power on all scales.

It is customary to plot this variance as l(l+1)Cl /2𝜋 vs l 
This quantity is expected to be a constant if 
temperature anisotropies were generated from 
primordial density perturbations alone (Sachs-Wolfe 
effect — see later).

In real space In harmonic space
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CMB sky ➞ Power spectrum

37

Computing the power spectrum from sky 
temperature fluctuations should then be easy! 
You just need to Fourier transform the map and 
calculate the coefficients alm and then take the 
statistical average. In practice, of course, this is 
numerically challenging for maps with millions 
of pixels on the sky.

What we’re plotting is the amplitude of fluctuations on each scale. It is also called 
the TT power spectrum, to denote the autocorrelation and to distinguish it from 

the polarization spectra (later in the class).
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Exercise! 
Power spectrum ➞ CMB sky

38

We give you this as an exercise (using iPython notebook) to create a CMB sky patch 
from its power spectrum. Use an online CMB power spectrum generator (as with CAMB 
in the NASA LAMBDA site:  https://lambda.gsfc.nasa.gov/toolbox/camb_online.html) 
to get your Cl vs l, make a 2D version of it, and Fourier transform it to create your own 
CMB sky!

https://lambda.gsfc.nasa.gov/toolbox/camb_online.html
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Cosmic variance

39

We only have one Universe, so we are intrinsically limited to the number of independent 
m-modes we can measure − there are only (2l + 1) of these for each multipole. 

We obtained the following expression for the power spectrum:

We can see (2l+1)Cl follows a χ2 distribution. It has (2l+1) degrees of freedom, thus its variance is 
simply 2(2l+1). Therefore we get , for any given Cl 

How well we can estimate an average value from a sample depends on how many points 
we have on the sample. This cosmic variance is an unavoidable source of uncertainty 
when constraining models!

Cosmic variance 
uncertainties
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Cosmic variance formal derivation

40
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Cosmic variance & sample variance

41

• Cosmic variance:  on  scale  l, 
there  are  only  2l+1  independent 
modes

• If the fraction of sky covered is f, 
then the errors are increased by a 
factor  1/√fsky  and  the  resulting 
variance  is  called  sample 
variance  (for  example,  fsky ~ 0.65 
for the Planck satellite)                                          

detector noisetotal variance
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Cosmic variance limits on the
current CMB data

42

Current Planck temperature power spectrum (TT) is already cosmic variance limited, 
out to the angular scales where primordial effects are dominant. Hence, there is no 
gain to be made by measuring the CMB temperature anisotropies with more precision.

Within  the  next  4-5  years,  LiteBIRD  satellite  will  make  cosmic  variance-limited 
measurement of the EE mode of polarization power (highly useful for measuring the 
universe’s  optical  depth  caused  by  reionization,  for  example).  And  BB  mode  of 
polarization is fully unconstrained at the large scale. So there is plenty to discover!
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Questions?
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Feel free to email me or ask questions  
in our eCampus Forum


