The Globular Cluster Luminosity Function

Dean McLaughlin Keele University D. E. McLaughlin & S. M. Fall 2007, ApJ, submitted

- dN/d(log M) = GC mass function (GCMF): not universal
- peak or turnover M_{TO} :

increases with cluster half-mass density in the Milky Way

width:

decreases with increasing $\rho_{\rm h}$

- must be accounted for in any theory of GCMF
- signature of cluster evaporation driven by internal two-body relaxation

young clusters: $\beta \simeq 2$ for $10^6 - 10^4 M_{\odot}$ old GCs: $\beta \sim 2$ at M>M_{TO} (with curvature!) $M_{TO} \approx 1 - 2 \times 10^5 M_{\odot}$

 $M < M_{TO}$: β → 0 dN/dM → const. dN/d(log M) → M⁺¹

> Fall & Zhang (2001) Waters et al. (2006) Spitler et al. (2006) Jordán et al (2007)

GCMF turnover ≈ constant between and within galaxies

"universality" of $M_{TO} \approx 1-2 \times 10^5 M_{\odot}$ and $\beta \rightarrow 0$ for $M < M_{TO}$

(near-)initial conditions?

e.g., Kroupa & Boily (2002); Vesperini & Zepf (2003); Parmentier & Gilmore (2007)

long-term evolution from initial $\beta \simeq 2$ power law at low M? low-mass clusters preferentially destroyed over $\simeq 13$ Gyr of evolution in galaxy tidal fields (gravitational shocks, two-body relaxation)

"universality" of $M_{TO} \approx 1-2 \times 10^5 M_{\odot}$ and $\beta \rightarrow 0$ for $M < M_{TO}$

(near-)initial conditions?

e.g., Kroupa & Boily (2002); Vesperini & Zepf (2003); Parmentier & Gilmore (2007)

long-term evolution from initial $\beta \simeq 2$ power law at low M? low-mass clusters preferentially destroyed over $\simeq 13$ Gyr of evolution in galaxy tidal fields (gravitational shocks, two-body relaxation)

star formation and "infant mortality" inevitably affect the "initial" GCMF at $\sim 10^8 - 10^9$ yr

subsequent dynamical evolution inevitably affects the mass distribution of old clusters as observed

what is *necessary* vs. what is *possible*?

Cluster mass-loss rates (Fall & Zhang 2001, ApJ)

NOTE! relaxation-dominated evolution ⇒ M linear in time (also: Vesperini & Heggie 1997; Gnedin et al. 1999; Giersz 2001; Baumgardt & Makino 2003; Trenti et al. 2007; ...)

Linear decrease dM/dt \simeq constant is crucial (Fall & Zhang 2001)

$$\begin{split} \mathbf{M(t)} &= \mathbf{M_0} - \mu_{\mathbf{ev}} \mathbf{t} \implies \text{ if initial dN/d(log M_0) rose to low} \\ & \text{masses, peak develops at} \\ & \mathbf{M_{TO}} \sim \mu_{\mathbf{ev}} \mathbf{t} \text{ (roughly speaking)} \end{split}$$

more generally: current masses $M \ll \mu_{ev}t$ are remnants of initial $M_0 \approx \mu_{ev}t$

> number at all $M \ll \mu_{ev}t$ is \approx initial number at $M_0 \approx \mu_{ev}t$

i.e., low-mass $\beta \rightarrow 0$: dN/d(log M) \rightarrow M⁺¹ always

Average mass-loss rate $\mu_{ev} \equiv M_0/t_{dis}$; $M(t) \simeq M_0 - \mu_{ev}t$

Average mass-loss rate $\mu_{ev} \equiv M_0/t_{dis}$; $M(t) \simeq M_0 - \mu_{ev}t$

Basic timescales:

$$t_{rh} \propto (Mr_h^3)^{1/2} \propto M/\rho_h^{1/2}$$

 $t_{cross} \propto 1/
ho_{h}^{1/2}$

Average mass-loss rate $\mu_{ev} \equiv M_0/t_{dis}$; $M(t) \simeq M_0 - \mu_{ev}t$

Basic timescales: $t_{rh} \propto (Mr_h^{-3})^{1/2} \propto M/\rho_h^{-1/2}$ $t_{cross} \propto 1/\rho_h^{-1/2}$

"Standard" theory: $t_{dis} \propto t_{rh,0} \Rightarrow \mu_{ev} \propto \rho_{h,0}^{1/2}$ (Hénon; Spitzer)

Average mass-loss rate $\mu_{ev} \equiv M_0/t_{dis}$; $M(t) \simeq M_0 - \mu_{ev}t$

Basic timescales: $t_{rh} \propto (Mr_h^{-3})^{1/2} \propto M/\rho_h^{-1/2}$ $t_{cross} \propto 1/\rho_h^{-1/2}$

"Standard" theory: $t_{dis} \propto t_{rh,0} \Rightarrow \mu_{ev} \propto \rho_{h,0}^{1/2}$ (Hénon; Spitzer)

N-body:
$$t_{dis} \propto t_{rh,0}^{3/4} t_{cross,0}^{1/4} \Rightarrow \mu_{ev} \propto \Sigma_{h,0}^{3/4}$$

(Baumgardt & Makino)

Fall & Zhang: $\mu_{ev} \propto \rho_h^{1/2}$ and ρ_h =constant (Hénon 1961)

plausibly explains *global* M_{TO} in Milky Way GC system from initial Schechter function with low-mass power law $\beta = 2$

Fall & Zhang: $\mu_{ev} \propto \rho_h^{1/2}$ and ρ_h =constant (Hénon 1961)

plausibly explains *global* M_{TO} in Milky Way GC system from initial Schechter function with low-mass power law $\beta=2$

similar M_{TO} in most galaxies a result of similar typical GC ρ_h (direct evidence: Jordán et al. 2005)

Fall & Zhang: $\mu_{ev} \propto \rho_h^{1/2}$ and $\rho_h = \text{constant}$ (Hénon 1961)

plausibly explains *global* M_{TO} in Milky Way GC system from initial Schechter function with low-mass power law $\beta = 2$

similar M_{TO} in most galaxies a result of similar typical GC ρ_h (direct evidence: Jordán et al. 2005)

additionally assume Milky Way is static, spherical, and isothermal for a Hubble time: to set GC ρ_h from orbital r_p and tidal limitation $(\rho_h \propto r_p^{-2})$

Fall & Zhang: $\mu_{ev} \propto \rho_h^{1/2}$ and $\rho_h = \text{constant}$ (Hénon 1961)

plausibly explains *global* M_{TO} in Milky Way GC system from initial Schechter function with low-mass power law $\beta = 2$

similar M_{TO} in most galaxies a result of similar typical GC ρ_h (direct evidence: Jordán et al. 2005)

additionally assume Milky Way is static, spherical, and isothermal for a Hubble time: to set GC ρ_h from orbital r_p and tidal limitation $(\rho_h \propto r_p^{-2})$

then infer strong radial-orbit bias for GC system: to reproduce near-constant $M_{TO} \sim \rho_h^{1/2} \sim r_p^{-1}$ vs. current r_{qc}

- abandon long-term dynamical evolution for peak and low-mass shape of GCMF? (Vesperini & Zepf 2003; Parmentier & Gilmore 2007)
- abandon over-simplification of Milky Way as a static, singular isothermal sphere? (Prieto & Gnedin 2006)

- abandon long-term dynamical evolution for peak and low-mass shape of GCMF? (Vesperini & Zepf 2003; Parmentier & Gilmore 2007)
- abandon over-simplification of Milky Way as a static, singular isothermal sphere? (Prieto & Gnedin 2006)

secondary assumptions about geometry and time-dependence of Galactic halo \Rightarrow GC ρ_h vs. r_p and r_{gc} that may be **unrealistic**

- abandon long-term dynamical evolution for peak and low-mass shape of GCMF? (Vesperini & Zepf 2003; Parmentier & Gilmore 2007)
- abandon over-simplification of Milky Way as a static, singular isothermal sphere? (Prieto & Gnedin 2006)

secondary assumptions about geometry and time-dependence of Galactic halo \Rightarrow GC ρ_h vs. r_p and r_{qc} that may be **unrealistic**

relaxation-dominated cluster mass loss \Rightarrow prediction of GC dN/d(log M) dependence on cluster density ρ_h (or Σ_h) : **check!**

McLaughlin & Fall (2007)

M vs ρ_h : M t and "scatter" I as ρ_h t lower envelope M $\propto \rho_h^{1/2}$ (constant t_{dis})

M vs r_{ac} : no strong trend (broader at large r_{ac})

 $\rho_{\rm h}$ vs r_{gc} : large scatter, no *unique* fit like $\rho_{\rm h} \propto r_{\rm gc}^{-2}$ convolving with M($\rho_{\rm h}$) *erases* GCMF variations

McLaughlin & Fall (2007)

$$\begin{split} \mathbf{M}_{\mathrm{TO}} \text{ increases with } \rho_{\mathrm{h}} : \text{ not universal} \\ expected \text{ for } \mu_{\mathrm{ev}} \mathbf{1} \text{ as } \rho_{\mathrm{h}} \mathbf{1} \end{split}$$

broader distribution at low ρ_h : less evolved

broad GCMF at large r_{qc} : very broad range of ρ_{h}

initial GCMF: $dN/d(\log M_0) \propto M_0^{-1} \exp(-M_0/M_c)$ [β =2 at low M]

$$\frac{dN}{d\log M} = \sum_{i=1}^{N} A_i \frac{M}{(M+\Delta_i)^2} \exp\left(-\frac{M+\Delta_i}{M_c}\right) \qquad (M_c \simeq 10^6 M_{\odot})$$

 $\Delta_i = 1.45 \times 10^4 M_{\odot} (\rho_{\rm h,i} / M_{\odot} \, {\rm pc}^{-3})^{1/2}$

 $\mu_{ev,i} = \Delta_i / 13 \text{ Gyr} = 1.1 \times 10^3 \text{ M}_{\odot} \text{ Gyr}^{-1} (\rho_{h,i} / \text{ M}_{\odot} \text{ pc}^{-3})^{1/2}$

McLaughlin & Fall (2007)

Galactic GCMF vs cluster concentration

Smith & Burkert (2002): difference between c < 0.99and $c \ge 0.99$

result of different ρ_h distributions in different c ranges

same $\Delta \propto \rho_{\rm h}^{-\nu_2}$ as before

Single $\mu_{ev} \propto \rho_h^{1/2}$ as in relaxation-dominated evaporation explains GCMF as function of ρ_h as (non-)function of r_{gc} in different concentration ranges etc....

weak/null radial variation of GCMF inside galaxy not an argument against long-term dynamical evolution

strong radial orbit bias results from too-simple attempt to connect ρ_h to r_{gc} : Galaxy is not spherical and static over a Hubble time

derive $\rho_h(r_{gc})$ distribution from detailed simulations in hierarchical cosmology (e.g., Prieto & Gnedin 2006) from "fitted" mass-loss rate $\mu_{ev} \propto \rho_{h}^{1/2}$:

GCMF
$$t_{dis} = M_0/\mu_{ev} \approx 10 t_{rh,0}$$

standard relaxation theory: $t_{dis} \sim 20-30 t_{rh,0}$

GC lifetimes estimated from GCMF within factor of \sim 2 of independent theory

various possible resolutions: shocks? stellar IMF? initial low-mass power law β <2? current $\rho_{\rm h} \neq \rho_{\rm h,0}$

or relaxation theory itself: $t_{dis} \sim 6-7 t_{rh,0}$ at $10^5 M_{\odot}$ in Baumgardt & Makino (2003) Baumgardt & Makino (2003): $t_{dis} \propto t_{rh,0}^{3/4} t_{cross,0}^{1/4} \Rightarrow \mu_{ev} \propto \Sigma_{h,0}^{3/4}$

replacing $\rho_h^{1/2}$ with $\Sigma_h^{3/4}$ in preceding: no change to basic results

key point: near-linear M(t) and μ_{ev} increasing with some measure of half-mass density

- dN/d(log M) = GC mass function (GCMF): not universal
- peak or turnover M_{TO}:

increases with cluster half-mass density in the Milky Way

• width:

decreases with increasing $\rho_{\rm h}$

- must be accounted for in any theory of GCMF
- signature of cluster evaporation driven by internal two-body relaxation

mass loss rate $-\mu_{ev} \propto \sqrt{\rho} = constant \Rightarrow$ $M(t) = M_0 - \mu_{ev} t = M_0 - \Delta$

$$\frac{dN}{dM}(t) = \frac{dN}{dM_0} \left| \frac{\partial M_0}{\partial M} \right| = \frac{dN}{dM_0}$$

$$\frac{dN}{dM_0} = M_0^{-2} \exp(-M_0/M_c) \qquad \Rightarrow$$

$$\frac{dN}{dM} = \frac{1}{\left(M + \Delta\right)^2} \exp\left(\frac{-M + \Delta}{M_c}\right)$$

Evolved Schechter Function M_c sets scale Δ/M_c fixes shape