faint Local Group satellites A spectroscopic survey of Searching for the least massive galaxies

TERECE

CORPANY

Nicolas Martin (MPIA, Heidelberg), Rodrigo Ibata (Strasbourg), Scott Chapman & Mike Irwin (Cambridge), Geraint Lewis (Sydney)

> MNRAS, accepted, astro-ph 0705.4622 + Ibata et al. (2006), MNRAS 373, L70

What can we learn from a spectroscopic survey?

★ Radial velocity → first hint of the orbit of the dwarfs (and extreme cases)

- * Spectroscopic metallicities
- ★ Velocity dispersion → *instantaneous mass estimate of the system* ★ Illingworth (1976) $M = 167 r_c \mu \sigma_0^2 \quad \mu \sim 8 \text{ (Mateo 1998)}$
 - ★ caveats:
 - r_c not determined for faint dwarfs $\rightarrow r_c \sim r_{hb}$ (true within $\pm 25\%$)
 - Assuming spherical and virialized systems
 - Tidal heating could increase σ but not in the center of the dwarf (Piatek & Pryor, 1995)
 - Binaries?

LBT/LBC image (Coleman, de Jong, Martin et al. in prep)

LBT/LBC image (Coleman, de Jong, Martin et al. in prep)

Hercules

0

0

DEIMOS multi-object spectrograph on Keck

- * 1h exposures with HR grating \rightarrow 6500-9000 Å, 1Å resolution spectra (2<S/N<60)
- * 20 150 targets (red giant branch, sub-giant branch and turn-off stars) depending of faintness of satellite
- Calibration lamps observed between each observation to cope with slight rotation of spectrograph → *uncertainties* 1-2 km/s

★ Calcium triplet \rightarrow [Fe/H] = $-2.66 + 0.42[\Sigma Ca + 0.64(V - V_{HB})]$

 $\Sigma Ca = 0.5 EW_{\lambda 8498} + 1.0 EW_{\lambda 8542} + 0.6 EW_{\lambda 8662}$

Na doublet, gravity sensitive to discriminate dwarfs (Galactic foreground stars) from *giants*

DEIMOS multi-object spectrograph on Keck

- * 1h exposures with HR grating \rightarrow 6500-9000 Å, 1Å resolution spectra (2<S/N<60)
- * 20 150 targets (red giant branch, sub-giant branch and turn-off stars) depending of faintness of satellite
- Calibration lamps observed between each observation to cope with slight rotation of spectrograph → *uncertainties* 1-2 km/s

★ Calcium triplet \rightarrow [Fe/H] = $-2.66 + 0.42[\Sigma Ca + 0.64(V - V_{HB})]$

 $\Sigma Ca = 0.5 EW_{\lambda 8498} + 1.0 EW_{\lambda 8542} + 0.6 EW_{\lambda 8662}$

Na doublet, gravity sensitive to discriminate dwarfs (Galactic foreground stars) from *giants*

Canes Venatici I

Sven Geier ()

The Canes Venatici I case

Metal-poor, hot extended component • $-2.5 \leq [Fe/H] \leq -2.0$ • $r_{hb} = 500 \pm 135 \text{ pc}$ • $\sigma = 13.9_{-2.5}^{+3.2} \text{ km/s}$

Metal-rich, cold component • $-2.0 \leq [Fe/H] \leq -1.5$ • $r_{hb} = 230 \pm 65 \text{ pc}$ • $\sigma = 0.5 \pm 0.5 \text{ km/s}$ • $\sigma < 1.9 \text{ km/s}$ at 99% conf

The Canes Venatici I case

Metal-poor, hot extended component • $-2.5 \leq [Fe/H] \leq -2.0$ • $r_{hb} = 500 \pm 135 \text{ pc}$ • $\sigma = 13.9_{-2.5}^{+3.2} \text{ km/s}$

Metal-rich, cold component • $-2.0 \leq [Fe/H] \leq -1.5$ • $r_{hb} = 230 \pm 65 \text{ pc}$ • $\sigma = 0.5 \pm 0.5 \text{ km/s}$ • $\sigma < 1.9 \text{ km/s}$ at 99% conf

Willman 1, the INT/WFC view

Willman 1, the INT/WFC view

Willman 1

Willman 1, the INT/WFC view

Willman 1

	Воо
$v_r (km/s)$	99.0 ± 2.1
$\sigma_{\rm vr}$ (km/s)	6.5 -1.4+2.0
Mass (M $_{\odot}$)	1.3 x 10 ⁷
median [Fe/H]	-2.1

	Воо	CVn I (cold)	CVn I (hot)
$v_r (km/s)$	99.0 ± 2.1	22.5 ± 0.5	26.5 ± 1.5
$\sigma_{\rm vr}$ (km/s)	6.5 -1.4+2.0	0.5 ± 0.5	13.9 -2.5+3.2
Mass (M $_{\odot}$)	1.3 x 10 ⁷	~1.1 x 10 ⁶	~1.3 x 10 ⁸
median [Fe/H]	-2.1	~-1.7	~ -2.1

	Воо	CVn I (cold)	CVn I (hot)	UMa I
$v_r (km/s)$	99.0 ± 2.1	22.5 ± 0.5	26.5 ± 1.5	-57.0 ± 3.5
$\sigma_{ m vr}$ (km/s)	6.5 -1.4+2.0	0.5 ± 0.5	13.9 -2.5+3.2	11.9 _{-2.3} +3.5 *
Mass (M $_{\odot}$)	1.3 x 10 ⁷	~1.1 x 10 ⁶	~1.3 x 10 ⁸	4.7 x 10 ⁷ *
median [Fe/H]	-2.1	~-1.7	~ -2.1	~ -2.1

	Воо	CVn I (cold)	CVn I (hot)	UMa I	UMa II
$v_r (km/s)$	99.0 ± 2.1	22.5 ± 0.5	26.5 ± 1.5	-57.0 ± 3.5	-115 ± 5
$\sigma_{\rm vr}({\rm km/s})$	6.5 -1.4+2.0	0.5 ± 0.5	13.9 -2.5+3.2	11.9 _{-2.3} +3.5 *	$7.4_{-2.8}^{+4.5}$
Mass (M $_{\odot}$)	1.3 x 10 ⁷	~1.1 x 10 ⁶	~1.3 x 10 ⁸	4.7 x 10 ⁷ *	0.4-0.9 x 10 ⁶
median [Fe/H]	-2.1	~-1.7	~ -2.1	~ -2.1	~ -1.7 *

	Воо	CVn I (cold)	CVn I (hot)	UMa I	UMa II	Wil 1
$v_r (km/s)$	99.0 ± 2.1	22.5 ± 0.5	26.5 ± 1.5	-57.0 ± 3.5	-115 ± 5	-12.3 ± 2.5
$\sigma_{\rm vr}~({\rm km/s})$	6.5 -1.4+2.0	0.5 ± 0.5	13.9 -2.5+3.2	11.9 _{-2.3} +3.5 *	7.4 -2.8+4.5	4.3 -1.3+2.3
Mass (M $_{\odot}$)	1.3 x 10 ⁷	~1.1 x 10 ⁶	~1.3 x 10 ⁸	4.7 x 10 ⁷ *	0.4-0.9 x 10 ⁶	5 x 10 ⁵
median [Fe/H]	-2.1	~-1.7	~ -2.1	~ -2.1	~ -1.7 *	-1.5

	Воо	CVn I (cold)	CVn I (hot)	UMa I	UMa II	Wil 1
$v_r (km/s)$	99.0 ± 2.1	22.5 ± 0.5	26.5 ± 1.5	-57.0 ± 3.5	-115 ± 5	-12.3 ± 2.5
$\sigma_{\rm vr}({\rm km/s})$	6.5 -1.4+2.0	0.5 ± 0.5	13.9 -2.5+3.2	11.9 _{-2.3} +3.5 *	7.4 -2.8+4.5	4.3 -1.3+2.3
Mass (M $_{\odot}$)	1.3 x 10 ⁷	~1.1 x 10 ⁶	~1.3 x 10 ⁸	4.7 x 10 ⁷ *	0.4-0.9 x 10 ⁶	5 x 10 ⁵
median [Fe/H]	-2.1	~-1.7	~ -2.1	~ -2.1	~ -1.7 *	-1.5

References

- ***** Belokurov V. et al. 2007, *ApJ* 658, 337
- Coleman M., de Jong J., Martin N., Rix H.-W., Sand D., Bell E., Olszewski E., Hippelein H., 2007, *ApJL* submitted
- * Ibata R, Chapman S., Irwin M., Lewis G. & Martin N., 2006, MNRAS 373, L70
- * Illingworth G., 1976, *ApJ* 204, 73
- * Martin N., Ibata R., Chapman S., Irwin M. & Lewis G., 2007, MNRAS accepted, astro-ph/0705.4622
- * Mateo M., 1998, ARA&A 36, 435
- * Piatek S. & Pryor C., 1995, *AJ* 109, 1071
- Wilkinson M., Kleyna J., Gilmore G., Evans W., Koch A., Grebel E., Wyse R. & Harbeck D., 2006, *The Messenger* 124, 25